
A natural syntax for Contracts

Jens Maurer (jens.maurer@gmx.net)
Timur Doumler (papers@timur.audio)

Document #: P2961R0
Date: 2023-09-17
Project: Programming Language C++
Audience: SG21

Abstract

We propose a syntax for Contracts that naturally fits into existing C++, does not overlap with
the design space of other C++ features such as attributes or lambdas, is intuitive, lightweight and
elegant, and designed to aid readability by emphasising the primary information. The proposed
syntax removes the weaknesses of attribute-like and closure-based syntax while maintaining full
compatibility and extensibility in line with the SG21 requirements for a Contracts syntax.

1 Motivation
SG21 is currently working on standardising a first version of a Contracts facility — the so-called
Contracts MVP. According to our roadmap [P2695R1], the last remaining major design decision is
the choice of syntax. The syntax proposal currently under consideration is the so-called attribute-
like syntax ([P2935R0]). While attribute-like syntax has its strengths — existing implementation
experience in GCC (see [P1680R0]) and the possibility to lean on existing standard attribute
grammar rather than inventing new grammar — it also has considerable weaknesses.
Attribute-like syntax uses [[...]] delimiter tokens around every contract-checking annotation.
This has been called a “heavy” syntax and is perceived as “ugly” by some users. It also makes
contract-checking annotations look like standard attributes, even though they are not attributes and
do not behave as such, creating confusion. For example, a contract-checking annotation can create
an entirely new code path out of a function (e.g. via a throwing violation handler), for assertions
even out of the middle of a function body, something that standard attributes were never designed
to do. [P2487R1] lists many other differences between contracts and standard attributes.
The syntactic position of a contract-checking annotation using attribute-like syntax is problematic.
If we wish to re-use the existing standard attribute grammar, then preconditions and postconditions
need to go before any trailing return type, virtual specifiers, and a requires clause. This goes against
the natural reading order of a function declaration and requires delayed parsing of postconditions.
Assertions need to appertain to a null statement, which means they cannot be used freely as an
expression and cannot serve as a complete drop-in replacement for C assert.
On the other hand, if we place attribute-like preconditions and postconditions at the end of a
function declaration, and/or allow attribute-like assertions to be expressions rather than statements,
we need to place attribute-like entities at a novel syntactic position that is not currently supported

1

mailto:jens.maurer@gmx.net
mailto:papers@timur.audio

for standard attributes, and that we do not have implementation experience with, throwing away
the main advantages of attribute-like syntax.
Further, attribute-like syntax places delimiter tokens around the whole contract-checking annotation,
but does not syntactically separate any of its parts other than by a single colon before the predicate.
This makes it difficult to visually distinguish the primary information (the predicate, contract kind,
and name for the return value) from secondary information (such as labels that could be added
post-MVP). Even worse, because all parts of the contract-checking annotation except the predicate
occupy the same syntactic space (immediately preceding the colon), multiple parsing ambiguities
arise, in particular with possible post-MVP extensions.
For example, there is an ambiguity between a label and the name of the return value before the
colon (as both are identifiers); adding a new standard label can break existing code. One suggested
workaround is to require extra parentheses around the return value, but that makes it syntactically
ambiguous with an argument of the preceding label. As another example, there is an ambiguity
between a capture and a structured binding before the colon (as both use square brackets). The
suggested workarounds are similarly awkward: allowing only init-captures but not default captures
and requiring extra parentheses around the structured binding.
Finally, we cannot have standard attributes appertaining to an attribute-like contract-checking
annotation or specify certain other post-MVP extensions such as procedural interfaces without
introducing novel and awkward grammar for attributes nested inside attributes.
In this paper, we propose a new natural, lightweight, and intuitive syntax for Contracts that solves
all of the above problems.

2 Prior work
The first proposed alternative to attribute-like syntax was closure-based syntax [P2461R1]. Closure-
based syntax remedies many of the issues with attribute-like syntax, but creates other issues of its
own. It places the predicate between curly braces, which is awkward: normally, in C++ we place
statements between braces but expressions between parentheses, and the predicate is an expression.
Furthermore, it makes a contract-checking annotation look very much like a lambda, even though
the two features have almost nothing in common.
The second proposed alternative was condition-centric syntax [P2737R0]. It was not a complete
proposal, as it did not consider any post-MVP features such as captures, requires clauses, and
labels on contract-checking annotations. But it was the first proposal to use the basic syntax
structure that we use here as well:

contract-kind (predicate)

Along with this basic syntax structure, [P2737R0] proposed a series of other design choices orthogonal
to the choice of syntax, in particular:

— to rename “assertion” to the newly coined term “incondition”,

— to use precond, postcond, and incond, instead of pre, post, and assert, respectively,

— to make all three of the above full keywords rather than contextual keywords,

— to use a predefined identifier result for the return value of a function instead of letting the
user introduce their own name.

The above design choices have been poorly received in SG21. Instead of abandoning these additional
design choices and instead focusing on the basic syntax structure, which was received with interest,
the author chose to abandon the whole proposal.

2

In this paper, we improve upon both closure-based and condition-centric syntax. We adopt many of
the ideas of closure-based syntax, in particular the lack of delimiter tokens around the contract-
checking annotation and the syntax for captures. However, instead of using the problematic
curly braces, we use parentheses around the predicate, following the basic syntax structure of the
condition-centric syntax [P2737R0] but without adopting any of the other design choices from that
paper.
Building on these ideas, we developed a complete syntax proposal that is fit for purpose in the
Contracts MVP and accommodates all relevant post-MVP extensions such as captures, requires
clauses, and labels on contract-checking annotations.
The author of the closure-based syntax has reviewed our proposal and decided to discontinue the
closure-based syntax in favour of our proposal as it subsumes the ideas of the closure-based syntax
and improves upon it. We are therefore left with attribute-like syntax and our proposal as the only
two still active proposals for a Contracts syntax.

3 Design goals
We focus on the following design goals, which we believe are not sufficiently met by attribute-like or
closure-based syntax:

— The syntax should fit naturally into existing C++. The intent should be intuitively un-
derstandable by users unfamiliar with contract-checking annotations without creating any
confusion.

— A contract-checking annotation should not resemble an attribute, a lambda, or any other
pre-existing C++ construct. It should sit in its own, instantly recognisable design space.

— The syntax should feel elegant and lightweight. It should not use more tokens and characters
than necessary.

— To aid readability, the syntax should visually emphasise the primary information, that is,
the contract predicate and the parts of a contract-checking annotation that may affect how
the predicate is parsed: the contract kind, the name for the return value, and (post MVP)
the captures. These should be syntactically separated from secondary information about the
contract, such as (post MVP) labels to control the contract semantic.

At the same time, we maintain all the other desirable properties that attribute-like and closure-based
syntax offer, such as compatibility (no parsing ambiguities, no breakage or change in meaning of
existing C++ code) and extensibility (a natural path for evolution in the post-MVP directions that
SG21 considers relevant).

4 The proposal

4.1 Grammar

We propose the following additions to the C++ grammar for the Contracts MVP:

init-declarator:
declarator initializeropt

declarator requires-clause
declarator requires-clauseopt pre-or-post-condition-seq

member-declarator:
declarator virt-specifieropt pure-specifieropt pre-or-post-condition-seqopt

3

declarator requires-clause
declarator requires-clauseopt pre-or-post-condition-seq
declarator brace-or-equal-initializeropt

identifieropt attribute-specifier-seqopt : brace-or-equal-initializeropt

function-definition:
attribute-specifier-seqopt decl-specifier-seqopt declarator virt-specifier-seqopt

pre-or-post-condition-seqopt function-body
attribute-specifier-seqopt decl-specifier-seqopt declarator requires-clause

pre-or-post-condition-seqopt function-body
lambda-declarator:

lambda-specifier-seq noexcept-specifieropt attribute-specifier-seqopt

trailing-return-typeopt pre-or-post-condition-seqopt

noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt pre-or-post-condition-seqopt

trailing-return-typeopt pre-or-post-condition-seqopt

(parameter-declaration-clause) lambda-specifier-seqopt noexcept-specifieropt

attribute-specifier-seqopt trailing-return-typeopt requires-clauseopt pre-or-post-condition-seqopt

unary-expression:
postfix-expression
unary-operator cast-expression
++ cast-expression
-- cast-expression
await-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression
assert-expression

pre-or-post-condition:
pre contract
post contract

pre-or-post-condition-seq:
pre-or-post-condition pre-or-post-condition-seqopt

assert-expression:
assrt contract

contract:
contract-condition // can be expanded post-MVP, see section 5

contract-condition:
(return-nameopt conditional-expression)

return-name:
identifier :

4.2 Natural syntax for preconditions and postconditions

To add a precondition (or postcondition) to a function declaration, we simply write pre (or post),
followed by the predicate in parentheses:

4

float sqrt(float x)
pre (x >= 0);

This is a very natural syntax, as it is using parentheses in the same way as other language constructs
that have a predicate: if (expr), while (expr), etc.
To introduce a name for the return value of a function, you write it immediately before the predicate,
followed by a colon:

int f(int x)
post (r: r > x);

Here, pre and post are contextual keywords. As we will see in section 4.3 below, it is fine to
use them as an identifier in all other parts of the function declaration, therefore not breaking
any existing code. Preconditions and postconditions are the last part of a function declaration,
immediately before the semicolon (or the opening brace if the declaration is a definition):

template <typename T>
auto f(T x) -> bool

requires std::integral<T>
post (x > 0);

This order is consistent with the natural order of reading a function declaration: typically, the
reader will first want to see the function signature and whether it is virtual, then any compile-
time constraints (the requires clause), and finally any runtime constraints (the contract-checking
annotations).

4.3 No parsing ambiguities

It has been suggested that the syntax proposed here might create parsing ambiguities with the
other parts of a function declaration, such as a trailing return type or requires clause, if pre or
post are used as identifiers for variables, functions, or types; but this is not actually the case. The
grammar for a trailing return type is -> type-id, and we can unambiguously tell when that type-id
ends and a pre-or-postcondition begins:

auto f() -> pre pre(a); // OK, pre is the return type, pre(a) the precondition
auto g() -> pre<post> pre(a); // OK, pre<post> is the return type, pre(a) the precondition

Further, note that requires clauses use a restricted grammar where the expression following the
requires keyword must be a primary-expression or a sequence of primary-expressions combined
with the && or || operators. Any other type of expression, such as a mathematical expression, a
cast, or a function call, must be surrounded by parentheses, otherwise the program is ill-formed:

template <typename T>
void g() requires pre(a); // ill-formed today

template <typename T>
void h() requires (pre(a)); // OK

template <typename T>
void j() requires (b)pre(a); // ill-formed today

template <typename T>
void k() requires ((b)pre(a)); // OK

template <typename T>
void l() requires a < b > pre(c); // ill-formed today

5

template <typename T>
void m() requires (a < b > pre(c)); // OK

Therefore, just like with the trailing return type, we can unambiguously tell when the expression
ends and a pre-or-postcondition begins:

template <typename T>
void f() requires (b) pre(a); // OK, pre(a) is the precondition

template <typename T>
void g() requires a < b > pre(c); // OK, a is a variable template, pre(c) is the precondition

There are further no parsing ambiguities when any given precondition (or postcondition) ends and
the next one begins, as the predicate must always be surrounded by parentheses. Therefore, it is
also OK to use pre and post as identifiers inside the predicate. They are parsed as keywords only
in the syntactic place where they act as such, everywhere else the usual grammar rules apply:

void f(bool pre, bool post)
pre(pre) pre(post); // OK

4.4 Assertions and the assert name clash

We propose to use the same natural syntax, contract-kind (predicate), also for assertions.
This syntax will look instantly familiar to C++ developers as it is the same basic syntax that
one would use today to write a macro-based assertion (but without any of the limitations of a
macro-based solution). However, since assertions appear at block scope, unlike pre and post, we
need to claim a full keyword for the contract kind. We therefore need to solve the issue that the
most natural keyword, assert, would create a name clash with the existing assert macro from
header cassert:

void f() {
int i = get_i();
assert(i >= 0); // identical syntax for contract assert and macro assert

}

There are in principle three ways to resolve this name clash while keeping the natural syntax:

1. Remove support for header cassert from C++ entirely, making it ill-formed to #include it;

2. Do not make #include <cassert> ill-formed (perhaps deprecate it), but make assert a
keyword rather than a macro, and silently change the behaviour to being a contract assertion
instead of an invocation of the macro;

3. Use a keyword other than assert for contract assertions to avoid the name clash.

Option 1 seems too draconian as it would break too much existing code, including code shared
between C and C++.
Option 2 seems worth exploring, as the default behaviour of macro assert is actually identical
to the default behaviour of a contract assertion: print a diagnostic, then terminate the program.
Contract-specific extensions like a user-defined violation handler will not affect pre-existing code.
Replacing macro assert with a full keyword would also solve all the current issues with assert
being a macro: it cannot be exported from a Standard Library module; it does not work with
matched brackets syntax for brackets other than parentheses, such as <...>, {...}, and [...],
and as a result, many C++ constructs such as assert(X{1, 2}) or assert(Y<int, int>) are
ill-formed today; etc. (see also [P2264R5] and [P2884R0]).

6

However, there are several problems with this approach. The first problem is that the behaviour of
macro assert is tied to whether NDEBUG is defined. To maintain compatibility and avoid checking
predicates (potentially terminating the program) that were not checked before in an existing
program, a compiler would have to apply the enforce semantic when NDEBUG is not defined, and
the ignore semantic when NDEBUG is defined, to all contract assertions in the program by default
(unless something else has been specified by the user). The status quo in the Contracts MVP
is that the contract semantic of any contract-checking annotation is implementation-defined; the
recommended default contract semantic is enforce regardless of whether NDEBUG is defined, and this
recommendation is not normative (see [P2877R0]).
The second problem is that even if we tie the default contract semantic to NDEBUG in this way,
contract assertions would still not be a backwards-compatible replacement for the assert macro.
The ignore contract semantic is different from assert with NDEBUG defined because an ignored
contract still fully parses and ODR-uses the entities in its predicate, while an ignored assert
macro does neither: it simply throws away all tokens inside the macro argument. There are many
different ways in which switching from the latter to the former could break existing code (the macro
contained invalid tokens; template instantiation triggers a static_assert; etc.) or silently change
the behaviour of an existing program (it is possible to SFINAE on whether an entity is being
ODR-used). Changing ignored contracts to mimic the behaviour of the assert macro with NDEBUG
defined is not an option either as it would go against an important design principle for contracts:
whether a contract is checked or ignored should never lead to different code paths being taken, as
this could lead to non-portable code and bugs disappearing or appearing when you turn contract
checking on and off (see [P2834R1]).
Furthermore, if we claim assert as a full keyword, this would also break any existing C++ code that
uses the identifier assert for a user-defined entity (such as a function, variable, type, or enumerator).
We would also have to rename the enumerator std::contracts::contract_kind::assert which
we adopted into the Contracts MVP via [P2811R7].
Considering the above problems, we propose Option 3. Possible alternative keywords include:

ass
asrt
assrt
assertion
co_assert
contract_assert

We have picked assrt for now, but we are happy with any other choice if this increases consensus.
Such a keyword may look weird initially, but just like with co_yield and friends, users will get
used to it quickly.

4.5 Assertions are expressions

With the natural syntax, it is straightforward to specify assertions as expressions, not statements.
Consequently, with our syntax, assertions can be used not only as statements inside a function body,
but actually anywhere one could use an expression, and in particular, anywhere one could use an
assert macro today:

class X {
int* _p;

public:
X(int* p) : _p((assrt(p), p)) {} // works

};

Therefore, contract assertions as proposed here can act as full drop-in replacements for assert
macros, and that replacement is easily toolable (search and replace the keyword).

7

5 Post-MVP extensions
Our proposed syntax provides a natural path for evolution into all of the post-MVP directions
that have been suggested so far. In this section, we discuss several possible post-MVP extensions
that are of interest to SG21 according to the electronic poll results in [P2885R2] or that have been
brought up in discussion since the poll results were published.

5.1 Captures

The contracts grammar proposed here can be extended as follows to allow captures on contract-
checking annotations:

pre-or-post-condition:
pre contract
post contract

assert-expression:
assrt contract

contract:
contract-captureopt contract-condition

contract-capture:
[capture-list]

Here is a code example:

void vector::push_back(const T& v)
post [old_size = size()] (size() == old_size + 1); // init-capture

Note that with our syntax, a contract-checking annotation with a capture looks very similar to
closure-based syntax, except that the predicate is in parentheses instead of braces. This is the
natural choice and avoids making the contract-checking annotation look like a lambda (an entirely
different construct). Instead, the syntax looks exactly like the thing that it is: a capture followed by
a predicate using that capture. It is a new syntax for a new type of construct, yet it immediately
looks familiar and intuitive.
Note further that with our syntax, we have the same design freedom as closure-based syntax
[P2461R1] to allow the full capture syntax from lambdas, including default-captures:

int min(int x, int y)
post [x, y] (r: r <= x && r <= y); // possible with our proposal

But we could also choose to restrict ourselves to init-captures as [P2935R0] does.

5.2 requires-clauses on contracts

The contracts grammar proposed here can be extended to allow a requires clause that appertains
to an individual contract-checking annotation. There are at least two possible syntactic positions
for such a requires clause. We could place it at the end, after the predicate:

contract:
contract-captureopt contract-condition requires-clauseopt

In code:

template <typename T>
void f(T x)

pre (x > 0) requires std::integral<T>;

8

Alternatively, if we want to make the requires clause more visually prominent, we could place it at
the beginning of the contract-checking annotation, right after the pre or post contextual keyword:

contract:
requires-clauseopt contract-captureopt contract-condition

In code:

template <typename T>
void f(T x)

pre requires std::integral<T> (x > 0);

Note that neither option creates any parsing ambiguities, for the same reasons as discussed in
section 4.3. Note further that both options allow for requires clauses appertaining to individual
contract-checking annotations to coexist with a requires clause appertaining to the function itself:

template <typename T>
void f(T x)

requires std::copyable<T>
pre (x > 0) requires std::integral<T>;

or, alternatively,

template <typename T>
void f(T x)

requires std::copyable<T>
pre requires std::integral<T> (x > 0);

5.3 Attributes appertaining to contracts

Although not covered in [P2885R2], it has been argued that any new syntactic construct in C++,
including contract-checking annotations, should allow for the possibility of standard attributes
appertaining to it. Some meta-annotations that might be added to contracts post MVP could
potentially be expressed as attributes appertaining to a contract-checking annotation.
Support for attributes appertaining to a contract-checking annotation is easy to accommodate with
our proposed syntax. Since attributes are optional, ignorable information and are thus not part of a
contract’s primary information, we believe that it makes most sense to place them at the end of the
contract-checking annotation:

contract:
contract-captureopt contract-condition attribute-specifier-seqopt

In code:

template <typename T>
void f(T x)

pre (x > 0) [[deprecated]];

However, just like with requires clauses, it is also possible to place the attribute-specifier-seq at
the beginning, right after the pre or post contextual keyword in case a more prominent syntactic
position is desired.
Note that in either case, there is no grammar ambiguity with the attribute-specifier-seq appertaining
to any other part of the function declaration, such as the function itself, the function type, or the
trailing return type, because all other possible positions for the attribute-specifier-seq precede the
pre-or-postcondition.

9

5.4 Labels

It has been suggested that post-MVP, we will need meta-annotations on a contract, so-called labels,
that should not be spelled as attributes because they are not ignorable. The only currently known
use case for this is to specify or constrain the possible contract semantic (observe, ignore, enforce)
for a given contract; other use cases might be discovered in the future. There are many ways in
which our proposed syntax could be extended to accommodate such labels.
If we want to consider such labels secondary information, we can place them at the end of the
contract-checking annotation. In order to keep the grammar unambiguous, we need to surround the
sequence of labels with delimiter tokens. We cannot use [[...]] because these are reserved for
attributes (see section 5.3), but we can use pretty much any other set of delimiter tokens, such as
[...], <...>, {...}, and so forth, or mark the labels by special characters such as @, depending
on SG21’s preference:

void f(int x)
pre (x > 0) [audit]; // or <audit>, or {audit}, or [{audit}], or @audit ...

On the other hand, if we want to consider such labels primary information, we can place them at
the beginning of the contract-checking annotation, right after the pre or post contextual keyword.
In this case, we cannot use [...] as the delimiters anymore, as it would be ambiguous with the
contract-capture (see section 5.1), but we can use any of the other options:

void f(int x)
pre <audit> (x > 0); // or {audit}, or [{audit}], or @audit ...

We could also allow both the leading and the trailing position. Our syntax places no restrictions
on the internal grammar for these labels. They can be specified to be any kind of token sequence,
depending on the design direction we choose post MVP.
One interesting possibility is to specify that the label, or set of labels, shall be a constant expression
that evaluates to a compile-time value defining the desired per-contract configuration, perhaps
to a value of some new type std::contract_traits similar to std::coroutine_traits. Such a
grammar opens up the power of constant expressions (i.e. almost the full language) for abstracting
the computation of the per-contract configuration. The syntax with labels in leading position,
right after pre or post and delimited by <...>, seems appealing for this design direction, as the
contract-checking annotation will resemble a template that is “templated” on its configuration
(which acts as a non-type template parameter), and the constant expression acts as a template
argument that “instantiates” (configures) the contract check. The grammar for this could look as
follows:

contract:
contract-eval-specifieropt contract-captureopt contract-condition

contract-eval-specifier:
< constant-expression >

However, this is only one possible direction. With our proposal, we are not cutting off any other
directions. The main difference to labels in attribute-like syntax is that in our syntax, the label
sequence goes between delimiter tokens, whereas in attribute-like syntax it goes between the pre or
post keyword and the colon. Arguably, our proposal actually leaves more syntactic freedom for
labels than attribute-like syntax does. In attribute-like syntax, the label sequence can syntactically
clash with anything else that goes between the pre or post keyword and the colon, such as the
name for the return value. On the other hand, in our syntax, labels are guaranteed to not clash with
anything else because they are separated from all other parts of the contract-checking annotation
by their own delimiter tokens.

10

Note also that with our proposal, we can support both standard attributes and non-attribute labels
appertaining to the same contract-checking annotation simultaneously, for example:

void f(int x)
pre <audit> (x > 0) [[deprecated]];

5.5 Destructuring the return value

We can easily and naturally extend the syntax proposed here to add support for destructing the
return value of a function with a structured binding when specifying a name for that value:
contract-condition:

(return-nameopt conditional-expression)

return-name:
identifier :
[identifier-list] :

This can be very useful in the postcondition of a function that returns a value of a tuple-like type:

std::tuple<int, int, int> f()
post ([x, y, z] : x != y && y != z);

5.6 Procedural interfaces

With procedural interfaces, we can express a much richer set of contracts than with preconditions and
postconditions alone. The idea was first published by Lisa Lippincott in her paper [P0465R0]. More
recently, [P2885R2] and [P2935R0] mentioned the idea of integrating such procedural interfaces
into a Contracts facility post-MVP.
With our proposal, we can support procedural interfaces with an interface block delimited by curly
braces. This is the natural syntax in C++ for a block containing a list of statements, and very
close to Lisa Lippincott’s original notation in [P0465R0]. Here is a code example in this syntax —
a procedural interface expressing the contract that a function should not throw an exception:

void f(int x)
interface {

try {
implementation;

}
catch (...) {

assrt(false);
}

};

6 Comparison with attribute-like syntax
In this section we compare different Contracts MVP and post-MVP code examples written in
attribute-like syntax as proposed in [P2935R0], side-by-side with the syntax proposed in this paper,
and discuss the different tradeoffs. Where appropriate, we mention different possible alternatives.

6.1 MVP functionality

6.1.1 Basic preconditions and postconditions

Shown below is a comparison of the two syntaxes for the most basic usage of preconditions and
postconditions:

11

// P2935R0:

int f(int x)
[[pre: x > 0]]
[[post r: r > x]];

// This paper:

int f(int x)
pre (x > 0)
post (r: r > x);

6.1.2 Assertion as a statement

Assertions make it rather obvious that contracts are in fact not attribute-like at all. A contract
assertion creates an entirely new code path out of the middle of a function body (for example, via a
throwing violation handler), which is something standard attributes were never designed to do.
In attribute-like syntax, an assertion at block scope takes the shape of an attribute appertaining to
a null statement; in our proposal, it looks like a regular statement, resembling a function call or the
invocation of an assert macro:

// P2935R0:

void f() {
int i = get_i();
[[assert: i > 0]]
use(i);

}

// This paper:

void f() {
int i = get_i();
assrt(i > 0);
use(i);

}

6.1.3 Assertion as an expression

The left-hand side of this code example is taken directly from [P2935R0]. Note that in attribute-like
syntax, this would require a novel grammar that does not exist for attributes today and that we do
not have implementation experience with. Attributes today need to appertain to another entity
such as a declaration or a statement, and cannot be used on their own as an expression. At the
same time, if an assertion is not an expression, it cannot be a full drop-in replacement for C assert
as there would be places where a C assert is legal but a contract assert is not. With our proposal,
using an assertion as an expression just works:

// P2935R0:

struct S2 {
int d_x;
S2(int x)

: d_x([[assert : x > 0]], x)
{}

};

// This paper:

struct S2 {
int d_x;
S2(int x)

: d_x(assrt(x > 0), x)
{}

};

6.1.4 Position inside more complex function declarations

The left-hand side of this code example is taken directly from [P2935R0]. In attribute-like syntax,
preconditions and postconditions are placed in the same location where attributes that would
appertain to the function’s type would be located, i.e. before any trailing return type, virtual
specifiers such as override and final, and a requires clause (see [P2935R0]). This has the benefit
that we can re-use the existing standard attribute grammar. However, the resulting position is
awkward and goes against the natural reading order of a function declaration; it also requires
delayed parsing of postconditions (as the predicate may depend on the trailing return type).
By contrast, in our proposal, preconditions and postconditions are placed at the very end of a
declaration, avoiding all of the above problems:

12

// P2935R0:

struct S1
{

auto f() const & noexcept
[[pre : true]] -> int;

// This paper:

struct S1
{

auto f() const & noexcept -> int
pre(true);

virtual void g()
[[pre : true]] override = 0;

template <typename T>
void h()

[[pre : true]] requires true;
};

virtual void g() override = 0
pre(true);

template <typename T>
void h() requires true

pre(true);
};

Placing preconditions and postconditions at the very end of a declaration is in principle also possible
with attribute-like syntax, and this is discussed in [P2935R0]. But this is not covered by existing
standard attribute-grammar, thus requiring a novel grammar that we do not have implementation
experience with, throwing away the main advantage of attribute-like syntax.

6.1.5 Lambda with trailing return type

The same issue with the syntactic order also exists for lambdas, aggravated by the fact that a
trailing return type is even more common here:

// P2935R0:

auto x = [] (int x)
[[pre: x > 0]] -> int

{
return x * x;

};

// This paper:

auto x = [] (int x) -> int
pre(x > 0)

{
return x * x;

};

6.2 Post-MVP functionality

6.2.1 Captures

In attribute-like syntax, captures look awkward as they involve square brackets inside double
square brackets. Additionally, in attribute-like syntax they are ambiguous with square brackets
for a structured binding (see 6.2.2). [P2935R0] suggests to only allow init-captures (but not
default captures) and to surround structured bindings with an additional pair of parentheses for
disambiguation. In our syntax, neither is necessary as the two features have different syntactic
positions that arise naturally from our proposed grammar:

// P2935R0:

// no support for default captures

void vector::push_back(const T& v)
[[post [old_size = size()]

: size() == old_size + 1]];

// This paper:

int min(int x, int y)
post [x, y] (r: r <= x && r <= y);

void vector::push_back(const T& v)
post [old_size = size()]

(size() == old_size + 1);

6.2.2 Destructuring the return value

As mentioned above, in attribute-like syntax a structured binding is ambiguous with a capture
unless we disallow default captures or require an extra pair of parens; with our syntax, it is not:

13

// P2935R0:

std::tuple<int, int, int> f()
[[post [x, y, z] : x != y && y != z]];

// or, if needed to disambiguate from capture:

std::tuple<int, int, int> f()
[[post ([x, y, z]) : x != y && y != z]];

// This paper:

std::tuple<int, int, int> f()
post ([x, y, z] : x != y && y != z);

6.2.3 requires clause on the contract-checking annotation

In attribute-like syntax, the only possible syntactic position for a requires clause appertaining to
the contract-checking annotation is the same as for all other extensions: immediately preceding
the colon. In our syntax, we can choose a much more natural position: either at the end of the
contract-checking annotation, or immediately after the pre or post keyword, depending on what
SG21 prefers.

// P2935R0:

template <typename T>
void f(T x)

[[pre requires(std::integral<T>) : x > 0]];

// This paper, option 1:

template <typename T>
void f(T x)

pre (x > 0) requires std::integral<T>;

// This paper, option 2:

template <typename T>
void f(T x)

pre requires std::integral<T> (x > 0);

6.2.4 requires clauses on both the contract and the function itself

In [P2935R0], if we wish to re-use the existing standard attribute syntax, the requires clause
appertaining to the function itself comes after the contract-checking annotation, whereas in our
syntax it comes before, making the declaration more readable.
Possible option: requires clause at the end

// P2935R0, option 1: attribute position

template <typename T>
void f(T x)

[[pre requires(std::integral<T>): x > 0]]
requires std::copyable<T>;

// P2935R0, option 2: final position

template <typename T>
void f(T x)

requires std::copyable<T>
[[pre requires(std::integral<T>): x > 0]];

// This paper, option 1:

template <typename T>
void f(T x)

requires std::copyable<T>
pre (x > 0) requires std::integral<T>;

// This paper, option 2:

template <typename T>
void f(T x)

requires std::copyable<T>
pre requires std::integral<T> (x > 0);

6.2.5 Attributes

In [P2935R0], a standard attribute appertaining to a contract-checking annotation (which is itself
attribute-like) inevitably leads to nested double square brackets, which looks awkward, is hard to
read, and requires a novel attribute grammar that we do not have implementation experience with

14

(the existing grammar does not allow attributes appertaining to other attributes). On the other
hand, in our proposal, a standard attribute appertaining to a contract-checking annotation looks as
natural as a standard attribute appertaining to any other declaration:

// P2935R0:

int f(int x)
[[pre: x > 0 [[deprecated]]]];

// This paper:

int f(int x)
pre (x > 0) [[deprecated]];

Note that with our proposal, a standard attribute appertaining to a contract-checking annotation is
never ambiguous with a standard attribute appertaining to the function itself, the function type, or
the trailing return type (see section 5.3).

6.2.6 Labels

As discussed in section 5.4, with the syntax proposed here we can choose to place labels either at
the beginning or at the end of a contract-checking annotation; the choice will depend on whether
we consider these labels primary or secondary information. We can also choose between different
delimiter tokens or special characters to separate them from the rest of the contract-checking
annotation:

// P2935R0:

void search(range rg)
[[pre audit: is_sorted(rg)]];

// This paper (two possible options shown):

void search(range rg)
pre (is_sorted(rg)) [audit];

void search(range rg)
pre <audit> (is_sorted(rg));

In any case, the different parts of a contract-checking annotation are much more clearly visually
distinguishable in our syntax than in attribute-like syntax, which places everything except the
predicate, including labels, into the same syntactic position immediately preceding the colon. The
latter leads to a number of possible parsing ambiguities between labels and the name for the return
value in attribute-like syntax that require awkward workarounds. No such issues arise in our syntax
as the label, return value, and other parts of the contract all have their own unambiguous syntactic
place:

// P2935R0:

int f(int x)
[[post foo: x > foo]];
// is foo label or return value?

int f(int x)
[[post (foo): x > foo]];
// using extra parens; foo is return value

int f(int x)
[[post foo (bar): x > bar]];
// using extra parens; is bar return value
// or label argument?

// This paper:

int f(int x)
post <foo> (x > foo);
// foo is label

int f(int x)
post (foo: x > foo);
// foo is return value

int f(int x)
post <foo> (bar: x > bar);
// bar is return value

int f(int x)
post <foo(bar)> (x > bar);
// bar is label argument

15

6.2.7 Procedural interfaces

To spell procedural interfaces, [P2935R0] resorts to an interface block delimited with double square
brackets, which leads to nested double square brackets. On the other hand, with our proposal,
we can adopt a much more natural-looking syntax that uses braces for the block of statements.
This syntax is also much closer to the notation in Lisa Lippincott’s original paper on procedural
interfaces, [P0465R0]:

// P2935R0:

void f(int x)
[[interface :

try {
implementation;

}
catch (...) {

[[assert: false]];
}

]];

// This paper:

void f(int x)
interface {

try {
implementation;

}
catch (...) {

assrt(false);
}

};

7 Requirements from P2885
Our proposal satisfies all must-have, important, and nice-to-have requirements for a Contracts
syntax from [P2885R2], except the requirement for implementation experience. If this proposal
generates interest, we hope that someone will be able to help us with implementing this syntax in a
C++ compiler to satisfy this requirement as well.
Below we list all these requirements and discuss how our syntax satisfies them.

7.1 Basic requirements

7.1.1 Aesthetics [basic.aesthetic]

We believe that our syntax is more elegant and readable than either attribute-like or closure-based
syntax.

7.1.2 Brevity [basic.brief]

Our syntax uses the least amount of tokens and characters possible.

7.1.3 Teachability [basic.teach]

We believe that this syntax is easy to learn and teach, and more self-explanatory and intuitive than
either attribute-like or closure-based syntax.

7.1.4 Consistency with existing practice [basic.practice]

We believe that this syntax is more consistent with existing practice than either attribute-like or
closure-based syntax. Today, contracts facilities are implemented using macros, using the syntax
MACRO_NAME (predicate). We use the exact same basic syntax, also placing the predicate in
parentheses. The only differences are that instead of a macro name, we use a contextual keyword,
preconditions and postconditions are placed onto declarations instead of inside the function body,
and the user can additionally name the return value in a postcondition, a feature that is not possible
with macros.

16

7.1.5 Consistency with the rest of the C++ language [basic.cpp]

We believe that this syntax is more consistent with the rest of the C++ language than either
attribute-like or closure-based syntax. We do not make contract-checking annotations look like
attributes, and we do not place predicates (which are expressions) between curly braces. In C++
today, expressions go between parentheses, while statements go between curly braces.

7.2 Compatibility requirements

7.2.1 No breaking changes [compat.break]

As long as we use a keyword other than assert for assertions (see discussion in section 4.4), our
syntax does not break or alter the meaning of any existing C++ code.

7.2.2 No macros [compat.macro]

Our syntax does not require the use of macros or the preprocessor to be used effectively.

7.2.3 Parsability [compat.parse]

To our best knowledge the syntax we propose does not introduce any parsing ambiguities; see
detailed discussion in section 4.3.

7.2.4 Implementation experience [compat.impl]

Unfortunately, we do not yet have any implementation experience with the syntax proposed here in
a C++ compiler.

7.2.5 Backwards-compatibility [compat.back]

According to the SG21 electronic poll in [P2885R2], this is an irrelevant requirement.

7.2.6 Toolability [compat.tools]

In order for a C++ tool to implement meaningful functionality for Contracts, the tool needs to be
able to not only recognise the contract-checking annotation itself, but also be capable of correctly
parsing most parts of a C++ function declaration. We do not see any reason why this should be
any more difficult with our proposed syntax than with attribute-like or closure-based syntax.

7.2.7 C compatibility [compat.c]

We do not know what the C committee intends to do and whether they are interested in standardising
Contracts for C. We should not block progress on C++ Contracts while waiting for that decision to
form. However, we do not see any reason why our proposed syntax should create more hurdles for
adopting it in C than the other syntax proposals do.

7.3 Functional requirements

7.3.1 Predicate [func.pred]

Requirement satisfied.

17

7.3.2 Contract kind [func.kind]

Since with the natural syntax, assrt(expr) is an expression, assrt (or whichever other keyword
we choose) must be a full keyword, not a contextual keyword. We can therefore not use the same
keyword for the enum value in std::contracts::contract_kind corresponding to assertions. We
can keep using the identifier assert for this purpose as in the current MVP, or choose any other
identifier.

7.3.3 Position and name lookup [func.pos]

Requirement satisfied.

7.3.4 Pre/postconditions after parameters [func.pos.prepost]

Requirement satisfied.

7.3.5 Assertions anywhere an expression can go [func.pos.assert]

Requirement satisfied.

7.3.6 Multiple pre/postconditions [func.multi]

Requirement satisfied.

7.3.7 Mixed order of pre/postconditions [func.mix]

Requirement satisfied.

7.3.8 Return value [func.retval]

Requirement satisfied.

7.3.9 Predefined name for return value [func.retval.predef]

According to the SG21 electronic poll in [P2885R2], this is a questionable requirement. We decided
not to satisfy it because we believe that letting the user define their own name for the return value
is the better approach.

7.3.10 User-defined name for return value [func.retval.userdef]

Requirement satisfied.

7.4 Future evolution requirements

7.4.1 Non-const non-reference parameters [future.params]

Requirement satisfied via captures.

7.4.2 Captures [future.captures]

The syntax proposed here can naturally be extended to support captures; see section 5.1 for
discussion.

7.4.3 Structured binding return value [future.struct]

The syntax proposed here can naturally be extended to support destructuring the return value; see
discussion in section 5.5 and comparison with attribute-like syntax in 6.2.2.

18

7.4.4 Contract reuse [future.reuse]

According to the SG21 electronic poll in [P2885R2], this is a questionable requirement. Joshua
Berne suggested that this idea might be better addressed by introducing some kind of hygienic
macro. We therefore decided not to consider this requirement further.

7.4.5 Meta-annotations [future.meta]

The syntax proposed here can naturally be extended to support labels and meta-annotations,
offering the same syntactic freedom as attribute-like syntax; see section 5.4 for discussion.

7.4.6 Parametrised meta-annotations [future.meta.param]

There is nothing specific to the syntax proposed here that precludes this direction.

7.4.7 User-defined meta-annotations [future.meta.user]

There is nothing specific to the syntax proposed here that precludes this direction.

7.4.8 Meta-annotations re-using existing keywords [future.meta.keyword]

There is nothing specific to the syntax proposed here that precludes this direction.

7.4.9 Non-ignorable meta-annotations [future.meta.noignore]

There is nothing specific to the syntax proposed here that precludes this direction.

7.4.10 Primary vs. secondary information [future.prim]

We believe that our syntax satisfies this requirement much better than attribute-like syntax.

7.4.11 Invariants [future.invar]

The syntax proposed here can be naturally extended to a invariant contract kind that can be
declared at class scope, should SG21 decide to pursue this direction further. However, the syntactic
space at class scope is somewhat crowded so we will most likely need to reserve a full keyword for
this purpose.

7.4.12 Procedural interfaces [future.interface]

The syntax proposed here can be naturally extended to support procedural interfaces as proposed
in [P0465R0]; see discussion in section 5.6 and comparison with attribute-like syntax in 6.2.7.

7.4.13 requires clauses [future.requires]

The syntax proposed here can be naturally extended to support requires clauses on individual
contract-checking annotations; see discussion in section 5.2.

7.4.14 Abbreviated syntax on parameter declarations [future.abbrev]

According to the SG21 electronic poll in [P2885R2], this is the lowest-ranked nice-to-have requirement.
We therefore did not dedicate any time considering this requirement in detail. However at first
glance there does not seem to be anything specific to this proposal that precludes this direction.

19

7.4.15 General extensibility [future.general]

As we have shown above, the syntax proposed here can be naturally extended to a wide range of
known ideas for future features. We therefore believe that it offers a high degree of extensibility
also for future features not yet discussed.

Acknowledgements
We would like to thank Ville Voutilainen, Joshua Berne, Peter Brett, Gašper Ažman, and Andrzej
Krzemieński for their helpful feedback on an earlier draft of this paper.

References

[P0465R0] Lisa Lippincott. Procedural function interfaces. https://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2016/p0465r0.pdf, 2016-10-16.

[P1680R0] Andrew Sutton and Jeff Chapman. Implementing Contracts in GCC. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1680r0.pdf, 2019-06-17.

[P2264R5] Peter Sommerlad. Make assert() macro user friendly for C and C++. https://wg21.
link/p2264r5, 2023-09-13.

[P2461R1] Gašper Ažman, Caleb Sunstrum, and Bronek Kozicki. Closure-Based Syntax for Con-
tracts. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf,
2021-11-15.

[P2487R1] Andrzej Krzemieński. Is attribute-like syntax adequate for contract annotations? https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2487r1.html, 2023-06-11.

[P2695R1] Timur Doumler and John Spicer. A proposed plan for Contracts in C++. https:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf, 2023-02-09.

[P2737R0] Andrew Tomazos. Proposal of Condition-centric Contracts Syntax. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf, 2021-11-15.

[P2811R7] Joshua Berne. Contract-violation handlers. https://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2023/p2811r7.pdf, 2023-06-27.

[P2834R1] Joshua Berne and John Lakos. Semantic Stability Across Contract-Checking Build
Modes. https://wg21.link/p2834r1, 2023-05-15.

[P2877R0] Joshua Berne and Tom Honermann. Contract Build Modes, Semantics, and Implemen-
tation Strategies. https://wg21.link/p2877r0, 2023-06-09.

[P2884R0] Alisdair Meredith. assert Should Be A Keyword In C++26. https://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2023/p2884r0.pdf, 2023-05-15.

[P2885R2] Timur Doumler, Gašper Ažman, Joshua Berne, Andrzej Krzemieński, Ville Voutilainen,
and Tom Honermann. Requirements for a Contracts syntax. https://wg21.link/p2885r2,
2023-08-29.

[P2935R0] Joshua Berne. An Attribute-Like Syntax for Contracts. https://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2023/p2935r0.pdf, 2023-08-14.

20

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0465r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0465r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1680r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1680r0.pdf
https://wg21.link/p2264r5
https://wg21.link/p2264r5
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2487r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2487r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2695r1.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2811r7.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2811r7.pdf
https://wg21.link/p2834r1
https://wg21.link/p2877r0
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2884r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2884r0.pdf
https://wg21.link/p2885r2
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2935r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2935r0.pdf

	1 Motivation
	2 Prior work
	3 Design goals
	4 The proposal
	5 Post-MVP extensions
	6 Comparison with attribute-like syntax
	7 Requirements from P2885
	References

