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Abstract

In this paper, we propose a set of semantics for the named return object in a postcondition specifier
in the Contracts MVP. We consider its value category, type, address, and the circumstances
under which it is well-defined behaviour to modify this object in a precondition predicate. It
remains to be decided whether this object should be implicitly const inside the postcondition
predicate to make such modifications ill-formed.

1 Introduction
The Contracts MVP ([P2900R2]), which is currently in development and targeting C++26 (as
per SG21’s roadmap in [P2695R1]), provides syntax to name the return object in a postcondition
specifier so it can be used in the postcondition predicate:

// This function returns a positive integer
int f()

post (r: r > 0);

However, the exact semantics of the identifier r in the above declaration — which we will call the
return-name, following the grammar term introduced in [P2932R2] — were never specified. The
only piece of wording that talks about it can be found in the pulled C++20 proposal [P0542R5],
and later in the Contracts MVP wording section in [P2388R4]:

A postcondition may introduce an identifier to represent the glvalue result or the prvalue
result object of the function.

This wording is very vague. It does not say what value category r actually has: is it a prvalue, an
xvalue, or an lvalue? It also does not say what type it has: is it a reference to the return object? If
it is not a reference, what exactly is it, given that the return object itself is never declared and has
no name, and what should decltype(r) be? What guarantees can we provide about the address
of r? Under which circumstances is it well-defined behaviour to modify the return object in a
postcondition predicate? Should we add a provision to make such modifications ill-formed, given
that they almost always constitute an unintended bug? And if yes, how could we achieve that?
In this paper, we discuss all of these questions and propose a set of semantics to answer them.
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2 Discussion

2.1 Value category of return-name
In order to specify how the name for the return object behaves, we first need to specify what value
category it has. Is it a prvalue, an xvalue, or an lvalue?
The first option is to make the return name a prvalue, similar to this, which is also a magic name
for a special object available only in a certain context, and is also a prvalue. However, upon closer
inspection, this does not work. We need to be able to do useful things with the return name, for
example to call member functions on it:

X f()
post(r: r.is_valid());

However, a prvalue does not represent an actual object, rather it represents a potential object — a
value that can be used to initialise an object. As such, one cannot call a member function on a
prvalue; first, it has to be materialised into a temporary object, which is a glvalue, and then the
member function will be called on that. This implicit materialisation works for this because this
is a prvalue to a pointer — anything useful we can do with this gets the value of the pointer by
implicitly materialising it into a pointer temporary, dereferencing that, and giving us an lvalue for
the object itself. This does not work for an object of arbitrary type, for example std::unique_ptr:

// This function returns a non-null pointer
std::unique_ptr<T> f()

post (r: r);

If r was a prvalue here, it would be used to materialise a std::unique_ptr object in the predicate,
thus using up the value and making it unavailable to actually be returned from the function.
Making the return name an xvalue is not an adequate choice either. When we refer to the return
object in the postcondition, it is not immediately expiring like an object returned from a function
call or cast returning an rvalue reference. We do not want overload resolution to choose a move
constructor as it would for an rvalue reference as this may result in unintended and unintuitive
behaviour.
It therefore follows that the return name in the postcondition predicate must be an lvalue.

2.2 Type of return-name
First of all, note that the return-name cannot be a copy of the actual return value, because the
function’s return type might be non-copyable. Furthermore, it has to work for a function relying on
guaranteed copy elision:

struct M {
M(M&&) = delete; // non-copyable, non-movable
M(int _i) : i{_i} {}
int i;

};

M getM()
post(r: r.i > 0)

{
return M{3}; // no M moved or copied

}

int main() {
M m = getM(); // This is the only M created in this program

}
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In the program above, the r in post needs to refer to the object m inside main, which needs to be
already initialised by the time the postcondition of getM() is evaluated.
Therefore, we propose a model where the return-name is not actually a variable or a reference, but a
name, very similar to the identifiers in structured bindings. The return-name introduces an identifier
that is the name of an lvalue referring to the unnamed return object of the function, similar to
how we specify in [dcl.struct.bind] that the i-th identifier in a structured binding’s identifier-list is
the name of an lvalue referring to the element i of the unnamed object or array introduced by the
structured binding. For a return-name r, decltype(r) behaves in the same way as for structured
bindings: for a function returning a value of type T, it should just be T, which is the least surprising
to the user; decltype((r)) would be T&, following the usual rules for decltype of expressions.
Alternatively, we could make return-name a reference (or possibly a const reference) to the
return object. This would mostly behave like the solution we propose, except that it would make
decltype(r) a reference type, even if the function returns a non-reference type, and no reference has
been declared anywhere. We do not see a compelling reason to introduce the decltype inconsistency.
The decltype of return-name should match the return type of the function, whether that type is a
reference or not.

2.3 Address of the object referred to by return-name
An interesting subtlety arises for trivially copyable types, values of which may be returned in
registers. For such types, if the return-name referred directly to the return object of the function,
adding a postcondition to a function might be an ABI-breaking change: the return-name is an
lvalue, which means one can take its address, which an object in registers does not have, therefore
the object could no longer be returned in registers.
This would be an unfortunate outcome. However, there is a workaround. To allow passing return
objects of trivially copyable types in registers, there is a provision in [class.temporary] p. 3 that
implementations are permitted to create a temporary object to hold the result. We can therefore
specify that for a function returning an object of trivially copyable type, return-name may refer to
this temporary object instead of referring to the actual return object.
The only user-observable consequence of this workaround is that in code that uses the address of
the return-name, for example,

int f(int* ptr)
post(r: &r == ptr)

{
return 42;

}

int main() {
int i = f(&i);

}

If the return type is trivially copyable, like int here, then there would be no guarantee that the
address of r matches the address of the object being initialised by the return value, and therefore
the postcondition check above may fail. Conversely, if we change the return type to a user-defined
type that is not trivially copyable, the above postcondition check is guaranteed to succeed.
To make this work correctly, we need to be rather precise in our specification. Postconditions
must be evaluated after a normal return from a function, after some object o is initialised with
the result of the function, after local variables and temporaries are destroyed, but before function
parameters are destroyed; the return-name is the name of an lvalue that refers to that object o; and
finally, that o may be the return object or, for trivially copyable types, a temporary created by the
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implementation to hold the result, and may have been initialised prior to evaluation of the return
statement (to account for the guaranteed copy elision case).
The above also implies that even if o is not the actual return object, which is i, there must be
a guarantee that i will be initialised from o, such that, if o has been modified while evaluating
the postcondition annotation, those modifications will be seen when reading the value of i after
control has been returned to the call site. This is important because, while an implementation may
elide any side effects of a checked contract predicate (see [P2751R1]), it can only elide all such side
effects or none of them. If a postcondition modifies the return value and simultaneously something
else in the same predicate, eliding the first but not the second could break invariants and would
make it very hard to reason about the code, so we should not allow this to happen.

2.4 Modifying const-qualified return objects

Since the type of return-name matches the return type of the function, it will be const if the return
type of the function is const. Therefore, the following code is ill-formed:

const int f()
post(i: ++i); // error: cannot modify i with const-qualified type const int

It follows that attempt to circumvent the const-ness of the return object via const_cast is
undefined behaviour as per [dcl.type.cv] p. 4 — “Any attempt to modify a const object during its
lifetime results in undefined behaviour”:

const int f()
post(i: ++const_cast<int&>(i)); // undefined behaviour: modifying a const object

So far, so good. However, what should happen if the return type of the function is not const-
qualified, but the return object is declared const at the call site? At least for non-trivially-copyable
types, we said that the return-name always refers to that return object at the call site, after it has
been initialised. This implies that the following code would be undefined behaviour as well:

struct S {
S();
S(const S&); // not trivially copyable
int x = 0;

};

S f() // return type is not const-qualified
post(r: r.x = 5) // oops, wrote = instead of ==

{
return S();

}

int main() {
const S s = f(); // ???

}

If the code above were undefined behaviour, it would mean that evaluating the postcondition
predicate of f might be undefined behaviour depending on the call site of the function f, which
might be located in an entirely different component of the codebase. Such an outcome would be
very unfortunate.
The correct mental model here is that the const should not take effect until the initialiser of the
object completes evaluating; modifying the object is only undefined behaviour from that point on.
During the evaluation of the initialiser, which includes evaluating the postcondition specifiers of any
functions invoked to evaluate that initialiser, modifications of the value of s should be allowed.
These semantics are actually not specific to evaluating postconditions, but also cover cases like an
object declared const and initialised by a function call modifying the object in its body prior to
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returning it via guaranteed copy elision, or a delegating constructor modifying an object after it has
been constructed by the delegated-to constructor. These cases should not be undefined behaviour
either. We need a general clarification of the wording around initialising objects declared const.
With these semantics, the code above is well-defined behaviour, unless the return type of f() is
const-qualified. The value of s.i inside main will be either 0 or 5 depending on whether the
implementation decides to elide the side effects of the postcondition predicate evaluation according
to the rules in [P2751R1] which we adopted for the Contracts MVP.

2.5 Make return-name implicitly const?

In the previous two sections, we have considered postcondition predicates that modify the return
value. There are some rare cases where the user might actually want to do this, for example changing
a value and then changing it back may save an allocation in certain cases. Apart from such rare
cases however, modifying the return object in a postcondition will be an unintentional bug, and
sometimes such bugs can be hard to find. The last code example contained a typical scenario how
such a bug could be introduced: the user might accidentally write = instead of ==. If the return type
is implicitly convertible to bool, such a predicate will compile and run, but instead of checking the
desired postcondition it will modify the return value of the function (subject to side effect elision) if
contract checks are enabled.
We could make it harder to write such bugs by statically preventing the modification of the return
object in a postcondition:

int f()
post(i: ++i); // should this be ill-formed?

First, note that in general the compiler cannot actually prove whether any particular predicate will
modify the return object, as function definitions may not be available, and even if they are, doing
so would be equivalent to solving the Halting problem:

void g(int& i);

int f()
post(i: g(i)); // will g(i) actually modify i?

Therefore, the only way to statically prevent modification of the return object in a postcondition is
via the type system. Instead of saying that return-name is an lvalue that refers to the return object,
we would have to say that it is a const lvalue. The effect would be that inside a postcondition, the
return-name would behave like a non-const data member of type T in a const member function, or
like a captured object of type T in a non-mutable lambda expression. The actual type of the object
is still T; for a return-name r referring to it, decltype(r) is T — this would be the most consistent
choice — but r is otherwise treated as an object of type const T, and decltype((r)) is const
T&. This means that const overloads will be called; modifying non-mutable members or calling
non-const member functions on the return object or passing non-const references to it to other
functions from the postcondition predicate are all ill-formed.
This approach would be very effective at preventing accidental modification of the return object in
a postcondition. Intentional modification would still be possible — albeit more verbose — via a
const_cast. Such a const_cast would not lead to undefined behaviour as long as the return type
of the function is not const-qualified (see section 2.4 above). Likewise, modification of mutable
data members of the return object would still be possible when calling const member functions on
the object.
There is no consensus between the authors of this paper whether we should pursue this direction.
Therefore, we limit ourselves to presenting some arguments both for and against this direction, and
leave it up to SG21 to make the decision of whether the benefits of catching bugs due to unintended
modifications of the return value outweigh the drawbacks of this direction.
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2.5.1 Breaking the symmetry between pre and post

The first argument against this approach is that the return value in postconditions would behave
differently from the actual return type of the function, which is observable through const overloads
being taken instead of non-const overloads. Even more surprisingly, the behaviour of the return
value in postconditions would become inconsistent with the behaviour of parameters in preconditions:

struct X {};

bool p(X& x) { return true; }
bool p(const X& x) { return false; }

X f(X x)
pre(p(x)) // returns true
post(r : p(r)); // returns false

Breaking this symmetry feels conceptually unpalatable; such an inconsistency might make precondi-
tion and postcondition annotations harder to teach. It might also make it harder for static analysis
of chained function calls to reason about the postcondition of a function call being equivalent to the
precondition of a subsequent function call. On the other hand, one might argue that unlike the
function parameters, the return-name is a new syntax, introducing a way to access an object that
was previously inaccessible; unlike the function parameters, it is not declared by the user (neither to
be const nor to be non-const); and therefore there is no real need for the return object in post to
be consistent with parameters in pre, and we are free to pick the safer semantics for it. One might
further argue that overload sets where the const version of a predicate gives a different answer to
the non-const version, such as the above, are highly dubious and will not appear in practice.

2.5.2 Interfacing with legacy code

Another argument against the approach of making the return-name const is that it makes it harder
to interface with legacy code. Consider:

struct X {
bool is_valid();

};

X f()
post(r: r.is_valid());

In the code above, the author of struct X forgot to make is_valid() a const function (or perhaps,
it is an old C API that takes a non-const raw pointer to X, etc.), and we do not own that code so
we cannot modify it. Yet we know for certain that is_valid() will not modify the object, so we
should be able to tell the compiler to trust us and compile the code above.
The counterargument here is that if we made r implicitly const, one can still achieve the above by
writing:

X f()
post(r: const_cast<X&>(r).is_valid());

One can argue that the extra verbosity needed for such cases does not outweigh the benefits of
catching bugs due to unintended actual modifications of r. It does, however, mean that contract
annotations cannot serve as a full drop-in replacement for existing assert macros.

2.5.3 Making other entities in contract annotations implicitly const

Finally, we could consider fixing the consistency issues between pre and post by making function
parameters inside pre also implicitly const. Arguably, this would catch even more bugs because
modifications of function parameters inside preconditions will also almost always be bugs.
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However, it is then not clear why function parameters should be implicitly const inside pre, but not
inside contract_assert; it would be surprising if a contract predicate would behave substantially
different in a pre on the function declaration than in a contract_assert as the first statement in
the function body.
But if function parameters are implicitly const inside contract_assert, why should local variables
not also be implicitly const inside contract_assert? Presumably, a correct predicate would not
want to modify those either.
This line of thinking leads to the design proposed in [P3071R0]: that variables with automatic
storage duration should be implicitly const1 within the predicates of all contract annotations. This
would be a rather drastic design change of the current Contracts MVP, at a late stage in the design
process. We are not proposing such a design change here. However, should [P3071R0] get approved
for the Contracts MVP, making parameter names and other variables of automatic storage duration
implicitly const within contract predicates, then the only reasonable choice will be to follow suit
amd make the return object implicitly const as well.

3 Summary
In this paper, we propose a set of semantics for the named return object r in a postcondition
specifier post (r: ...) in the Contracts MVP, where this area is currently underspecified. We
propose that r should be an lvalue naming the return object of a function, similar to how the
identifiers introduced by a structured bindings are names, not references; decltype(r) should be
the return type of the function.
We propose a special rule to ensure that adding a postcondition specifier does not break ABI if the
return type is trivially copyable, and thus an object can be returned in registers. The observable
effect of this rule that in these cases, the address of r might not be equal to the address of the
return object but may instead be the address of a temporary introduced to hold the return value.
We further propose a clarification ensuring that modifying the return object in a postcondition
predicate does not inadvertently introduce undefined behaviour if the return object is declared const
at the call site, unless the return type of the function is itself const-qualified. The const should
not take effect until the initialiser of the object completes evaluating, which includes evaluating the
postcondition specifiers of any functions invoked to evaluate that initialiser.
One open question remains: whether the return object r in a postcondition specifier should be
implicitly const to statically prevent bugs due to unintended modification of r, for example when
the user accidentally types = instead of ==. There is no consensus between the authors of this paper
whether the benefits of this direction outweigh the drawbacks; we have presented some arguments
for and against and are leaving the decision on this particular question up to SG21. However, should
[P3071R0] get approved for the Contracts MVP, making parameter names and other variables of
automatic storage duration implicitly const within contract predicates, then the return object
should be implicitly const as well.
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1...with the caveat that this const is necessarily shallow and can be cast away, unless we go for an even more
drastic solution: the one proposed in [P2680R1], which statically enforces that contract predicates do not have any
side effects at all. This direction has already been considered, and twice rejected, by SG21.
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