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Abstract

We propose a syntax for Contracts that naturally fits into existing C++, does not overlap with
the design space of other C++ features such as attributes or lambdas, is intuitive, lightweight
and elegant, and designed to aid readability by visually separating the different syntactic parts
of a contract-checking annotation. The proposed syntax removes the problems of attribute-like
and closure-based syntax while maintaining full compatibility and extensibility in line with the
SG21 requirements for a Contracts syntax.
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1 The issues with attribute-like syntax

SG21 is currently working on standardising a first version of a Contracts facility — the so-called
Contracts MVP (see [P2900R0]). According to our roadmap [P2695R1], the last remaining major
design decision is the choice of syntax (see [P2885R3]). The longest-standing proposal for a
Contracts syntax is the so-called attribute-like syntax ([P2935R3]). While attribute-like syntax has
its strengths — existing implementation experience in GCC (see [P1680R0]) and the possibility to
lean on existing standard attribute grammar rather than inventing new grammar — it also has
considerable weaknesses.
Attribute-like syntax uses [[...]] delimiter tokens around every contract-checking annotation.
This has been called a “heavy” syntax and is perceived as “ugly” by some users. The [[...]] syntax
was designed for attributes so that they can appertain to many different kinds of entities (functions,
classes, variables, types, statements, etc.) in many different contexts. Contracts, on the other
hand, have a well-defined syntactic place and completely different design requirements. Further,
attributes are intended to be used sparingly, while we expect that Contracts will be used widely,
and in particular in many public-facing APIs, which calls for a more lightweight, natural-looking
syntax. Finally, preconditions and postconditions are an integral part of a function declaration and
therefore should have a syntax consistent with other parts of such a declaration, such as requires,
noexcept, etc., all of which are introduced via a proper C++ keyword rather than delimiter tokens.
Technically speaking, the attribute-like syntax for contract-checking annotations does not fully
conform to the grammar for attributes (due to the presence of the single colon which is not allowed
for attributes), but it is syntactically very close, with a significant overlap:

[[ pre(foo(x)) ]] // attribute
[[ pre: foo(x) ]] // contract
[[ pre:: foo(x) ]] // attribute

As a result, we expect that with this syntax, most users will perceive contract-checking annotations as
a kind of attribute. However, contracts are not attributes and do not behave as such. Attributes are
ignorable (see [P2552R3]) while contracts are not (except in a program with no contract violations
or if the contract semantic has been explicitly set to ignore by the user). A contract-checking
annotation may even create an entirely new code path out of a function — for assertions even out
of the middle of a function body — e.g. via a throwing violation handler. This is functionality
that standard attributes were never meant to allow. There are many other differences between
contracts and standard attributes; see [P2487R1] for an analysis. It is particularly instructive to
refer to the original paper [N2761] that introduced attributes to the C++ language, specifically
section 7 “Guidance on when to use/reuse a keyword and when to use an attribute”: Contracts
satisfy almost none of the properties listed for a feature that should be an attribute, and almost all
of the properties listed for a feature that should be a keyword.
Re-using the syntactic position of attributes for contract-checking annotations is problematic.
Attributes always syntactically appertain to some other entity such as a type, a variable, or a
statement. For preconditions and postconditions, attribute-like syntax uses the position of attributes
appertaining to a function type, which means they need to go before any trailing return type, before
virtual specifiers such as override and final, and before the requires clause. This goes against
the natural reading order of a function declaration and requires delayed parsing of postconditions.
For assertions, attribute-like syntax uses the position of attributes appertaining to a null statement,
which means they cannot be used freely as an expression and cannot serve as a complete drop-in
replacement for the existing assert macro.
[P2935R3] also considers an alternative position for attribute-like preconditions and postconditions
at the end of a function declaration, and for attribute-like assertions to be expressions rather than
statements. But in both cases, we would need to place attribute-like entities at a novel syntactic
position that is not currently supported for attributes, and that we do not have implementation
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experience with, thereby throwing away two major advantages of attribute-like syntax and creating
several new problems (listed in [P2935R3] section 4.2).
The internal grammar of attribute-like syntax is also problematic. The basic syntactic structure is:

[[contract-kind *** : predicate ]]

Everything else that is not the contract-kind (pre, post, assert) or the predicate — which includes
the name for the return value and all possible post-MVP additions (labels, captures, structured
bindings, requires clauses appertaining to the contract-checking annotation, etc.) — has only one
possible syntactic position: the one marked by *** above. This means that the different parts of
the contract-checking annotation are not visually separated from each other, making more complex
contracts hard to read and understand. It also gives rise to several syntactic ambiguities.
For example, there is an ambiguity between a label and the name of the return value before the
colon (as both are identifiers); adding a new standard label can break existing code:

int f(int x)
[[ post foo: x > foo ]]; // Is foo a label or the return value?

One suggested workaround is to require extra parentheses around the return value:
int f(int x)

[[ post (foo): x > foo]]; // foo is the return value

But that makes it syntactically ambiguous with an argument of the preceding label:
int f(int x)

[[ post foo (bar): x > bar ]]; // is bar the return value or an argument of label foo?

As another example, there is an ambiguity between a capture and a structured binding for the
return value (both desirable post-MVP extensions), as both use square brackets:

std::pair<int, int> f(int x, int y)
[[ post [x, y]: x != y ]]; // is [x, y] a capture or a structured binding?

[P2935R3] suggests awkward workarounds: to allow only init-captures but not other types of
captures, and to mandate an extra pair of parentheses around the structured binding.
Finally, we cannot have standard attributes appertaining to an attribute-like contract-checking
annotation or specify certain other post-MVP extensions such as procedural interfaces without
introducing novel and awkward grammar for attributes nested inside attributes.
In this paper, we propose a new natural, lightweight, and intuitive syntax for Contracts that solves
all of the above problems.

2 Prior work on alternative syntaxes

The first proposed alternative to attribute-like syntax for the Contracts MVP was closure-based
syntax [P2461R1]. Closure-based syntax remedies many of the issues with attribute-like syntax,
but creates other issues of its own. It places the predicate between curly braces, which is awkward:
normally, in C++ we place statements between braces but expressions between parentheses, and the
predicate is an expression. Furthermore, it makes a contract-checking annotation look very much
like a lambda, even though contracts and lambdas are completely orthogonal language features.
The second proposed alternative was condition-centric syntax [P2737R0]. It was not a complete
proposal, as it did not consider any post-MVP features such as captures, requires clauses, and
labels on contract-checking annotations. But it was the first proposal to use the basic syntactic
structure that we also use in this paper:

contract-kind ( predicate )
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Along with this basic syntactic structure, [P2737R0] proposed a series of other design choices
orthogonal to the choice of syntax, in particular:

— to rename “assertion” to the newly coined term “incondition”,

— to use precond, postcond, and incond, instead of pre, post, and assert, respectively,

— to make all three of the above full keywords rather than contextual keywords,

— to use a predefined identifier result for the return value of a function instead of letting the
user introduce their own name.

The above design choices have been poorly received in SG21. Instead of abandoning these additional
design choices and instead focusing on the basic syntactic structure, which was received with interest,
the author chose to abandon the whole proposal.
In this paper, we improve upon both closure-based and condition-centric syntax. We adopt many of
the ideas of closure-based syntax, in particular the lack of delimiter tokens around the contract-
checking annotation and the syntax for captures. However, instead of using the problematic curly
braces, we use parentheses around the predicate, following the basic syntactic structure of the
condition-centric syntax [P2737R0] but without adopting any of the other design choices from that
paper.
Building on these ideas, we developed a complete syntax proposal that is fit for purpose in the
Contracts MVP and accommodates all relevant post-MVP extensions such as captures, requires
clauses, and labels on contract-checking annotations.
The author of the closure-based syntax has reviewed our proposal and decided to discontinue the
closure-based syntax in favour of our proposal as it subsumes the ideas of the closure-based syntax
and improves upon it. We are therefore left with attribute-like syntax and our proposal as the only
two still active proposals for a Contracts syntax.

3 Design goals

We focus on the following design goals, which we believe are not sufficiently met by attribute-like or
closure-based syntax:

— The syntax should fit naturally into existing C++. The intent should be intuitively un-
derstandable by users unfamiliar with contract-checking annotations without creating any
confusion.

— A contract-checking annotation should not resemble an attribute, a lambda, or any other
pre-existing C++ construct. It should sit in its own, instantly recognisable design space.

— The syntax should feel elegant and lightweight. It should not use more tokens and characters
than necessary.

— To aid readability, the syntax should visually separate the different syntactic parts of a
contract-checking annotation. It should be possible to distinguish at a glance the contract
kind, the predicate, the name for the return value, and (post MVP) the captures and labels.
All of these should have their own distinct position in the syntax.

At the same time, we maintain all the other desirable properties that attribute-like and closure-based
syntax offer, such as compatibility (no parsing ambiguities, no breakage or change in meaning of
existing C++ code) and extensibility (a natural path for evolution in the post-MVP directions that
SG21 considers relevant).
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4 The proposal

4.1 Grammar

We propose the following additions to the C++ grammar for the Contracts MVP:

init-declarator:
declarator initializeropt

declarator requires-clause
declarator requires-clauseopt pre-or-post-condition-seq

member-declarator:
declarator virt-specifieropt pre-or-post-condition-seqopt pure-specifieropt

declarator requires-clause
declarator requires-clauseopt pre-or-post-condition-seq
declarator brace-or-equal-initializeropt

identifieropt attribute-specifier-seqopt : brace-or-equal-initializeropt

function-definition:
attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt

pre-or-post-condition-seqopt function-body
attribute-specifier-seqopt decl-specifier-seqopt declarator requires-clause

pre-or-post-condition-seqopt function-body
lambda-declarator:

lambda-specifier-seq noexcept-specifieropt attribute-specifier-seqopt

trailing-return-typeopt pre-or-post-condition-seqopt

noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt pre-or-post-condition-seqopt

trailing-return-typeopt pre-or-post-condition-seqopt

( parameter-declaration-clause ) lambda-specifier-seqopt noexcept-specifieropt

attribute-specifier-seqopt trailing-return-typeopt requires-clauseopt pre-or-post-condition-seqopt

unary-expression:
postfix-expression
unary-operator cast-expression
++ cast-expression
-- cast-expression
await-expression
sizeof unary-expression
sizeof ( type-id )
sizeof ... ( identifier )
alignof ( type-id )
noexcept-expression
new-expression
delete-expression
assert-expression

pre-or-post-condition:
pre contract
post contract

pre-or-post-condition-seq:
pre-or-post-condition pre-or-post-condition-seqopt

assert-expression:
assert-keyword contract // actual keyword not yet decided; see section 5.3
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contract:
contract-condition // can be expanded post-MVP, see section 6

contract-condition:
( return-nameopt conditional-expression )

return-name:
identifier :

4.2 Preconditions and postconditions

To add a precondition (or postcondition) to a function declaration, we simply write pre (or post),
followed by the predicate in parentheses:

float sqrt(float x)
pre (x >= 0);

This is a very natural syntax, as it is using parentheses in the same way as other language constructs
that have a predicate: if (expr ), while (expr ), etc.
There may be any number of preconditions or postconditions, in any order; preconditions and
postconditions can be intermingled arbitrarily.
In a postcondition, a user-defined name for the return value of a function can be introduced via an
identifier placed before the predicate, with a colon in between:

int f(int x)
pre (x >= 0)
post (r: r > x); // r is the return value

Naming the return value in a postcondition is optional:
void clear()

post (empty()); // OK

pre and post are contextual keywords. As we will see in section 5.1, this breaks no existing code
and you can still use pre and post as an identifier everywhere this is well-formed today.
Preconditions and postconditions are positioned at the very end of a function declaration, immediately
before the semicolon (or, if the declaration is a definition, the function body):

void f(int i) override final
pre(i >= 0);

template <typename T>
auto g(T x) -> bool

requires std::integral<T>
pre (x > 0);

This order is consistent with the natural order of reading a function declaration: typically, the
reader will first want to see the full function signature, then any compile-time constraints (the
requires clause), and finally any runtime constraints (the contract-checking annotations).
The only exception to this is the pure-specifier = 0, which comes after preconditions and postcondi-
tions to create consistency with = default and = delete, which are function bodies:

struct X {
X() pre(a) = default;
X(const X&) pre(b) = delete;
virtual void f() pre(c) = 0;

};

Note that you can never execute a contract check on a deleted function, but you can do so on a
defaulted function.
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4.3 Assertions

Assertions use the same natural syntax of a keyword followed by a parenthesised predicate:
void f() {

int i = get_i();
assert-keyword (i >= 0); // actual keyword not yet decided; see below
use_i(i);

};

This syntax will look instantly familiar to C++ developers as it is the same basic syntax that
one would use today to write a macro-based assertion (but without any of the limitations of a
macro-based solution).
However, unlike pre and post, we need to claim a full keyword for the contract kind because
assertions appear at block scope and could otherwise not be disambiguated from a function call1.
This keyword cannot be assert due to the name clash with the existing assert macro from header
cassert (see section 5.2).
After having carefully considered a large number of possible alternative keywords (see section 5.3
for a detailed discussion), we have narrowed the choice down to a shortlist of two viable candidate
keywords which we intend to poll in SG21:

contract_assert

or
assertexpr

As long as SG21 has not yet picked one of these two possible keywords, we will use the placeholder
assert-keyword throughout this paper.
With our syntax, assertions are expressions, not statements. Consequently, assertions can be used
not only as statements inside a function body, but actually anywhere one could use an expression,
and in particular, anywhere one could use an assert macro today:

class X {
int* _p;

public:
X(int* p)

: _p(assert-keyword(p), p)) // works
{}

};

Therefore, contract assertions as proposed here can act as full drop-in replacements for assert macros,
and that replacement is easily toolable (search and replace assert with the new assert-keyword ).
Note that the enumerator std::contracts::contract_kind::assert, which we adopted into the
Contracts MVP via [P2811R7], cannot have a name matching assert-keyword because you cannot
use a full keyword as an enumerator identifier. With either of the two candidate keywords, it seems
most reasonable to simply leave the name of the enumerator as is.

5 Discussion

5.1 No parsing ambiguities with pre and post

It has been suggested that the syntax proposed here for preconditions and postconditions might
create parsing ambiguities with the other parts of a function declaration, such as a trailing return

1Or at least, not without post-MVP syntactic additions such as captures that are not allowed on function calls.
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type or requires clause, if pre or post are used as identifiers for variables, functions, or types; but
this is not actually the case.
The grammar for a trailing return type is -> type-id, and we can unambiguously tell when that
type-id ends and a pre-or-postcondition begins:

auto f() -> pre pre(a); // OK, pre is the return type, pre(a) the precondition
auto g() -> pre<post> pre(a); // OK, pre<post> is the return type, pre(a) the precondition

Further, note that requires clauses use a restricted grammar where the expression following the
requires keyword must be a primary-expression or a sequence of primary-expressions combined
with the && or || operators. Any other type of expression, such as a mathematical expression, a
cast, or a function call, must be surrounded by parentheses, otherwise the program is ill-formed:

template <typename T>
void g() requires pre(a); // ill-formed today

template <typename T>
void h() requires (pre(a)); // OK

template <typename T>
void j() requires (b)pre(a); // ill-formed today

template <typename T>
void k() requires ((b)pre(a)); // OK

template <typename T>
void l() requires a < b > pre(c); // ill-formed today

template <typename T>
void m() requires (a < b > pre(c)); // OK

Therefore, just like with the trailing return type, we can unambiguously tell when the expression
ends and a pre-or-postcondition begins:

template <typename T>
void f() requires (b) pre(a); // OK, pre(a) is the precondition

template <typename T>
void g() requires a < b > pre(c); // OK, a<b> is a variable template, pre(c) is the precondition

There are further no parsing ambiguities when any given precondition (or postcondition) ends and
the next one begins, as the predicate must always be surrounded by parentheses. Therefore, it is
also fine to use pre and post as identifiers inside the predicate. They are parsed as keywords only
in the syntactic place where they act as such. Everywhere else the usual grammar rules apply:

void f(bool pre, bool post)
pre(pre) pre(post); // OK

5.2 The assert name clash

With the syntax we propose here, the best possible keyword for assertions would be assert. This is
the keyword used in virtually all contracts-related proposals so far, including attribute-like syntax;
the keyword that most users would intuitively expect; and the keyword used in the vast majority of
programming languages (Python, Rust, Scala, Swift, Kotlin, etc.) for this purpose. In short, the
keyword assert is well-established practice and superior to any keyword that is not assert.
Unfortunately, it also creates a name clash with the existing assert macro from header cassert:

#include <cassert>
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void f() {
int i = get_i();
assert(i >= 0); // identical syntax for contract assert and macro assert!
use_i(i);

}

There are in principle three ways to resolve this name clash while keeping the natural syntax:

1. Remove support for header cassert from C++ entirely, making it ill-formed to #include it;

2. Do not make #include <cassert> ill-formed (perhaps deprecate it), but make assert a
keyword rather than a macro, and silently change the behaviour to being a contract assertion
instead of an invocation of the macro;

3. Use a keyword other than assert for contract assertions to avoid the name clash.

Option 1 seems too draconian as it would break huge amounts of existing code, including code
shared between C and C++.
Option 2 looks very compelling. The default behaviour of macro assert is actually identical to
the default behaviour of a contract assertion: print a diagnostic, then terminate the program.
Contract-specific extensions like a user-defined violation handler will not affect pre-existing code.
Replacing macro assert with a full keyword would also solve all the current issues with assert
being a macro: it cannot be exported from a Standard Library module; it does not work with
matched brackets syntax for brackets other than parentheses, such as <...>, {...}, and [...],
and as a result, many C++ constructs such as assert(X{1, 2}) or assert(Y<int, int>) are
ill-formed today; etc. (see also [P2264R5] and [P2884R0]).
However, there is a significant problem with this approach: the behaviour of macro assert is is tied
to whether NDEBUG is defined. To mimic the existing behaviour, we would have to change the default
contract semantic2 to always be ignore when NDEBUG is defined, and enforce otherwise. But this
would not be enough: ignore would still parse and odr-use the predicate, even if it is not evaluated,
whereas assert just macroes out all the tokens. Therefore, common programming patterns like the
following would break if we switch assert from macro to contract:

#ifndef NDEBUG
DebugThingy dbg;

#endif

void f() {
assert(dbg.checkSomething()); // OK with macro, syntax error with contract if NDEBUG not defined
// ...

}

On the one hand, this would lead to an unacceptably high amount of breakage in existing C++
code. On the other hand, changing contracts to mimic the existing behaviour of macro assert with
NDEBUG defined is not possible because the choice of contract semantic (enforce, observe or ignore)
is in general not known at compile time. It is therefore impossible to parse code differently, or take
a different code path at compile time, depending on whether a contract is checked or ignored (see
[P2877R0] and [P2834R1]).
The situation is complicated further by the fact that the meaning of the assert macro depends
not only on whether NDEBUG is defined or not, but also on whether — and where — the cassert
header is included or re-included after NDEBUG is defined, undefined, or redefined — all of which can
happen at any arbitrary point in the code.

2The status quo in the Contracts MVP is that the contract semantic of any contract-checking annotation is
implementation-defined; the recommended default contract semantic is enforce regardless of whether NDEBUG is defined,
and this recommendation is not normative (see [P2877R0]).
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Considering all of the above, we consider Option 3 to be the only possible path forward. This
direction was confirmed during the SG21 teleconference on 2023-09-21:

Poll: If we adopt the syntax in P2961R0 for the Contracts MVP, we should use the keyword
assert for contract assertions, replacing macro assert.
SF F N A SA
0 2 3 6 5

Result: Consensus against

Therefore, unless we settle for attribute-like syntax, we must find a viable alternative keyword that
is not assert. Note that such a keyword may look weird and unfamiliar initially, but once it is
standardised users tend to get used to it very quickly (see co_yield, co_await, etc.).

5.3 The search for a keyword alternative to assert

5.3.1 Design goals

A large number of alternative keywords have been suggested since the initial version of this paper
was released. Before we pick one, we need to agree on a set of design goals that will guide our
decision. Our design goals, ordered by priority, are:

1. The keyword should not break existing code.

2. The keyword should not be offensive or inappropriate.

3. The keyword should not be misleading or confusing in its meaning.

4. The keyword should fit in with the other parts of the Contracts MVP (pre, post, identifier
for assertions in std::contracts::contract_kind).

5. The keyword should be sufficiently consistent with the rest of C++.

6. The keyword should be easy to remember.

7. The keyword should not be too long or cumbersome to type out.

8. The keyword should not be too difficult to read and pronounce.

9. The keyword should not look too much like a typo of a common English word.

10. The keyword should also work for the C language.

Note that these design goals are not absolute; they can be broken if there is a good engineering
reason for it. Examples of existing keywords that go against some of these goals are: requires,
claimed as a full keyword in C++20 that broke existing code; alignas, commonly treated as a typo
for “aligns” by spell checkers; and reinterpret_cast, a very long and relatively ugly keyword. The
latter is well-justified as reinterpret_cast is an unsafe feature that should be used sparingly and
therefore should be hard to type. Conversely, contracts exist to improve safety and correctness and
their use should be encouraged. We therefore expect our assert-keyword to be typed frequently,
so it should be easier to type.
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Keyword ACTCD19 grep.app Sourcegraph
contractassert 0 0 0
mustexpr 0 0 0
dyn_assert 0 0 0
musthold 0 0 0
asrtexpr 0 0 0
stdassert 0 0 1
truexpr 0 0 2
co_assert 0 0 7
ccassert 0 0 11
contract_assert 0 0 11
std_assert 0 0 11
dyn_check 0 0 18
mustbetrue 0 0 48
assertexpr 0 0 49
assertion_check 0 0 71
cppassert 0 1 103
dynamic_assert 0 20 631
cca_assert 0 0 0
assrt 2 5 1191
runtime_assert 5 68 1090
_Assert 8 43 3014
xpct 9 0 328
assert_check 20 13 667
assert2 40 40 3604
cpp_assert 59 31 2037
affirm 65 26 842
__assert 98 717 16256
assess 163 358 3814*
insist 174 422 18081*
asrt 256 28 1844
cassert 380 65348*** 1024935*,***
aver 427 56 3310*
posit 617 74 9837*
enforce 1230 8347** 375985*,**
audit 1619 1268 161814*
claim 2800 21582** 784227*,**
ass 4145 602 14193*
must 4263 403923** 15899541*,**
confirm 4341 4716** 183121*,**
assertion 5433 16239** 903896*,**
ensure 8149 67176** 819402*,**
chk 11783 1329 211023*
verify 20727 33283** 1767686*,**
expect 43725 30710** 769879*,**
check 147315 228702** 5409830*,**

Table 1: Number of usages of candidate keywords as identifiers in existing open-source C++ code
according to three different code search engines, sorted by matches in ACTCD19 (877 MLoC).
* The given number is a lower bound as the search engine hit a match limit.
** There is a significant number of false positives due to matches in code comments.
*** There is a significant number of false positives due to matches in include directives.
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5.3.2 Code search in existing C++ code

Having formulated our design goals, we can now evaluate how well our candidate keywords satisfy
our first design goal: no code breakage. We ran all proposed candidate keywords through three
different code search engines; the results are summarised in Table 1.
The first code search engine we consulted is codesearch.isocpp.org. It is based on the ACTCD19
dataset and was created specifically for studying existing practice of C++. The advantage of this
engine is that it is token-based, that is, it finds usages of a given keyword as a user-declared identifier
(which is exactly what we are after, as this is the usage that would break existing code) while
excluding all other usages of the same keyword. The disadvantage of this engine is that the dataset
is large, but not huge (877 MLoc — but at least we know the size of the dataset), predates C++20
(March 2019), and is somewhat skewed as it was taken from the source packages of the third party
software package repository of a particular Linux distribution (Debian Sid).
The second code search engine we consulted is grep.app, which searches “over a half million public
repositories on GitHub”; judging by the amount of matches, the total amount of available C++ code
seems to be of the same order of magnitude as the ACTCD19 dataset. This engine is text-based,
not token-based. We restricted the search to C++ and used the “Whole word” and “Code sensitive”
options but could not figure out how to exclude usages of the keyword as a string literal and as a
single word inside a comment. Due to the latter, there is a high number of false positives for words
that are commonly used in English sentences, such as “must” and “check”. However, the number
of false positives is negligible for keywords that are not English words. In addition, this method
also matches usages of the keyword as a header name in an include directive. This leads to a high
number of false positives for cassert but is otherwise negligible.
The third code search engine we consulted is sourcegraph.com, which has the largest dataset of
the three engines as it searches a much larger set of public GitHub repositories than grep.app (we
do not know how large). This engine is also text-based but has a regex option. We restricted the
search to C++ and used the regex \bkeyword \b which only matches if the keyword is found as a
whole word, case sensitive. Unfortunately, we hit a problem where the engine refuses to process
more complicated regular expressions that could exclude more cases. Therefore, we have the same
kinds of false positives as with grep.app.
We have not conducted any studies to evaluate usage of our candidate keywords in closed-source
C++ code.

5.3.3 Creating a keyword candidate shortlist

With the results in Table 1, we can narrow down our pool of candidates. While we certainly would
not exclude an otherwise great keyword due to a handful of matches, we would like to avoid a
keyword that has hundreds or even thousands of matches in existing open-source repositories. The
quality of the matches also matters: matches in relatively unknown repositories have less significance
than matches in highly popular, foundational C++ libraries such as Boost, Qt, Clang, or the Unreal
Engine.
With that in mind, we can go through all candidate keywords from top to bottom and evaluate how
well they satisfy our design goals formulated in 5.3.1.
The first keyword candidate, contractassert, is arguably harder to read than the spelling variant
contract_assert.
The next candidate, mustexpr as well as other similar candidates not derived from the word “assert”
such as musthold, truexpr, etc. are arguably not consistent with the existing community knowledge
about Contracts. The terminology “assert” and the contract kind “assertion” are established terms
of art and the keyword should show at least some connection to this terminology. Having a keyword

13



not derived from “assert” also suffers from another problem: how should we name the corresponding
enum value in std::contracts::contract_kind? Should we leave it at assert, thereby having
a keyword completely inconsistent with the enum, or should we change it to match the keyword,
thereby having an enum that is likewise inconsistent with established terminology? Note also that
if we choose the latter, we cannot use the exact spelling of the keyword (a full keyword cannot be
used as a name for an enum value), but need to come up with some alternative spelling of that
keyword. None of these options seem particularly appealing.
Candidates such as dyn_assert, or any other keyword that contains variations of the words
“dynamic” or “runtime”, are misleading as a contract is not necessarily dynamic or checked at
runtime (e.g. axiom contracts used for static analysis).
asrtexpr, asrt, and assrt are too hard to spell correctly as it is difficult to remember which letters
need to be skipped. In addition, asrt and assrt might be interpreted as a typo and auto-corrected
to “assert”. Similar problems exist with xpct and chk.
stdassert and std_assert are somewhat misleading because the prefix std is usually used for
features in the C++ Standard Library, whereas contracts are a core language feature.
co_assert is misleading as the prefix co_ is used today exclusively for keywords that turn a function
into a coroutine: co_yield, co_await, and co_return, but the keyword for contract assertions has
nothing to do with coroutines.
ccassert is confusing as it is not clear at all with the cc stands for. We assume that it is intended
as a clever portmanteau of “CCA” (contract-checking-annotation) and “assert”, but this is a bit too
clever for a standard C++ keyword. Besides, many users will not know what “CCA” stands for,
which is why we also do not like cca_assert.
contract_assert and assertexpr do not seem to violate any of our design goals. Neither of them
are perfect: contract_assert is a bit too long, but only two characters longer than the common
keyword static_assert and therefore still seems viable; and assertexpr has the expr suffix which
currently is only used for constexpr, a keyword used for declarations, which might be seen as a
slight inconsistency. However, none of these properties are serious problems, and both keywords also
have important advantages: contract_assert is extremely clear and descriptive, while assertexpr
emphasises that a contract assertion is, in fact, an expression (and not a macro, a statement, or an
attribute-like thing appertaining to a statement) and can be used everywhere an expression can be
used. assertexpr is also nicely consistent with the corresponding grammar term assert-expression
(see section 4.1). All things considered, we believe that contract_assert and assertexpr are
the two least bad options and therefore we would like to propose these two as our two preferred
candidates.
Further down the list, there is assertion_check, which seems unnecessarily verbose; _Assert and
__assert, which are reserved for implementations of the C++ Standard Library (and used in
multiple such implementations); and various candidates that are very similar to the ones already
rejected and suffer from the same problems. At this point in the list, the number of existing usages
as a user-defined identifier quickly starts to increase to an unacceptable level. We therefore do not
propose, at this time, to include any further keyword candidates besides contract_assert and
assertexpr.

5.4 Viability for the C language

We consulted with SG22 (C/C++ Liaison Group) and requested their opinion on 1) whether there
is interest in standardising Contracts for C in a way compatible with C++ and usable in code
shared between C and C++; 2) whether they would prefer the syntax presented in this paper or the
attribute-like syntax [P2935R3] for this purpose; 3) whether there are C-specific technical concerns
with the syntax presented in this paper. The discussion happened on the SG22 reflector and we
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received extensive feedback that we summarise in this section; however, no minuted SG22 meeting
or official polls took place.
Several SG22 members expressed a strong interest in standardising Contracts for C in a way
compatible with C++. Five SG22 members stated that they would prefer the syntax proposed in
this paper over the attribute-like syntax [P2935R3], while only one SG22 member stated that they
would prefer the attribute-like syntax.
The only technical concern raised with regards to the syntax proposed here is that C does not
have conditional keywords and they would like to avoid introducing them. At the same time, pre
and post are too frequent in existing C code to be claimed as full keywords. However, there is a
straightforward workaround. We could define the keywords in C as _Pre and _Post, respectively, and
then provide convenience macros pre and post, respectively, in a new C header <stdcontracts.h>
that expand to the C keywords. The same technique has been successfully used for numerous earlier
keywords such as _Bool, _Static_assert, _Alignas, _Thread_local, etc.
The SG22 discussion revealed that backwards-compatibility, i.e. the ability to add contract-checking
annotations to existing code and to have this code still compile with an old compiler that does
not know anything about Contracts, is a much more important concern in C than in C++3. Our
paper provides such backwards-compatibility because it makes all contract-checking annotations
syntactically compatible with function-like macros:

#if COMPILER_UNDERSTANDS_CONTRACTS
#define pre(x) _Pre(x)

#else
#define pre(x)

#endif
// same for post and assert-keyword

This property was stated as an important reason for supporting our paper over attribute-like syntax.
However, the above technique will stop working if we introduce post-MVP extensions that add
syntactic elements outside of the parentheses, such as captures and labels, which might also be
relevant for C. Adding such elements inside the top-level parentheses would keep this technique
working, especially if such elements themselves look like plain function invocations. Essentially,
instead of

pre <labels> [captures] (predicate)

we would have to do something along the lines of
pre (labels, captures, predicate)

It was further noted that many of the keywords starting with underscore + capital letter were later
evolved to all lowercase keywords identical to C++ (bool, static_assert, etc.) which is desirable
for Contracts too but is most likely not possible if we stick with the keywords pre and post given
how common they are today as identifiers.
Regarding attribute-like syntax, an important difference between C and C++ is that the notion of
ignorability of attributes is much stronger in C. In C++, attributes may be semantically optional
but still need to be fully parsed, and syntax errors diagnosed (also known as the First Ignorability
Rule for attributes, see [P2552R3]). On the other hand, in C, everything inside the [[...]] of
an attribute may be treated as balanced token soup and skipped entirely. Using attribute-like
syntax for Contracts in C suggests that contract-checking annotations may also be token-ignored
in the same way. Several people stated as an important reason for supporting our paper over
attribute-like syntax that allowing or even suggesting ignorability in this way is not a desirable
property for contract-checking annotations. Simultaneously, one person stated as the reason for

3According to the SG21 electronic poll on syntax requirements in [P2885R3], such backwards-compatibility was
deemed irrelevant for Contracts in C++ by a majority of respondents.
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supporting attribute-like syntax over our paper that such ignorability is a desirable property for
contract-checking annotations.
Note that unlike the function-like macro approach, the allowance in C to token-ignore attributes
does not actually provide backwards-compatibility of Contracts with older compilers in practice: all
major C compilers treat attribute-like contract-checking annotations as syntax errors today because
of the colon. Note further that regardless of which syntax we choose for Contracts, backwards-
compatibility with older compilers can always be achieved by wrapping the contract-checking
annotations themselves into macros rather than the keywords used for them; however, it was noted
that from the C perspective it might be preferable to avoid this.

6 Post-MVP extensions

Our proposed syntax provides a natural path for evolution into all of the post-MVP directions
that have been suggested so far. In this section, we discuss several possible post-MVP extensions
that are of interest to SG21 according to the electronic poll results in [P2885R3] or that have been
brought up in discussion since the poll results were published.

6.1 Captures

The contracts grammar proposed here can be extended as follows to allow captures on contract-
checking annotations:

pre-or-post-condition:
pre contract
post contract

assert-expression:
assert-keyword contract

contract:
contract-captureopt contract-condition

contract-capture:
[ capture-list ]

Here is a code example:
void vector::push_back(const T& v)

post [old_size = size()] ( size() == old_size + 1 ); // init-capture

Note that with our syntax, a contract-checking annotation with a capture looks very similar to
closure-based syntax, except that the predicate is in parentheses instead of braces. This is the
natural choice and avoids making the contract-checking annotation look like a lambda (an entirely
different construct). Instead, the syntax looks exactly like the thing that it is: a capture followed by
a predicate using that capture. It is a new syntax for a new type of construct, yet it immediately
looks familiar and intuitive.
Note further that with our syntax, we have the same design freedom as closure-based syntax
[P2461R1] to allow the full capture syntax from lambdas, including default-captures:

int min(int x, int y)
post [x, y] (r: r <= x && r <= y ); // possible with our proposal

Of course we could also choose to restrict ourselves to init-captures as [P2935R3] does.

16



6.2 Destructuring the return value

We can easily and naturally extend the syntax proposed here to add support for destructing the
return value of a function with a structured binding when specifying a name for that value:
contract-condition:

( return-nameopt conditional-expression )

return-name:
identifier :
[ identifier-list ] :

This can be very useful in the postcondition of a function that returns a value of a tuple-like type:
std::tuple<int, int, int> f()

post ([x, y, z] : x != y && y != z);

6.3 requires-clauses on contracts

The contracts grammar proposed here can be extended to allow a requires clause that appertains
to an individual contract-checking annotation. There are at least two possible syntactic positions
for such a requires clause. We could place it at the end, after the predicate:

contract:
contract-captureopt contract-condition requires-clauseopt

In code:
template <typename T>
void f(T x)

pre (x > 0) requires std::integral<T>;

Alternatively, if we want to make the requires clause more visually prominent, we could place it at
the beginning of the contract-checking annotation, right after the pre or post contextual keyword:

contract:
requires-clauseopt contract-captureopt contract-condition

In code:
template <typename T>
void f(T x)

pre requires std::integral<T> (x > 0);

Note that neither option creates any parsing ambiguities, for the same reasons as discussed in
section 5.1. Note further that both options allow for requires clauses appertaining to individual
contract-checking annotations to coexist with a requires clause appertaining to the function itself:

template <typename T>
void f(T x)

requires std::copyable<T>
pre (x > 0) requires std::integral<T>;

or, alternatively,
template <typename T>
void f(T x)

requires std::copyable<T>
pre requires std::integral<T> (x > 0);
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6.4 Attributes appertaining to contracts

Although not covered in [P2885R3], it has been argued that any new syntactic construct in C++,
including contract-checking annotations, should allow for the possibility of standard attributes
appertaining to it. Some meta-annotations that might be added to contracts post MVP could
potentially be expressed as attributes appertaining to a contract-checking annotation.
Support for attributes appertaining to a contract-checking annotation is easy to accommodate with
our proposed syntax. Since attributes are optional, ignorable information and are thus not part of a
contract’s primary information, we believe that it makes most sense to place them at the end of the
contract-checking annotation:

contract:
contract-captureopt contract-condition attribute-specifier-seqopt

In code:
void f(int x)

pre (x > 0) [[deprecated]];

However, just like with requires clauses, it is also possible to place the attribute-specifier-seq at
the beginning, right after the pre or post contextual keyword in case a more prominent syntactic
position is desired:

contract:
attribute-specifier-seqopt contract-captureopt contract-condition

In code:
void f(int x)

pre [[deprecated]] (x > 0);

Note that in either case, there is no grammar ambiguity with the attribute-specifier-seq appertaining
to any other part of the function declaration, such as the function itself, the function type, or the
trailing return type, because all other possible positions for the attribute-specifier-seq precede the
pre-or-postcondition.

6.5 Labels

It has been suggested that post-MVP, we will need meta-annotations on a contract, so-called labels,
that should not be spelled as attributes because they are not ignorable. The only currently known
use case for this is to specify or constrain the possible contract semantic (observe, ignore, enforce)
for a given contract; other use cases might be discovered in the future. There are many ways in
which our proposed syntax could be extended to accommodate such labels.
If we want to consider such labels secondary information, we can place them at the end of the
contract-checking annotation. In order to keep the grammar unambiguous, we need to surround the
sequence of labels with delimiter tokens. We cannot use [[ ... ]] because these are reserved for
attributes (see section 6.4), but we can use pretty much any other set of delimiter tokens, such as
[ ...], <...>, {...}, and so forth, or mark the labels by special characters such as @, depending
on SG21’s preference:

void f(int x)
pre (x > 0) [audit]; // or <audit>, or {audit}, or [{audit}], or @audit ...

On the other hand, if we want to consider such labels primary information, we can place them at
the beginning of the contract-checking annotation, right after the pre or post contextual keyword.
In this case, we cannot use [...] as the delimiters anymore, as it would be ambiguous with the
contract-capture (see section 6.1), but we can use any of the other options:
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void f(int x)
pre <audit> (x > 0); // or {audit}, or [{audit}], or @audit ...

We could also allow both the leading and the trailing position. Our syntax places no restrictions
on the internal grammar for these labels. They can be specified to be any kind of token sequence,
depending on the design direction we choose post MVP.
One interesting possibility is to specify that the label, or set of labels, shall be a constant expression
that evaluates to a compile-time value defining the desired per-contract configuration, perhaps
to a value of some new type std::contract_traits similar to std::coroutine_traits. Such a
grammar opens up the power of constant expressions (i.e. almost the full language) for abstracting
the computation of the per-contract configuration. The syntax with labels in leading position,
right after pre or post and delimited by <...>, seems appealing for this design direction, as the
contract-checking annotation will resemble a template that is “templated” on its configuration
(which acts as a non-type template parameter), and the constant expression acts as a template
argument that “instantiates” (configures) the contract check. The grammar for this could look as
follows:

contract:
contract-eval-specifieropt contract-captureopt contract-condition

contract-eval-specifier:
< constant-expression >

However, this is only one possible direction. With our proposal, we are not cutting off any other
directions. The main difference to labels in attribute-like syntax is that in our syntax, the label
sequence goes between delimiter tokens, whereas in attribute-like syntax it goes between the pre or
post keyword and the colon. Arguably, our proposal actually leaves more syntactic freedom for
labels than attribute-like syntax does. In attribute-like syntax, the label sequence can syntactically
clash with anything else that goes between the pre or post keyword and the colon, such as the
name for the return value. On the other hand, in our syntax, labels are guaranteed to not clash with
anything else because they are separated from all other parts of the contract-checking annotation
by their own delimiter tokens.
Note also that with our proposal, we can support both standard attributes and non-attribute labels
appertaining to the same contract-checking annotation simultaneously, for example:

void f(int x)
pre <audit> (x > 0) [[ deprecated ]];

6.6 Class invariants

In principle, we can use the same natural syntax at class scope to express class invariants:
class sorted_vector {

invariant(is_sorted());
// members and member functions. . .

};

However, note that we cannot use a contextual keyword for the contract kind invariant as the
grammar at class scope is already very crowded and there are multiple cases where this syntax is
valid C++ code today:

struct invariant {
invariant(int()); // Case 1: Constructor taking a function pointer

};
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bool b = true;
struct X {

invariant(b); // Case 2: Member declarator with extra parentheses
};

We could attempt to fix the first case by introducing a new type of vexing parse for disambiguation,
and the second case by banning the superfluous parentheses around a member declarator. A cleaner
solution would be to claim a full keyword instead of a contextual one. However, the identifier
invariant has 7379 matches in the ACTCD19 dataset which suggests that claiming it as a keyword
would break too much existing code. If we want to introduce class invariants with this syntax, we
would therefore have to get creative with the choice of keyword, similar to what we have to do for
assertions (section 5.3). It has been suggested that we could even re-use the same keyword as for
assertions, which would take on a different meaning at class scope to designate class invariants.

6.7 Procedural interfaces

With procedural interfaces, we can express a much richer set of contracts than with preconditions and
postconditions alone. The idea was first published by Lisa Lippincott in her paper [P0465R0]. More
recently, [P2885R3] and [P2935R3] mentioned the idea of integrating such procedural interfaces
into a Contracts facility post-MVP.
With our proposal, we can support procedural interfaces with an interface block delimited by curly
braces. This is the natural syntax in C++ for a block containing a list of statements, and very
close to Lisa Lippincott’s original notation in [P0465R0]. Here is a code example in this syntax —
a procedural interface expressing the contract that a function should not throw an exception:

void f(int x)
interface {

try {
implementation;

}
catch (...) {

assert-keyword(false);
}

};

7 Comparison with attribute-like syntax

In this section we compare different Contracts MVP and post-MVP code examples written in
attribute-like syntax as proposed in [P2935R3], side-by-side with the syntax proposed in this paper,
and discuss the different tradeoffs. Where appropriate, we mention different possible alternatives.
We use the candidate keyword assertexpr for assertions in this section so we can show real syntax
without a placeholder (the other candidate keyword is contract_assert).

7.1 MVP functionality

7.1.1 Basic preconditions and postconditions

Shown below is a comparison of the two syntaxes for the most basic usage of preconditions and
postconditions:
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// P2935R3:

int f(int x)
[[ pre: x > 0 ]]
[[ post r: r > x ]];

// This paper:

int f(int x)
pre (x > 0)
post (r: r > x);

7.1.2 Assertion as a statement

In attribute-like syntax, an assertion at block scope takes the shape of an attribute appertaining to
a null statement; in our proposal, it looks like a regular statement, resembling a function call or the
invocation of an assert macro:

// P2935R3:

void f() {
int i = get_i();
[[ assert: i > 0 ]]
use(i);

}

// This paper:

void f() {
int i = get_i();
assertexpr(i > 0);
use(i);

}

7.1.3 Assertion as an expression

The left-hand side of the code example below is taken directly from [P2935R3]. Note that in
attribute-like syntax, this would require a novel grammar that does not exist for attributes today
and that we do not have implementation experience with. Attributes today need to appertain
to another entity such as a declaration or a statement, and cannot be used on their own as an
expression. At the same time, if an assertion is not an expression, it cannot be a full drop-in
replacement for C assert as there would be places where a C assert is legal but a contract assert
is not. With our proposal, using an assertion as an expression just works:

// P2935R3 (mentioned as possible extension):

struct S2 {
int d_x;
S2(int x)

: d_x( [[ assert : x > 0 ]], x )
{}

};

// This paper:

struct S2 {
int d_x;
S2(int x)

: d_x( assertexpr(x > 0), x )
{}

};

7.1.4 Position inside more complex function declarations

The left-hand side of the code example below is taken directly from [P2935R3]. In attribute-like
syntax, preconditions and postconditions are placed in the same location where attributes that
would appertain to the function’s type would be located, i.e. before any trailing return type, virtual
specifiers such as override and final, and a requires clause (see [P2935R3]). This has the benefit
that we can re-use the existing standard attribute grammar. However, the resulting position is
awkward and goes against the natural reading order of a function declaration; it also requires
delayed parsing of postconditions (as the predicate may depend on the trailing return type).
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By contrast, in our proposal, preconditions and postconditions are placed at the very end of a
declaration, avoiding all of the above problems:

// P2935R3:

struct S1
{

auto f() const & noexcept
[[ pre : true ]] -> int;

// This paper:

struct S1
{

auto f() const & noexcept -> int
pre(true);

virtual void g()
[[ pre : true ]] override = 0;

template <typename T>
void h()

[[ pre : true ]] requires true;
};

virtual void g() override = 0
pre(true);

template <typename T>
void h() requires true

pre(true);
};

Placing preconditions and postconditions at the very end of a declaration, as in this paper, is in
principle also possible with attribute-like syntax, and this is mentioned explicitly as an alternative
in [P2935R3]. But this is not covered by existing standard attribute-grammar, thus requiring a
novel grammar that we do not have implementation experience with, throwing away two major
advantages of attribute-like syntax and creating several new problems (listed in [P2935R3] section
4.2).

7.1.5 Lambda with trailing return type

The same issue with the syntactic order also exists for lambdas, aggravated by the fact that a
trailing return type is even more common here:

// P2935R3:

auto x = [] (int x)
[[pre: x > 0]] -> int {
return x * x;

};

// This paper:

auto x = [] (int x) -> int
pre(x > 0) {
return x * x;

};

7.2 Post-MVP functionality

The side-by-side comparison in this chapter is speculative as none of the features in this section are
currently being proposed for the C++ Standard.

7.2.1 Captures

In attribute-like syntax, captures look awkward as they involve square brackets inside double square
brackets. Additionally, in attribute-like syntax they are ambiguous with square brackets for a
structured binding (see 7.2.2). [P2935R3] suggests to only allow init-captures and to surround
structured bindings with an additional pair of parentheses for disambiguation. In our syntax, neither
is necessary as the two features have different syntactic positions that arise naturally from our
proposed grammar:
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// P2935R3:

// no support for non-init captures

void vector::push_back(const T& v)
[[ post [old_size = size()]

: size() == old_size + 1 ]];

// This paper:

int min(int x, int y)
post [x, y] (r: r <= x && r <= y);

void vector::push_back(const T& v)
post [old_size = size()]

(size() == old_size + 1);

7.2.2 Destructuring the return value

As mentioned above, in attribute-like syntax a structured binding is ambiguous with a capture
unless we disallow default captures or require an extra pair of parens; with our syntax, it is not:

// P2935R3:

std::tuple<int, int, int> f()
[[ post [x, y, z] : x != y && y != z ]];

// or, if needed to disambiguate from capture:

std::tuple<int, int, int> f()
[[ post ([x, y, z]) : x != y && y != z ]];

// This paper:

std::tuple<int, int, int> f()
post ([x, y, z] : x != y && y != z);

7.2.3 requires clause on the contract-checking annotation

In attribute-like syntax, the only possible syntactic position for a requires clause appertaining to
the contract-checking annotation is the same as for all other extensions: immediately preceding
the colon. In our syntax, we can choose a much more natural position: either at the end of the
contract-checking annotation, or immediately after the pre or post keyword, depending on what
SG21 prefers.

// P2935R3:

template <typename T>
void f(T x)

[[pre requires(std::integral<T>) : x > 0]];

// This paper, option 1:

template <typename T>
void f(T x)

pre (x > 0) requires std::integral<T>;

// This paper, option 2:

template <typename T>
void f(T x)

pre requires std::integral<T> (x > 0);

7.2.4 requires clauses on both the contract and the function itself

In [P2935R3], if we wish to re-use the existing standard attribute syntax, the requires clause
appertaining to the function itself comes after the contract-checking annotation, whereas in our
syntax it comes before, making the declaration more readable.
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// P2935R3, option 1: attribute position

template <typename T>
void f(T x)

[[pre requires(std::integral<T>): x > 0]]
requires std::copyable<T>;

// P2935R3, option 2: final position

template <typename T>
void f(T x)

requires std::copyable<T>
[[pre requires(std::integral<T>): x > 0]];

// This paper, option 1:

template <typename T>
void f(T x)

requires std::copyable<T>
pre (x > 0) requires std::integral<T>;

// This paper, option 2:

template <typename T>
void f(T x)

requires std::copyable<T>
pre requires std::integral<T> (x > 0);

7.2.5 Attributes appertaining to contracts

In attribute-like syntax, a standard attribute appertaining to a contract-checking annotation (which
is itself attribute-like) inevitably leads to nested double square brackets, which looks awkward,
is hard to read, and requires a novel attribute grammar that we do not have implementation
experience with (attributes appertaining to other attributes are not possible in existing C++
grammar). [P2935R3] clarifies that the only possible syntactic place for such attributes is — as you
can perhaps guess by now — between the contract type and the colon. On the other hand, in our
proposal, a standard attribute appertaining to a contract-checking annotation looks as natural as a
standard attribute appertaining to any other declaration:

// P2935R3:

int f(int x)
[[ pre [[deprecated]] : x > 0 ]];

// This paper, option 1:

int f(int x)
pre (x > 0) [[deprecated]];

// This paper, option 2:

int f(int x)
pre [[deprecated]] (x > 0);

Note that with our proposal, a standard attribute appertaining to a contract-checking annotation is
never ambiguous with a standard attribute appertaining to the function itself, the function type, or
the trailing return type (see section 6.4).

7.2.6 Labels

As discussed in section 6.5, with the syntax proposed here we can choose to place labels either at
the beginning or at the end of a contract-checking annotation; the choice will depend on whether
we consider these labels primary or secondary information. We can also choose between different
delimiter tokens or special characters to separate them from the rest of the contract-checking
annotation:
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// P2935R3:

void search(range rg)
[[ pre audit: is_sorted(rg) ]];

// This paper (two possible options shown):

void search(range rg)
pre (is_sorted(rg)) [audit];

void search(range rg)
pre <audit> (is_sorted(rg));

Attribute-like syntax suffers from parsing ambiguities between labels and the name for the return
value that require awkward workarounds. In our syntax, no such issues arise: the label, return
value, and other parts of the contract all have their own unambiguous syntactic place:

// P2935R3:

int f(int x)
[[ post foo: x > foo ]];
// is foo label or return value?

int f(int x)
[[ post (foo): x > foo]];
// using extra parens; foo is return value

int f(int x)
[[ post foo (bar): x > bar ]];
// using extra parens; is bar return value
// or label argument?

// This paper:

int f(int x)
post <foo> (x > foo);
// foo is label

int f(int x)
post (foo: x > foo);
// foo is return value

int f(int x)
post <foo> (bar: x > bar);
// bar is return value

int f(int x)
post <foo(bar)> (x > bar);
// bar is label argument

7.2.7 Procedural interfaces

To spell procedural interfaces, [P2935R3] resorts to an interface block delimited with double square
brackets, which leads to nested double square brackets. On the other hand, with our proposal,
we can adopt a much more natural-looking syntax that uses braces for the block of statements.
This syntax is also much closer to the notation in Lisa Lippincott’s original paper on procedural
interfaces, [P0465R0]:

// P2935R3:

void f(int x)
[[ interface :

try {
implementation;

}

// This paper:

void f(int x)
interface {

try {
implementation;

}

catch (...) {
[[assert: false]];

}
]];

catch (...) {
assertexpr(false);

}
};

8 Requirements from P2885

Our proposal satisfies all relevant requirements for a Contracts syntax from [P2885R3] except
the requirement for implementation experience. If this proposal generates interest, we hope that
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someone will be able to help us with implementing this syntax in a C++ compiler to satisfy this
requirement as well.
Below we list all these requirements and discuss how our syntax satisfies them.

8.1 Basic requirements

8.1.1 Aesthetics [basic.aesthetic]

We believe that our syntax is more elegant and readable than either attribute-like or closure-based
syntax.

8.1.2 Brevity [basic.brief]

Our syntax uses the least amount of tokens and characters possible.

8.1.3 Teachability [basic.teach]

We believe that this syntax is easy to learn and teach, and more self-explanatory and intuitive than
either attribute-like or closure-based syntax.

8.1.4 Consistency with existing practice [basic.practice]

We believe that this syntax is more consistent with existing practice than either attribute-like or
closure-based syntax. Today, contracts facilities are implemented using macros, using the syntax
MACRO_NAME (predicate). We use the exact same basic syntax, also placing the predicate in
parentheses. The only differences are that instead of a macro name, we use a contextual keyword,
preconditions and postconditions are placed onto declarations instead of inside the function body,
and the user can additionally name the return value in a postcondition, a feature that is not possible
with macros.

8.1.5 Consistency with the rest of the C++ language [basic.cpp]

We believe that this syntax is more consistent with the rest of the C++ language than either
attribute-like or closure-based syntax. We do not make contract-checking annotations look like
attributes, and we do not place predicates (which are expressions) between curly braces. In C++
today, expressions go between parentheses, while statements go between curly braces.

8.2 Compatibility requirements

8.2.1 No breaking changes [compat.break]

As long as we use a keyword other than assert for assertions (see discussion in section 5.2), our
syntax does not break or alter the meaning of any existing C++ code.

8.2.2 No macros [compat.macro]

Our syntax does not require the use of macros or the preprocessor to be used effectively.
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8.2.3 Parsability [compat.parse]

To our best knowledge the syntax we propose does not introduce any parsing ambiguities; see
detailed discussion in section 5.1.

8.2.4 Implementation experience [compat.impl]

Unfortunately, we do not yet have any implementation experience with the syntax proposed here in
a C++ compiler.

8.2.5 Backwards-compatibility [compat.back]

Our syntax provides full backwards-compatibility with older compilers because it is compatible with
wrapping contract-checking annotations into function-like macros, at least within the feature scope
of the MVP (see discussion section 5.4). Attribute-like syntax does not provide such compatibility
because even if attributes that are not recognised by an implementation are ignored, attribute-like
contract-checking annotations are not attributes because of the colon, and are diagnosed as a syntax
error by all major compilers today.

8.2.6 Toolability [compat.tools]

In order for a C++ tool to implement meaningful functionality for Contracts, the tool needs to be
able to not only recognise the contract-checking annotation itself, but also be capable of correctly
parsing most parts of a C++ function declaration. We do not see any reason why this should be
any more difficult with our proposed syntax than with attribute-like or closure-based syntax.

8.2.7 C compatibility [compat.c]

We asked SG22 (C/C++ Liaison Group) to review this paper and confirm that the syntax proposed
here is viable for C; the discussion is summarised in section 5.4.

8.3 Functional requirements

8.3.1 Predicate [func.pred]

Requirement satisfied.

8.3.2 Contract kind [func.kind]

With the natural syntax, assertexpr (or whichever other keyword we choose) must be a full keyword,
not a contextual keyword, otherwise assertexpr(x) would be ambiguous with a function call. We
can therefore not use the same keyword for the enum value in std::contracts::contract_kind
corresponding to assertions. We can keep using the identifier assert for this purpose as in the
current MVP, or choose any other identifier.

8.3.3 Position and name lookup [func.pos]

Requirement satisfied.
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8.3.4 Pre/postconditions after parameters [func.pos.prepost]

Requirement satisfied.

8.3.5 Assertions anywhere an expression can go [func.pos.assert]

Requirement satisfied.

8.3.6 Multiple pre/postconditions [func.multi]

Requirement satisfied.

8.3.7 Mixed order of pre/postconditions [func.mix]

Requirement satisfied.

8.3.8 Return value [func.retval]

Requirement satisfied.

8.3.9 Predefined name for return value [func.retval.predef]

According to the SG21 electronic poll in [P2885R3], this is a questionable requirement. We decided
not to satisfy it because we believe that letting the user define their own name for the return value
is the better approach.

8.3.10 User-defined name for return value [func.retval.userdef]

Requirement satisfied.

8.4 Future evolution requirements

8.4.1 Non-const non-reference parameters [future.params]

Requirement satisfied via captures.

8.4.2 Captures [future.captures]

The syntax proposed here can naturally be extended to support captures; see section 6.1 for
discussion.

8.4.3 Structured binding return value [future.struct]

The syntax proposed here can naturally be extended to support destructuring the return value; see
discussion in section 6.2 and comparison with attribute-like syntax in 7.2.2.
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8.4.4 Contract reuse [future.reuse]

According to the SG21 electronic poll in [P2885R3], this is a questionable requirement. Joshua
Berne suggested that this idea might be better addressed by introducing some kind of hygienic
macro. We therefore decided not to consider this requirement further.

8.4.5 Meta-annotations [future.meta]

The syntax proposed here can naturally be extended to support labels and meta-annotations,
offering the same syntactic freedom as attribute-like syntax; see section 6.5 for discussion.

8.4.6 Parametrised meta-annotations [future.meta.param]

There is nothing specific to the syntax proposed here that precludes this direction.

8.4.7 User-defined meta-annotations [future.meta.user]

There is nothing specific to the syntax proposed here that precludes this direction.

8.4.8 Meta-annotations re-using existing keywords [future.meta.keyword]

There is nothing specific to the syntax proposed here that precludes this direction.

8.4.9 Non-ignorable meta-annotations [future.meta.noignore]

There is nothing specific to the syntax proposed here that precludes this direction.

8.4.10 Primary vs. secondary information [future.prim]

We believe that our syntax satisfies this requirement much better than attribute-like syntax.

8.4.11 Invariants [future.invar]

The syntax proposed here can be extended to support invariants at class scope; see section 6.6 for
discussion.

8.4.12 Procedural interfaces [future.interface]

The syntax proposed here can be naturally extended to support procedural interfaces as proposed
in [P0465R0]; see discussion in section 6.7 and comparison with attribute-like syntax in 7.2.7.

8.4.13 requires clauses [future.requires]

The syntax proposed here can be naturally extended to support requires clauses on individual
contract-checking annotations; see discussion in section 6.3.
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8.4.14 Abbreviated syntax on parameter declarations [future.abbrev]

According to the SG21 electronic poll in [P2885R3], this is the lowest-ranked nice-to-have requirement.
We therefore did not dedicate any time considering this requirement in detail. However at first
glance there does not seem to be anything specific to this proposal that precludes this direction.

8.4.15 General extensibility [future.general]

As we have shown above, the syntax proposed here can be naturally extended to a wide range of
known ideas for future features. We therefore believe that it offers a high degree of extensibility
also for future features not yet discussed.

8.5 Additional requirements

8.5.1 Standard attributes appertaining to Contracts [app.attr]

Requirement satisfied; see section 6.4.

8.5.2 Forward-declaration of Contract labels [app.fwddecl]

There is nothing specific to the syntax proposed here that precludes this direction. For example,
we could express forward-declared labels with ... in the same syntactic place where we would
normally place the labels themselves.

8.5.3 Contracts on function types [app.functype]

There is nothing specific to the syntax proposed here that precludes this direction. Although no
proposals have been made yet demonstrating how this idea could work (regardless of syntax), we
imagine it would be possible to have, for example, some kind of using-declaration naming a function
type that can have contract-checking annotations attached to it. There might be some overlap with
the idea of declaring reusable Contracts (see [future.reuse]).
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