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1 Revision history [paper.revs|

1 The following changes have been applied to this paper.
(1.1 — c¢v void -> RO (2023y/0October/14, pre-Kona).

Revision history 1
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2 Introduction [paper.intro]

This paper presents the design of a library of number concepts. The design differs from P1813, but its
feedback was taken into account. This paper is informational because the design is known to be incomplete

and lacking in usage experience. We present this as a path forward towards having number concepts for
constraining generic components.

Introduction


https://wg21.link/P1813

(1.1)

(1.2)
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3 History [paper.history]

After finding the pixel, Johel wrote generic components on numbers. But those components failed to abide
to the C++ Core Guidelines’

— B1.9: If an interface is a template, document its parameters using concepts and
< T.concepts: Concept rules.

So Johel armed himself with GCC’s Concepts TS support, and eventually the LLVM fork with C++ standard
concepts. He took the Number concept from Bjarne’s presentation as a starting point. His main concerns
then were to

— specify the semantics and
— to refactor it to support std: :chrono’s duration and time_point.

He stumbled upon C++ [intro.defs] while looking for an answer to these concerns. The vocabulary of the first
subject area of the Electropedia, Mathematics - General concepts and linear algebra, would serve as building
blocks to solve these concerns.

From there, Johel reviewed the feedback on P1813 by the slides P2402 and its proposal P1673R12. Clause 4
and Clause 5 explain the actions taken and thoughts had based on these reviews.

The library then remained virtually unchanged for years. Johel had hardly advanced his own application in
the meantime. That is what had spurred the inception and growth of the library.

Finally, on 2023-09-21, this library was proposed for merging into the mp-units library (O mpusz/mp-
units#492). This spurred a revitalization on the improvement of the design of the library.

History 3
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4 Design [paper.design]

4.1 Overview [paper.design.overview]

We hope that this library encourages the development of well-specified generic components that operate on
numbers. Clause 4 summarizes what is precisely defined in Clause 9. Additionally, we discuss what might
not be evident in that reference documentation.

4.2 Type traits [paper.design.traits]
The type traits are mostly opt-in. They are:

— The number opt-ins, enable_number and enable_complex_number.

— The identities, number_zero and number_one.

— The associated types, number_difference_t and vector_scalar_t.

They are based on existing practice. That is evident for the first two groups in Clause 9. Like std::iter_-
reference_t and std::ranges::range_value_t, the associated types are named kind-of-structure_-
associated-type _t.

4.3 Concepts [paper.design.concepts]

4.3.1 Utilities [paper.design.concepts.utils]

number is the least constrained number concept. common_number_with is used to relate similar types.
template<typename T>

concept number = enable_number_v<T> && std::regular<T>;

template<typename T, typename U>
concept common_number_with =
number<T> && number<U> && std::common_with<T, U> && number<std::common_type_t<T, U>>;

4.3.2 Ordering [paper.design.concepts.order]

ordered_number requires a model of std::totally_ordered.

number_line is the concept that requires the S complete set of increment and decrement. It is named after
the term described in the Wikipedia article “Number line”.
[Note 1: decrementable (C++ [range.iota]) doesn’t work for number types.

— It’s for integer-like types (C++ [iterator.concept.winc]). Or we’d have to specialize std::incrementable_-
traits (C++ [incrementable.traits|) with a difference_type that is an integer-like type and that is different
to number_difference_t (9.5.3.4).

— It requires std: :regular. Feedback at () mpusz/mp-units#492 is that it over-constrains expression templates
that can’t be default-initialized.

— end note]

4.3.3 Arithmetic [paper.design.concepts.arithmetic|
Then follow the building blocks of the form compound_,,:operation _with.

addition-with requires that + performs an addition (IEV 102-01-11). But addition is associative, i.e.,
a+ (b+c) = (a+b)+c. The feedback from P2402 and P1673R12 is that

— associativity is over-constraining, and
— users generally accept “associative enough”.

It occurred to us that we can work around this issue in the same way integer type division (C++ [expr.mul])
works. 3 / 2 is conceptually carried out in real numbers, resulting in 1.5. Then, the operator / yields 1.5
with the fractional part discarded, resulting in 1.

§4.3.3 4
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addition-with is specified similarly to integer type division. That relaxes the associativity to “associative
enough”. addition-with requires that a + b performs the addition F' in an unspecified set. Then, it requires
that + yields F' by mapping it to a value of the type of the result.

First, we introduce an unspecified set. The over-constraining associative addition is done in this unspecified
set. Then, we introduce a mapping from the addition to the result of +. The mapping is left unspecified, so
the result isn’t over-constrained.

The operations required by other refinements of number are specified similarly.

4.3.4 Terse syntax [paper.design.concepts.terse]
Some concepts ending in _for just require a single concept ending in _with with inverted arguments.

template<typename T, typename U>

concept modulus_for = modulo_with<U, T>;
template<typename T, typename U>

concept vector_space_for = point_space_for<U, T>;

These enable the terse concept syntax.
[Ezample 1:

template<vector_space_for<Number> Number2> auto& operator+=(vector<Number2>);
auto operatory(modulus_for<Number> auto);

— end example]

4.3.5 Algebraic structures [paper.design.concepts.algebraic]

Finally, the building blocks are used to define some helpers. These helpers are used to define heterogeneous
concepts on algebraic structures. There also are homogeneous counterparts with a default.

Table 1: Examples of models of algebraic structure concepts  [tab:paper.design.concepts.algebraic]

’ Concept Close model ‘
point_space std::chrono: :sys_seconds
f_vector_space std: :chrono: :seconds
field_number std: :complex<double>
field_number_line double
scalar_number double or std: :complex<double>

§4.35 5
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5 Evolution [paper.evo|

5.1 Relax to generalize [paper.evo.relax]

The concepts are known to be over-constraining for templates like boost: :hana: :int_c. The feedback from
) mpusz/mp-units#492 suggests it is time for the hierarchy to be refactored. This will allow a wider variety
of number templates that make interesting uses of the type system.

5.2 More operations [paper.evo.ops]
There are operations beyond those required by the definition of a vector space (IEV 102-03-01).

P2980R0 needs some of those to specify some quantities. Just like there are scalar quantities (IEV 102-02-19),
there are vector and tensor quantities. An example is speed (IEV 113-01-33) (a scalar quantity), defined as
the magnitude (IEV 102-03-23) of the velocity (IEV 113-01-32) (a vector quantity). Here are other operations
from € mpusz/mp-units#493:

template<typename T>
concept VectorRepresentation = /x ... x/ &&
requires(T a, T b, /*.. %/ {

J* k)
{ dot_product(a, b) } -> Scalar;
{ cross_product(a, b) } -> Vector;
{ tensor_product(a, b) } -> Tensor;
{ norm(a) } -> Scalar;
};
template<typename T>
concept TensorRepresentation = /x ... x/ &&
requires(T a, T b, /* .. %/ {

YL 74

{ tensor_product(a, b) } -> Tensor;

{ inner_product(a, b) } -> Tensor;

{ scalar_product(a, b) } -> Scalar;

};

Scalars, vectors, and tensors are vector spaces (IEV 102-03-01). The number concepts library has scalar_-
number (9.5.4), which represents a scalar (IEV 102-02-18). vector_space could be refined with these
additional operations to support vectors and tensors.

But vector is an overloaded word. Its Wikipedia article says

In mathematics and physics, vector is a term that refers colloquially to some quantities that
cannot be expressed by a single number (a scalar), or to elements of some vector spaces.

vector_space can be renamed to its alternative term linear_space. Then, we could add vector for the
colloquial "tuple of 2 or more scalars' and tensor as refinements.

The C++ standard library offers many more operations on arithmetic types, which are models of scalar_-
number. mp-units also offers a subset of those for mp_units::quantity, whose specializations model
vector_space. The current design of this number concepts library doesn’t consider generalizing this.

5.3 Mixed expressions [paper.evo.mixed.expr]
A mized expression is a mathematical expression with more than one operation. P1673R12 describes, in
particular in 10.8.4, why concepts generally are of little help.

The number concepts only require expressions with up to two operands. But an implementation of an
algorithm might need to use mixed expressions. The unfeasible alternative would be to include all possible
constraints an algorithm might use.

For example, the magnitude of a 2-dimensional Cartesian vector is |0] = /2?2 + y? (IEV 102-03-23). Consider
a C++ representation like this:

§5.3 6
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template<scalar_number Number>
struct vector2d {

Number x;

Number y;

// A faster alternative when just ordering by magnitude.
auto square_magnitude() { return x * x +y * y; }
};
scalar_number requires that the type of Number squared models common_number_with<Number>. But it
doesn’t require that adding squared Numbers works. The best we could do is to add the additional constraint
for the result of Number squared. It could be point_space, the weakest constraint, as required by the
algorithm. Or it could be scalar_number, the same constraint as Number, as users would expect of the
squared Number. There are similar expectations for the addition of the squared Numbers. This doesn’t scale
to mixed expressions with more operations:
scalar_number auto square_magnitude() requires scalar_number<decltype(x * x)> {

return x * x + y * y;

}

One of the points P1673R12 summarizes is:

— We can and do use existing Standard language, like GENERALIZED_ SUM, for expressing
permissions that algorithms have.

For GENERALIZED_SUM, see C++ [numeric.ops]. We agree with P1673R12 on this point. But that doesn’t
preclude constraining algorithms with number concepts.

There is still value in @ 1.9 and & T.concepts. The number concepts in this library already don’t require
the result of addition to be associative (4.3.3). It’s also possible to require that a mixed expression works as
one would naturally expect. This can be done by adding an extra semantic requirement on refinements of
number.

How to deal with this lies in the use of common_number_with in refinements of number. common_number -
with<T, U> subsumes std::common_with<T, U> (C++ [concept.common]). Although it’s not part of
std: :common_with, std::common_type_t<T, U> also generally behaves like T and U.

This is the idea for the semantic requirement on refinements of number. If common_number_with<T, U> is
required, the user can use T in place of U, and the semantic constraints on U also apply to T.

With this requirement in mind, let’s reconsider this example:
auto square_magnitude() { return x * x +y * y; }
scalar_number<Number> requires:
{ c * u} -> common_number_with<V>;
That’s essentially:
{ x * x } -> common_number_with<Number>;

Even if the type of Number squared isn’t the same as Number, the semantic constraints of scalar_-
number<decltype(x * x)> apply when the user writes one of its required expressions. In this case, the
algorithm is required to work as expected.

It is the intent that this doesn’t preclude the + on squared Numbers from being ill-formed. It is also the intent
that the + on squared Numbers is still not required to be a total function (C++ [structure.requirements|) or to
be valid for all input values (C++ [concepts.equality]). Le., the result can still be incorrect or exit via an
exception.

The worth of this formulation is that you can meet S19and @ T.concepts. Even if an algorithm still needs
to be more specific, as with GENERALIZED SUM.

§5.3 7
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6 Similar works [paper.cmp]

6.1 P1813 [paper.p1813]

The algorithms from <numeric> still don’t have constrained counterparts in C++23’s std: :ranges. P1813
aimed to remedy that. Its approach to specifying algebraic structures was bottom-up. The feedback P2402
and P1673R12 gave was that this is over-constraining.

This paper’s approach is instead top-down. Having started from Bjarne’s Number (Clause 3), we have
refactored the existing concepts as needs arise.

<numeric> algorithms work with numeric expressions or have overloads with function objects. The precise
suitability of our number concepts for those constrained overloads hasn’t been studied. The unconstrained
version of std: :accumulate already allows accumulating on a std: :string. We would expect its constrained
version to allow the same.

§6.1 8
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9 API [paper.api]

1 This is a reference documentation. Any resemblance to wording is purely incidental. The interfaces are as
proposed at ) mpusz/mp-units#492 at the time of this writing. Going forward, evolution will happen at ()
JohelEGP /jegp.numbers.
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9.1 Scope [scope]

This document describes the contents of the mp-units library.

9.2 References [refs]

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

— The C++ Standards Committee. N4892: Working Draft, Standard for Programming Language C++.
Edited by Thomas Képpe. Available from: https://wg21.1ink/N4892

— The C++ Standards Committee. P1841R1: Wording for Individually Specializable Numeric Traits.
Edited by Walter E. Brown. Available from: https://wg21.1ink/P1841R1

— The C++ Standards Committee. SD-8: Standard Library Compatibility. Edited by Bryce Lelbach.
Available from: https://wg21.1ink/SD8

— ISO 80000-2:2019, Quantities and units — Part 2: Mathematics
— IEC 60050 (all parts), International Electrotechnical Vocabulary (IEV)

— IEC 60050-102:2007/AMD3:2021, Amendment 3 — International Electrotechnical Vocabulary (IEV) —
Part 102: Mathematics — General concepts and linear algebra

— IEC 60050-112:2010/ AMD2:2020, Amendment 2 — International Electrotechnical Vocabulary (IEV) —
Part 112: Quantities and units

N4892 is hereinafter called C++.
TIEC 60050 is hereinafter called IEV.

9.3 Terms and definitions [defs]

For the purposes of this document, the terms and definitions given in C++, IEC 60050-102:2007/AMD3:2021,
IEC 60050-112:2010/AMD2:2020, the terms, definitions, and symbols given in ISO 80000-2:2019, and the
following apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp
— IEC Electropedia: available at http://www.electropedia.org

Terms that are used only in a small portion of this document are defined where they are used and italicized
where they are defined.

9.3.1 [def.mod]
modulo

operation performed on a set for which a division (IEV 102-01-21) and an addition (TEV 102-01-11) are
defined, the result of which, for elements a and b of the set, is the unique element r, if it exists in the set,
such that a = |a/b]b+r

9.4 Specification [spec]
9.4.1 External [spec.ext]

The specification of the mp-units library subsumes C++ [description], C++ [requirements|, C++ [con-
cepts.equality], and SD-8, all assumingly amended for the context of this library.

[Note 1: This means that, non exhaustively,
— ::mp_units2 is a reserved namespace, and

— std::vector<mp_units:: type> is a program-defined specialization and a library-defined specialization from
the point of view of C++ and this library, respectively.

— end note]

The mp-units library is not part of the C++ implementation.

9.4.2 Categories [spec.cats]

Detailed specifications for each of the components in the library are in 9.5-9.5, as shown in Table 2.

The numbers library (9.5) describes components for dealing with numbers.

§9.4.2 12
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Table 2: Library categories [tab:lib.cats]

] Clause Category \

’ 9.5 Numbers library ‘

9.4.3 Headers

1 The mp-units library provides the mp-units library headers, shown in Table 3.

Table 3: mp-units library headers  [tab:headers.mp.units]

<mp-units/numbers.h> ‘

9.4.4 Library-wide requirements
9.4.4.1 Reserved names

1 The mp-units library reserves macro names that start with MP_UNITSdigit-sequence op;_.

§9.4.4.1

P3003RO

[headers]

[spec.regs]

[spec.res.names]
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9.5 Numbers library [nums]

9.5.1 Summary [nums.summary]

1 This Clause describes components for dealing with numbers, as summarized in Table 4.

Table 4: Numbers library summary  [tab:nums.summary]

] Subclause Header ‘

9.5.3 Traits <mp-units/numbers.h>
9.5.4 Concepts

9.5.2 Header <mp-units/numbers.h> synopsis [nums.syn]

namespace mp_units {
// 9.5.8, traits

// 9.5.3.2, number opt-ins
template<typename T>

struct enable_number;
template<typename T>

struct enable_complex_number;

template<typename T>

constexpr bool enable_number_v = enable_number<T>::value;
template<typename T>

constexpr bool enable_complex_number_v = enable_complex_number<T>::value;

// 9.5.3.3, identities
template<typename T>
struct number_zero;
template<typename T>
struct number_one;

template<typename T>

constexpr T number_zero_v = number_zero<T>::value;
template<typename T>

constexpr T number_one_v = number_one<T>::value;

// 9.5.8.4, associated types
template<typename T>
struct vector_scalar;

template<typename T>

using number_difference_t = decltype(std::declva1<const T>() - std::declval<const T>());
template<typename T>

using vector_scalar_t = vector_scalar<T>::type;

// 9.5.4, concepts
template<typename T>

concept number = see below;
template<typename T, typename U>
concept common_number_with = see below;
template<typename T>

concept ordered_number = see below;
template<typename T>

concept number_line = see below;
template<typename T, typename U>
concept modulo_with = see below;
template<typename T, typename U>
concept compound_modulo_with = see below;
template<typename T, typename U>
concept modulus_for = see below;

§9.5.2 14



UNLICENSE P3003RO

template<typename T, typename U>

concept compound_modulus_for = see below;
template<typename T>

concept negative = see below;
template<typename T>

concept set_with_inverse = see below;
template<typename T, typename U>

concept point_space_for = see below;
template<typename T, typename U>

concept compound_point_space_for = see below;
template<typename T>

concept point_space = see below;
template<typename T, typename U>

concept vector_space_for = see below;
template<typename T, typename U>

concept compound_vector_space_for = see below;
template<typename T, typename U>

concept scalar_for = see below;
template<typename T, typename U>

concept field_for = see below;
template<typename T, typename U>

concept compound_scalar_for = see below;
template<typename T, typename U>

concept compound_field_for = see below;
template<typename T>

concept vector_space = see below;
template<typename T>

concept f_vector_space = see below;
template<typename T>

concept field_number = see below;
template<typename T>

concept field_number_line = see below;
template<typename T>

concept scalar_number = see below;

} // namespace mp__units

9.5.3 Traits [num.traits]
9.5.3.1 Requirements [num.traits.reqs]

Subclause 9.5.3 subsumes C++ [meta.rqmts|, assumingly amended for its context. Pursuant to the subsumed
C++ [namespace.std] (9.4.1), each class template specified in 9.5.3 may be specialized for any numeric
type (C++ [numeric.requirements).

Each template number-trait specified in 9.5.3 has a partial specialization of the form

template<class T>
struct number-trait<const T> : number-trait<T> { };

Each template number-trait specified in 9.5.3.2 is a Cpp17UnaryTypeTrait with a base characteristic of
std::bool_constant<B>. B is a value consistent with number-trait’s specification.

Each template specified in 9.5.3.3 is a numeric distinguished value trait (P1841R3 [num.traits.val]), except
that there are no declared specializations for arithmetic or volatile-qualified types.

A specialization of any template number-trait specified in 9.5.3.4 has no members other than a type
member that names a type consistent with number-trait’s specification.

9.5.3.2 number opt-ins [num.opt.ins]

template<typename T>
struct enable_number : see below {};

Value: true if T represents a number, and false otherwise.

Default value: true if vector_scalar_t<T> is valid, and false otherwise.
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template<class... T>

struct enable_number<std::chrono::time_point<T...>> : std::true_type {};
template<>

struct enable_number<std::chrono::day> : std::true_type {};
template<>

struct enable_number<std::chrono::month> : std::true_type {};
template<>

struct enable_number<std::chrono::year> : std::true_type {};
template<>

struct enable_number<std::chrono::weekday> : std::true_type {};
template<>

struct enable_number<std::chrono::year_month> : std::true_type {};
template<typename T>
struct enable_complex_number : std::false_type {};
Value: true if T represents a complex number (IEV 102-02-09), and false otherwise.

template<class T>
struct enable_complex_number<std::complex<T>> : std::true_type {};

9.5.3.3 Identities [num.ids]

template<typename T>
concept inferable-identities =
common_number_with<T, number_difference_t<T>> && std::constructible_from<T, int>;

template<typename T>
struct number_zero { see below 7};
Value: T’s neutral element for addition (IEV 102-01-12), if any.
Default value: If T models inferable-identities, T(0).
template<typename T>
struct number_one { see below };
Value: T’s neutral element for multiplication (IEV 102-01-19), if any.
Default value: If T models inferable-identities, T(1).

9.5.3.4 Associated types [num.assoc.types]

template<typename T>

using number_difference_t = decltype(std::declval<const T>() - std::declval<const T>());
number_difference_t<T> represents T’s difference’s (IEV 102-01-17) type, if any.

template<typename T>

struct vector_scalar {};

template<see below>

struct vector_scalar<see below> {

using type = see below;

}’
Type: Scalar (IEV 102-02-18) for the vector space (IEV 102-03-01) T.

Each row of Table 5 denotes a specialization.

Table 5: Specializations of vector_scalar [tab:num.scalar]

template-parameter-list template-argument-list Type
std::integral T T T
std::floating point T T T
class T std::complex<T> T
class T, class U std::chrono: :duration<T, U> T
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9.5.4 Concepts

template<typename T>
concept number = enable_number_v<T> && std::regular<T>;

template<typename T, typename U>
concept common_number_with =

P3003RO

[num.concepts]

number<T> && number<U> && std::common_with<T, U> && number<std::common_type_t<T, U>>;

template<typename T>
concept ordered_number = number<T> && std::totally_ordered<T>;

template<class T>
concept number_line =
ordered_number<T> &&
requires(T& v) {
number_one_v<number_difference_t<T>>;
{ ++v } -> std::same_as<T&>;
{ --v } -> std::same_as<T&>;
{ v++ } -> std::same_as<T>;
{ v-- } -> std::same_as<T>;

Let v and u be equal objects of type T, and one be the value number_one_v<number_difference_t<T>>.

T models number_line only if

— The expressions ++v and v++ have the same domain (C++ [concepts.equality]).

— The expressions --v and v-- have the same domain.

— If v is incrementable (C++ [iterator.concept.winc]), then both ++v and v++ add one to v, and the

following expressions all equal true:

— v++ == qu,
— ((void)v++, v) == ++u, and
— std::addressof (++v) == std::addressof (v).

— If v is decrementable (C++ [range.iota.view]), then both --v and v-- subtract one from v, and

the following expressions all equal true:

— vV-— == u,
— ((void)v--, v) == --u, and
— std::addressof (--v) == std::addressof(v).

template<class T, class U> concept addition-with =
number<T> &&
number<U> &&
requires(const T& c, const U& d) {
{ c+d} -> common_number_with<T>;
{d+ c } -> common_number_with<T>;

};

template<class T, class U> concept compound-addition-with =
addition-with<T, U> &&
requires(T& 1, const U& d) {

{1 +=d } -> std::same_as<T&>;

}

template<class T, class U> concept subtraction-with =
addition-with<T, U> &&
requires(const T& c, const U& d) {
{c-d7} -> common_number_with<T>;

};
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template<class T, class U> concept compound-subtraction-with =
subtraction-with<T, U> &&
compound-addition-with<T, U> &&
requires(T& 1, const U& d) {

{1 -=4d 7} -> std::same_as<T&>;

};

template<class T, class U, class V> concept multiplication-with
number<T> &&
number<U> &&
number<V> &&
requires(const T& c, const U& u) {
{ ¢c *u} -> common_number_with<V>;

}s

template<class T, class U> concept compound-multiplication-with
multiplication-with<T, U, T> &&
requires(T& 1, const U& u) {

{1 *=u } -> std::same_as<T&>;

})

template<class T, class U> concept division-with =
multiplication-with<T, U, T> &&
multiplication-with<U, T, T> &&
requires(const T& c, const U& u) {
{c/ ul} -> common_number_with<T>;

};

template<class T, class U> concept compound-division-with =
divistion-with<T, U> &&
compound-multiplication-with<T, U> &&
requires(T& 1, const U& u) {

{1 /=u} -> std::same_as<T&>;

3

template<class T, class U> concept modulo_with =
number<T> &&
number<U> &&
requires(const T& c, const U& u) {
{c¥%ul} -> common_number_with<T>;

};

template<class T, class U> concept compound_modulo_with =
modulo_with<T, U> &&
requires(T& 1, const U& u) {

{19%=ul} -> std::same_as<T&>;

}

Let q be an object of type T, and r be an object of type U.

For addition-with and compound-addition-with, let E be the expression q + rorr + g, and q
+= r, respectively, and let F' be the addition (IEV 102-01-11) of the inputs to E.

For subtraction-with and compound-subtraction-with, let E be the expression q - r and q -=
T, respectively, and let F' be the subtraction (IEV 102-01-13) of the inputs to E.

For multiplication-with and compound-multiplication-with, let E be the expression q * r and
q *= r, respectively, and let F' be the multiplication (IEV 102-01-18) of the inputs to E.

For division-with and compound-division-with, let E be the expression q / r and q /= r, re-
spectively, and let F' be the division (IEV 102-01-21) of the inputs to E.

For modulo_with and compound_modulo_with, let E be the expression q % r and q %= r, respectively,
and let F' be the modulo (9.3.1) of the inputs to E.

T respectively models addition-with<U> compound-addition-with<U> subtraction-with<U> com-
pound-subtraction-with<U>, multiplication-with<U, V>, compound-multiplication-with<U>,
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division-with<U>, compound-division-with<U> modulo_with<U>, and compound_modulo_with<U>
only if, for each respective F, when the inputs to E are in the domain of

(8.1) — F performs F in an unspecified set.

(8.2) — If the operator of E is an assignment-operator,
(8.2.1) — F maps the value of F to q, and the result of F is a reference to q, and
(8.2.2) — the result of F is the value of F' mapped to the type of E otherwise.

template<typename T, typename U>

concept modulus_for = modulo_with<U, T>;

template<typename T, typename U>

concept compound_modulus_for = compound_modulo_with<U, T>;

template<class T> concept negative =
compound-addition-with<T, T> &&
requires(const T& c) {
number_zero_v<T>;
{ -¢ } -> common_number_with<T>;

}s

template<class T> concept set_with_inverse =
compound-multiplication-with<T, T> &&
requires(const T& c) {
{ number_one_v<T> / ¢ } -> std::common_with<T>;

};
9 Let v be an object of type T.
10 For negative, let E be the expression -v, and let F' be the negative (IEV 102-01-14) of v.
11 For set_with_inverse, let E be the expression number_one_v<T> / v, and let F' be the inverse (IEV
102-01-24) of v.
12 T respectively models negative<U> and set_with_inverse<U> only if, for the respective E, when v is
in the domain of F
(12.1) — FE performs F' in an unspecified set.
(12.2) — The result of F is the value of F' mapped to the type of E.

template<typename T, typename U>
concept point_space_for =
subtraction-with<T, U> && negative<U> && common_number_with<number_difference_t<T>, U>;

13 Let q and r be objects of type T.

14 Let E be the expression q - r, and let F' be the subtraction of the inputs to E.

15 T models point_space_for<U> only if, when the inputs to E are in the domain of
(15.1) — FE performs F' in an unspecified set.
(15.2) — The result of F is the value of F' mapped to the type of E.

template<typename T, typename U>

concept compound_point_space_for = point_space_for<T, U> && compound-subtraction-with<T, U>;
template<typename T>

concept point_space = compound_point_space_for<T, number_difference_t<T>>;

16 [Note 1: The point_space concept is modeled by types that behave similarly to std::chrono: :sys_seconds.
— end note]

template<typename T, typename U>

concept vector_space_for = point_space_for<U, T>;

template<typename T, typename U>

concept compound_vector_space_for = compound_point_space_for<U, T>;

template<typename T>

concept weak-scalar =
common_number_with<T, number_difference_t<T>> && point_space<T> && negative<T>;
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template<typename T, typename U>

concept scales-with = common_number_with<U, vector_scalar_t<T>> && weak-scalar<U> &&
multiplication-with<T, U, T> && set_with_inverse<U>;

template<typename T, typename U>

concept compound-scales-with = scales-with<T, U> && compound-multiplication-with<T, U>;

template<typename T, typename U>

concept scalar_for = scales-with<U, T>;

template<typename T, typename U>

concept field_for = scalar_for<T, U> && division-with<U, T>;

template<typename T, typename U>

concept compound_scalar_for = compound-scales-with<U, T>;

template<typename T, typename U>

concept compound_field_for = compound_scalar_for<T, U> && compound-division-with<U, T>;

template<typename T>

concept vector_space = point_space<T> && compound-scales-with<T, vector_scalar_t<T>>;
template<typename T>

concept f_vector_space = vector_space<T> && compound-division-with<T, vector_scalar_t<T>>;

[Note 2: The f_vector_space concept is modeled by types that behave similarly to std: :chrono: : seconds.
— end note]

template<typename T>

concept field_number = f_vector_space<T> && compound-scales-with<T, T>;

template<typename T>

concept field_number_line = field_number<T> && number_line<T>;

template<typename T>

concept scalar_number = field_number<T> && (field_number_line<T> || enable_complex_number_v<T>);

[Note 3: The field_number concept is modeled by types that behave similarly to std::complex<double>. It

represents an approximation of a field, see IEV 102-02-18, Note 2 to entry. — end note]

[Note 4: The field_number_line concept is modeled by types that behave similarly to double. — end note]

[Note 5: scalar_number represents an approximation of a scalar number (IEV 102-02-18). — end note]
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Cross references

Each clause and subclause label is listed below along with the corresponding clause or subclause number and
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Index of library headers
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The bold page number for each entry is the page where the concept is defined. Other page numbers refer to

pages where the concept is mentioned in the general text.
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