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Abstract

"ROB" is a proprietary Bloomberg C++ preprocessor language, whose raison d'être is to surface natively
implemented classes through JavaScript APIs with almost no boilerplate code. To do its job, the ROB compiler
generates wrappers to translate between native C++ and JavaScript types and conventions, as well as "type
descriptor" structs that cannot yet be fully generated using ISO C++ (modulo macros or significant boilerplate).
ROB components play central roles in server-side JavaScript applications accessed daily by hundreds of
thousands of external clients, as well as internal users.

This paper describes an experimental framework, affectionately named rob2, that permits the replacement of
ROB components with pure C++ classes by leveraging value-based reflection as provided by the lock3
implementation of P2320 ("The Syntax of Static Reflection"). Reflection capabilities that were found to be
important are highlighted, as well as implementation challenges and frustrations encountered along the way.

Since the motivation for rob2 was to exercise the value-based reflection model, and to provide a thought
provoking proof of concept for internal users of ROB, no attempt was made to engineer a "complete" solution:
attentive readers will not find it difficult to identify cases that would fail to compile, or do "the wrong thing" given
the described implementation (e.g., overloading of class member functions).

Background

ROB is most heavily used by an application server originally written in C, which maintains a runtime type
registry of all native types surfaced through JavaScript. The chief task of ROB is to instantiate and register a
struct RobTypeDescriptor which captures enough metadata to permit runtime reflection of type names,
constructors, member and class member functions, properties (i.e., getters, setters), inheritance relationships,
etc., as well as to generate the code for marshaling between native and JavaScript types. A separate
component of the application server (beyond the scope of this paper) is responsible for querying the type
registry and constructing the corresponding JavaScript API objects.
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A brief introduction to ROB

Code generation with ROB
Suppose there is some proprietary server-side API

string_view current_user();

which returns the username for the request that is being served. An audience of application developers has
requested that this function be callable from server-side JavaScript. With the help of ROB, this is a breeze.

We write a ROB component, and name it current-user.rob:

class CurrentUser extends RobBaseObject {
public static const char *username() {

string_view username = current_user();
return strdup(username.data());

}
}

which looks a lot like a C++ class! Don't be fooled - this won't be compiled directly. Instead, it will be
preprocessed by the robcc transpiler, which will:

1. Parse the current-user.rob file.
2. Generate corresponding header and definition files (i.e., current-user.h, current-user.cpp).
3. Link the resulting current-user.cpp file into the application server.

Surfacing ROB types through JavaScript
From this simple component, 500+ lines of boilerplate code may be generated. At its heart though, the
following declaration is found in current-user.h:

const char *current_user_username();

and the following definition is found in current-user.cpp:

const char *current_user_username() {
string_view username = current_user();
const char *result = strdup(username.data());
return result;

}



The C heritage of the application server shines proudly: No C++ class is generated at all! A set of C-accessible
APIs are produced instead. Nevertheless, the type system plugged into by ROB-generated code supports
many object-oriented features (e.g., inheritance, information hiding, virtual dispatch). robcc makes much of
this possible by defining a static global RobTypeDescriptor struct within current-user.cpp, and populating it
with information describing the CurrentUser ROB component.

static RobTypeDescriptor rob_type_current_user = {
ROB_TYPE_ROB_BASE_OBJECT, /* parent type */
…
"CurrentUser", /* class name */
…
rob_type_vtable /* virtual table */

};

A generated static initializer registers this struct with the application server's type registry before the program
enters main, thus permitting the runtime discovery of CurrentUser and its methods and properties. Other
components of the application server will leverage this to surface an object named CurrentUser through the
JavaScript runtime; it will have a property CurrentUser.username, which may be called as a function taking
no arguments and returning a string.
> CurrentUser.username()
"katzdm"

ROB virtual tables
The initializer for the above RobTypeDescriptor includes a value rob_type_vtable, which is worth briefly
exploring in more depth.

For every ROB component RobType, the robcc transpiler generates:
1. A C compatible struct RobType having any data members defined by the component.
2. A corresponding C compatible struct RobTypeVtable.

RobTypeVtable is the virtual table struct corresponding to RobType, and it contains a function pointer data
member corresponding to every declared or inherited virtual member function belonging to RobType.



Thus, for every virtual member function fn belonging to RobType (whether declared or inherited), there is a
function pointer data member also named fn belonging to RobTypeVtable, such that if RobType::fn has the
signature

Result (CLS::*)(Arg1, …, Argn);

then RobTypeVtable::fn has the type
Result (*)(CLS *, Arg1, …, Argn);

Furthermore, RobTypeVtable::fn will be initialized to the function corresponding to the most derived
implementation of the corresponding virtual function.

Generating and initializing this data structure proved to be one of the more interesting problems encountered
while implementing rob2.

Shortcomings of ROB
Although ROB succeeds in saving engineers from manually wiring native code through the JavaScript runtime,
it nevertheless leaves a lot to be desired.

- Writing ROB requires a high learning curve and cognitive overhead on top of the already complex C++
language: A rich and exciting world of new and novel footguns awaits.

- The amount of boilerplate generated by robcc is very large: the .h and .cpp files generated from
.rob's are arduous to dig through and all but illegible to non-experts (e.g., given a class with two private
data members, a single member function, and a single class member function, the robcc transpiler
generates a 520 line .cpp file cluttered with macros and #line directives).

- As a proprietary language used internally, ROB code does not benefit from the C++ tooling ecosystem.
Syntax highlighters, static analysis utilities, and automated refactoring tools cannot be used directly with
ROB code.

Suffice it to say, many would happily see this infrastructure retired.

Case studies

What follows are a handful of challenges encountered while implementing rob2, whose chosen solutions
entailed the use of reflection, together with perceived strengths and shortcomings of value-based reflection as
implemented by lock3's P2320 compiler.

An index of cases studied is provided for convenience, along with a summary of the reflection features utilized:
- Inference of entity names

Reflection operator and meta::name_of from <experimental/meta>.

- Iteration over class members
Reflection operator and facilities from <experimental/meta>, including: meta::members_of and
meta::is_member_function. Also circumvented an apparent compiler issue using identifier splices.



- Iteration over transitive base classes
Reflection operator, as well as several facilities from <experimental/meta>:
meta::base_spec_range, meta::type_of, and meta::is_class.

- Constructing ROB-compatible vtables
Reflection operator, identifier splice operator, and many facilities from <experimental/meta>,
including: meta::name_of, meta::is_public, meta::members_of,
meta::is_static_member_function, meta::is_special_member_function, meta::is_virtual,
meta::is_override, and meta::is_constructor.

- Finding a canonical constructor
Reflection operator and several facilities from <experimental/meta>, including: meta::members_of,
meta::is_member_function, meta::is_constructor, meta::is_public, and
meta::is_defaulted.

- Overriding default generation of JavaScript bindings
meta::has_attribute, as well as a modified fork of the P2320 compiler and a custom Clang plugin to
circumvent lack of ISO C++ support for user-defined attributes.

Inference of entity names

P2320 value-based reflection makes it exceedingly easy to obtain names from reflections of entities.
template <typename CLS>
class RobTypeDescriptorUtil {

static constexpr const char *k_CLASS_NAME = meta::name_of(^CLS);

static const RobTypeDescriptor *instance() {
…
new … RobTypeDescriptor {

k_CLASS_NAME,
…

};
…

}
};

Consistently using meta::name_of correctly took some practice, since not all reflected entities have names.
Although this was never a problem when reflecting on types, it took some time to learn "the right moment" to
reflect on certain other entities. For example:
template <meta::info INFO>
consteval bool HasName1() { return meta::is_named(INFO); }

template <auto FN>
consteval bool HasName2() { return meta::is_named(^FN); }

struct T { static int mem; };
static_assert(HasName1<^T::mem>()); // Reflection of 'T::mem' has a name.
static_assert(!HasName2<&T::mem>()); // 'Address of T::mem' is not named; name is lost.
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Although this might be intuitive to those already accustomed to thinking about reflections and ASTs, others
might find it surprising that the operations of reflecting on T::mem and passing it as a template argument don't
commute. Candidly, even after understanding the importance of the order of operations, I still continued to
make this mistake at every opportunity.

Takeaways
Getting an entity name mostly "just works," but the behavior can be unintuitive at interface boundaries.

Iteration over class members

Iterating over class members was an essential capability while solving several subproblems, e.g.,
- Reflecting member functions into the virtual table struct.
- Iterating over class data members to ascertain which represent JavaScript properties (i.e., those having

some rob2::ReadProperty<T>, rob2::WriteProperty<T>, or rob2::ReadWriteProperty<T> type).
- Iterating over all member functions having some given attribute.

A few points of frustration occurred, but could be circumvented.

- Although meta::members_of is advertised to accept arbitrarily many predicate filters P1, …, Pn, the
compiler had difficulty accepting multiple predicates. Most uses of meta::members_of were in the
context of a template for statement, and nesting if constexpr (P2 && … && Pn) inside the loop
body generally achieved the same result.

- Once a reflection was obtained, it was sometimes difficult to work with it. For instance, given an
iteration over class member functions:
template for (constexpr auto e :

meta::members_of(^CLS, meta::is_member_function))

the reflection e appears to "forget" the class to which it belongs:

static_assert(is_same_v<typename [:meta::type_of(e):],
void()>);

For some use cases, this is fine; for instance, one can readily invoke the member function on some
instance of CLS. From this, it is clear the compiler in some way "remembers" that e is a member
function of CLS, despite this information not surfacing through the type.

CLS instance;
instance.[:e:]();

On the other hand, I failed to find a means of obtaining a pointer to the member function reflected by e.
This could be circumvented with an identifier splice (i.e., &CLS::[#meta::name_of(e)#]), but this felt
like a hack and would, of course, encounter trouble in the presence of overload sets.

These sorts of frustrations were very characteristic of working with the P2320 compiler. Unexpected compile
errors, often surfaced as compiler crashes, were quite common. While there is usually a way to work around
these issues, it often takes three or four ideas before finding one that the compiler lets through.



Takeaways
meta::members_of is one of the most broadly useful facilities from <experimental/meta>; it should be easy
to use, with as few "sharp corners" as possible. The P2320 compiler's implementation shows some room for
improvement.

Iteration over transitive base classes

Generating the virtual table requires iterating not only over direct base classes, but also over all ancestor
classes in order from least to most derived. This is implemented as a class template with two public constexpr
class member arrays:
template <typename CLS>
class BaseClassUtil {
public:
static constexpr auto direct_bases = …; // array<meta::info, M>
static constexpr auto ancestors = …; // array<meta::info, N>

};

Three private inner structs describe the "pipeline" of compile-time computations:
1. struct direct computes an array of meta::infos reflecting the direct base classes.
2. struct nonunique computes an array of meta::infos reflecting all ancestor classes, with possible

duplicates if a common ancestor is shared by multiple parents.
3. struct unique computes an array of meta::infos reflecting all ancestor classes, with duplicates

removed.

Each of these structs implements two consteval class member functions:
- size_t count() returns how many base classes belong to the array that will be computed.
- array<meta::info, …> find() returns the array.

The toolchain used to build rob2 lacked support for constexpr vector; with the full power of C++20, vectors
could be used in lieu of arrays, the count() functions could be elided, and the template argument CLS
representing the type under introspection could be replaced with a meta::info function argument. Our
implementation, such as it is, can be found here: https://godbolt.org/z/6qsGv6f16.

Takeaways
Iteration over base classes was another essential feature for rob2. Value-based reflection facilitates some
impressively powerful template-less metaprogramming.

Constructing ROB-compatible vtables

With the help of BaseClassUtil<CLS>::ancestors, the virtual table struct (as described by the "ROB virtual
tables" section above) can be assembled as a tree of classes inheriting from one another. Care must be taken
since, as previously stated, the virtual table not only needs a corresponding field for each member function: it
needs each field to share the same name as the original member function.

https://godbolt.org/z/6qsGv6f16


Constructing these virtual tables invariably entails splicing meta::info values (e.g., generating wrappers that
invoke member functions from JavaScript). Since meta::info values received as function arguments cannot
be spliced (i.e., because they aren't constexpr), such values will have to be passed as template arguments; we
found this property to be "viral", since it forces functions calling these to also receive these meta::info values
as template arguments. As a result, the code implementing vtable assembly is less "value-based" than much of
the rest of rob2, leaning more heavily on classic template metaprogramming and fold expressions.

- Define a class template VtableField<meta::info FN>, where FN is a reflection of a member function.
This class has a single non-static data member whose declaration uses the "identifier splice" provided
by the P2320 compiler (i.e., "[# "string_constant" #]") to obtain the same name as the reflected
member function:

typename c_call_t<FN> [#meta::name_of(FN)#];

where if FN reflects a function with signature
Result (CLS::*)(Arg1, …, Argn)

then c_call_t<FN> is
Result (*)(CLS *, Arg1, …, Argn) .



- Define a class template
template <size_t... Idxs>

SimpleVtable<typename CLS, index_sequence<Idxs...>>
: VtableField<findNthVirtualFn(^CLS, Idxs)>... {…}

such that the instantiation
SimpleVtable<CLS, make_index_sequence<countVirtualFns()>>

inherits a non-static function-pointer data member for every virtual member function declared by CLS.

- Define Vtable<CLS> such that it inherits from SimpleVtable<BASE> for every BASE in
BaseClassUtil<CLS>::ancestors.

The Vtable<CLS> class has a non-static function-pointer data member for every virtual member function
declared by CLS or any of its ancestors, and is the required data structure for the vtable.

These data members are filled out by the Vtable<CLS> constructor. Iterating over base classes from least to
most derived, any definitions for virtual member functions are written to their corresponding fields in the vtable.
Iteration order guarantees that the most derived definitions of each function end up in the initialized vtable
struct. This vtable calculation utilizes many predicate functions from <experimental/meta>:
is_static_member_function, is_member_function, is_virtual, is_override, is_public,
is_special_member_function, and is_constructor were all found to be quite valuable.

Of course, this methodology ignores many possible situations that might arise in C++. For instance, no attempt
is made to account for virtual inheritance. Overloading is also not supported, as this would require deeper
changes to the system consuming RobTypeDescriptors, as well as implementing some sort of "name
mangling" scheme (both of which were outside the scope of this "proof of concept"). However, if such a
scheme were pursued, it would likely entail nontrivial string formatting at compile-time. The P2320 compiler's
__concatenate built-in might facilitate this, but richer compile-time formatting tools (e.g., some constexpr
format) would be better still.

The use of a hierarchy of templates to build the virtual table circumvents the lack of support for expanding a
range of splices into a sequence of class member declarations. Such functionality probably belongs with what
P1717 ("Compile -time Metaprogramming in C++") calls "source code injection," which deserves more attention
once the foundations for reflection and splicing have been standardized. Significantly more elegant generation
of these virtual table structs might be made possible by such tools.

Some may read this particular case study and recoil in horror at the "reinvention of the compiler" made
possible. I would point out that ROB is hardly unique as a preprocessor language built to compensate for C++'s
historical inability to perform such reflections (and for every such preprocessor language that this committee
learns of, we can be assured of another N about which we hear nothing). While considering what hypothetical
new abuses of the language could be pursued with such tools, please also give thought to the decades of
macros, hacks, preprocessors, and workarounds that are already deployed, which can at last begin their road
to retirement if provided with these same tools.

Takeaways
Combining value-based reflection with classic template metaprogramming, together with a handful of facilities
from <experimental/meta>, makes some truly powerful code introspections now possible. The inability to
splice meta::info function arguments necessitates the use of templates in places where a more
value-oriented style might be otherwise preferred.
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Finding a canonical constructor

Due to the aforementioned lack of support for overloading, each rob2 class must have exactly one "canonical"
constructor (i.e., public and user-defined). This constructor is found by iterating over meta::members_of,
restricted with meta::is_constructor, and counting reflections that match both meta::is_public and
!meta::is_defaulted. A compile-time exception is thrown if a unique "canonical" reflection is not found. An
implementation can be found here: https://godbolt.org/z/z8sY7v9qs.

A reflection of a canonical constructor for a type CLS can be used to instantiate a C-style function template
taking the same arguments and returning CLS *. A pointer to this wrapper is then stored in the associated
vtable struct for CLS.

Takeaways
Reflection makes it possible to obtain a "handle" to a constructor in a way that was not before possible (i.e.,
since one may not obtain a pointer to a constructor). This itself is a very useful operation, and allows for a
"canonical constructor" to be found and bound to JavaScript.

Overriding default generation of JavaScript bindings

The ROB language provides several attributes with which a function may be annotated, including a means of
suppressing a given function from being surfaced through JavaScript. This feature seemed worth exploring for
the rob2 experiment.

Load-bearing user-defined attributes, however, are currently rendered impossible by [dcl.attr.grammar], which
states "any [...] attribute-token that is not recognized by the implementation is ignored." To circumvent this, I
modified the lock3 compiler to return the annotation component of Clang's AnnotationAttr as its spelling (i.e.,
instead of the fixed string "annotate"). I then developed a simple Clang plugin implementing a
[[rob2::nojs]] attribute based on AnnotationAttr; with this, rob2 uses meta::has_attribute to query for
the presence or absence of [[rob2::nojs]] on member functions.

class RobType : public rob2::CppRobBaseObject
{

[[rob2::nojs]]
static void foo();

};

The JavaScript RobType will have no property named foo.

In the context of P2911 ("Python Bindings with Value-Based Reflection"), there has been some discussion as
to whether attributes are the right mechanism for specifying how language bindings are generated. In
particular, the question of who "controls" language bindings has been raised: Is it the job of library authors to
decide which APIs can be called from Python, or the right of a library consumer to define that interface?

If rob2 were an open source framework for generating JavaScript bindings, attributes might be a poor choice
of mechanism. One could argue that arbitrary consumers ought to be able to surface classes from third-party
C++ libraries through the JavaScript runtime, even if the libraries' authors did not have this use case in mind.
This requires that consumers be able to specify bindings separately from the class definition.
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In the case of rob2, the owners of the JavaScript bindings are also the owners of the C++ implementations.
Here, it is explicitly not desirable for library consumers to "reopen" or "extend" the binding surface area of a
class. By requiring that bindings be specified within the class definition, control stays with library providers.
User-defined attributes are an appealing mechanism for this task.

Proposals for user-defined attributes have already been introduced (e.g., P1887 ("Reflection on Attributes")
and P2565 ("Supporting User-Defined Attributes")), and I add my voice to those supporting such measures.

Takeaways
Once standardized, reflection will find many code generation use cases. When ownership of the generated
code resides with the owner of the reflected entity, it makes sense for any "additional data" needed to be
attached to declarations. C++ attributes are the perfect mechanism for attaching such data. Relaxing
[decl.attr.grammar] to allow user-defined attributes would support such use cases.

Retrospective

The rob2 user experience
An API was developed for the rob2 framework that registers a C++ class with the ROB type system by
requiring little more than inheritance from a rob2::CppRobBaseObject base class.

class IAmARobCompatibleClass : public rob2::CppRobBaseObject {
string d_name;

public:
IAmARobCompatibleClass(string_view name)
: rob2::CppRobBaseObject(rob2::typeof(this))
, d_name(name) { }

void greet() {
cout << "Hello, " << d_name << "!" << endl;

}
};
…
static const auto types = rob2::RegisterTypes<IAmARobCompatibleClass, OtherClass, …>();

With only this, the IAmARobCompatibleClass class will be usable from JavaScript.

> var obj = new IAmARobCompatibleClass("Dan")
[object …]
> obj.greet()
"Hello, Dan!"

There are many satisfying properties of this outcome:
- The need for a proprietary transpiler to C++ is removed.
- The cognitive overhead of juggling a metalanguage on top of C++ is removed.
- The need to generate illegible .h and .cpp files is removed.
- The "low boilerplate" hallmark of classic ROB code is retained.
- No knowledge of reflection is required to use rob2.
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Ergonomics of value-based reflection

One of the commonly cited reasons for moving from type-based to value-based reflection is the improved
ergonomics, intuition, and "familiarity" of operating on values with functions (e.g., meta::name_of(^CLS))
compared to template metaprogramming. Unfortunately since function arguments are never constexpr, any
function that splices a meta::info argument must receive it as a template argument rather than a function
argument, e.g.,

template <meta::info Ctor>
auto invokeCtor(auto... args)

instead of
auto invokeCtor(meta::info Ctor, Ts... args)

A function receiving meta::infos as template arguments can pass them as function arguments, but the
converse does not hold: functions receiving meta::infos as function arguments cannot pass them as
template arguments. As discussed in the context of constructing rob2 vtables, the passing of meta::infos as
template arguments therefore becomes "viral": If some function

doComplexTask()

instantiates a reflection meta::info refl, and through a chain of calls invokes some function
doNarrowTask<refl>()

which splices meta::info refl, all intermediate functions in the call chain between doComplexTask and
doNarrowTask must also receive meta::info refl as a template argument. This necessitates a proliferation
of templates, which does some harm to the aesthetic otherwise promised by value-based reflection. Revisiting
some of the ideas from P1045 ("constexpr Function Parameters") would go a long way to improve this, even if
the resulting "constexpr parameters" were themselves just syntactic sugar over template parameters.

The use of a single monotype meta::info also left something to be desired in terms of readability. rob2
implements utility classes and functions which variously expect a provided meta::info to reflect objects as
varied as a constructor, a class type, or a non-static member function. With only a single type to represent
reflections, it is left to the reader of the code to infer which "sort of object" is expected (and represented) at any
given point. One can't help but feel that this sort of "contractual" information belongs as a part of the static type.
In the past, SG7 has expressed hesitancy to introduce any sort of "type hierarchy" on top of meta::info,
partly from a place of concern that it would specify relationships between language entities which today are
implicit or unspecified. While I'm sympathetic to such concerns, I still feel that a richer (but small and finite)
family of reflection types, in the spirit of what was proposed by P0953 ("constexpr reflexpr"), would improve the
readability of reflection-heavy code; I won't attempt here to suggest what shape a family of such types might
have.

State of the P2320 compiler prototype

The incompleteness of the P2320 compiler is worth noting. Although enough functionality is provided to
produce working code for nontrivial use cases, the absence of features like splicing a range of reflections is
sorely felt. The inability to do things like obtain pointers-to-member-functions through meta::members_of

forces the use of odd workarounds, like identifier splices, to accomplish apparently simple objectives. We
frequently encountered surprising behaviors, such as:

- meta::info values obtained through iteration over meta::base_spec_range do not compare equally
with themselves (e.g., https://godbolt.org/z/7aKzao1bj).

- Identifier splices can be used to declare entities having malformed names (e.g.,
https://godbolt.org/z/fn8Kb9GzW).
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The P2320 compiler has been an extremely valuable tool for experimentation, but it would be reassuring to see
a more complete and well-behaving demonstration of value-based reflection before advancing any proposal
towards standardization.

Conclusions

Value-based reflection is sufficiently powerful to replace a language like ROB with pure C++. It can automate
the generation of JavaScript bindings from a class, even when constrained to target a less than ideal legacy
interface rooted in C. I come away from the rob2 experiment enthusiastic and optimistic for the future of
value-based reflection.

Many of the features proposed for value-based reflection were essential to rob2's implementation. The
reflection, splice, typename splice, and identifier splice operators were all heavily used, along with many library
functions from <experimental/meta>. Support for something equivalent to the proposed "...[:range:]..."
syntax for splicing a range of reflections was sorely missed, and seems like a must-have for any final proposal.

In the case of rob2, user-defined attributes proved essential. They enabled the attachment of additional data to
declaration sites, which yielded a very natural syntax for customizing code generation.

While promising, the existing value-based syntax shows some shortcomings in projects of reasonable size.
The use of a single meta::info type becomes confusing in the presence of many reflections representing a
diverse set of entities. Which kind of entity a reflection "represents" must be inferred from context clues, but it
feels like this ought to belong to the type. Furthermore, the aesthetic appeal of representing reflections as
values is lessened by the frequent need to pass them as template arguments. "Constexpr parameters", or
something like them, would improve the situation.

The lock3 compiler is an amazing tool for experimentation, but it would be helpful to see a more complete and
stable demonstration of this technology before standardizing value-based reflection.
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