
Supporting document for Hive proposal 2: evidence of 
std::list usage in open source codebases
Audience: LEWG, SG14, WG21
Document number: P3012R0 
Date: 2023-10-12
Project: Supporting document for std::hive proposal 2
Reply-to: Matthew Bentley mattreecebentley@gmail.com

Background
std::list represents a convenient solution for many developers in the sense that it guarantees 
pointer/iterator stability to elements regardless of the insertion/erasure of other elements, unlike 
deque/vector. But unlike deque/vector, it’s iteration and insertion performance are low (erasure 
performance is high) due to the individual dynamic allocation of each and every element. In some 
cases people may get around the insertion speed problem by using allocators, but they cannot 
generally get around the slow iteration problem caused by elements not being contiguous in 
memory. And in practice most codebases do not use allocators with std::list. In addition the memory
overhead for each list element is high (2 pointers).

The common solution for vector of using a swap-and-pop for non-back erasure in vectors 
invalidates pointers to every back element swapped, and another common solution, that of a vector 
of pointers to dynamically-allocated elements, has the same performance issues as std::list – albiet 
with a slightly lower memory cost (1 pointer per element).

In any area where order of elements is unimportant but pointer/iterator stability is important, 
std::hive is a better solution than std::list or a vector of pointers, due to allocating elements in blocks
rather than individually, and erasing via notation rather than via reallocation (ala vector) or 
deallocation (ala list) of elements. Currently, many open source codebases use std::list, for reasons 
which will be explored. One of those reasons is that they have to be readable by many contributors, 
so they’re unlikely to use non-standardised containers. Were those instances to be replaced with 
std::hive, it would improve performance in those codebases, and in most cases improve memory 
use.

Hive vs std::list performance metrics

On average across ranges of elements from 10 to 1000000 in 1.1x steps (hence the averaged results 
are skewed toward smaller numbers of elements as these receive the most measurements), and 
across 5 types (1byte, 2byte, 4byte, 40byte and 490byte) the average performance characteristics are
as follows (see the “raw performance benchmarks” on the plf::colony benchmarks page for sources 
and test setup):

• Insertion (singular): 520% faster than std::list (ie. 5.2x as fast) – speed increase is greatest 
for smallest type and decreases as type grows larger.

• Erasure: 71% faster – speed increase is greatest for large types and decreases as type gets 
smaller.

mailto:mattreecebentley@gmail.com


• Iteration after erasing 25% of elements: 50% faster - speed increase is greatest for large 
types and large numbers of elements, as the CPU is able to cache a certain number (~1000 
on my test setup) of jump destinations – so once the number of elements gets above that 
number, hive outperforms list significantly (up to 218%).

Hence we can see why it would be advantageous to switch to hive where appropriate.

Open source project investigation

With that in mind I thought I would see how many modern open source projects are in fact using 
std::list versus vector or others despite it’s performance issues. I downloaded the current trending 
C++ repositories on github (https://github.com/trending/cpp) as well as Libreoffice and QT-core. In 
total 13 large codebase repositories:
tensorrtx
SFML
libreoffice
latte-dock
json for modern C++
googletest
FreeCAD
fheroes2
ethersweep
dlib
ClickHouse
brpc
QT-core

Of the 13, 7 used std::list (projects which used std::list only in test/demonstration material rather 
than library code are not included in this result). Libreoffice used it extensively, even citing it’s use 
in places as specifically for the purposes of retaining stable pointers to elements. In freecad and 
clickhouse it’s use was ubiquitous. QT also used it considerably, the worst instance (in terms of 
performance) being a list of unique pointers to class instances which themselves contain pointers to 
graphics buffers.

Outside of libreoffice I could find no instances where it was documented as to why std::list was 
being used instead of more contiguous containers, so it is difficult to ascertain whether (a) order 
was important (b) pointer/iterator stability was important. However in both freecad and clickhouse 
they were extensively used to splice one std::list into another, or in some cases, a range from one 
list into another, or using splice to move a range around within a list.

Hive supports full-container splicing but not range-splicing. The latter can only be achieved via 
std::move’ing individual elements and erasing the originals, but with the caveat of losing 
pointer/iterator stability. Still, range-splicing was the exception rather than the norm, in these 
codebases at least.

Summary

https://github.com/trending/cpp


• std::list slow, hive fast.

• Most devs do not accomodate std::list’s slowness in insertion/erasure by using allocators.

• Allocators do not solve std::list’s iteration slowness.

• Many open source frameworks and applications are using std::list, either for splice, 
iterator/pointer validity to elements regardless of insertion/erasure, or in ignorance of the 
performance costs.

• Where appropriate (unordered element scenarios, range-splice not needed), switching to 
hive (or providing hive as an alternative for new projects) will dramatically increase 
performance in these scenarios.

• Not having hive in the std:: will mean these projects will probably not use it, as the projects 
are designed to run on multiple platforms under multiple architectures and have many 
unfamiliar eyes looking at the code, hence a desire for use of well-understood std:: 
containers.

• ie. Not having hive in the standard == worse performance in open source projects.


	Supporting document for Hive proposal 2: evidence of std::list usage in open source codebases
	Background
	Hive vs std::list performance metrics
	Open source project investigation

	Summary

