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Abstract

SG21 has made significant progress toward producing a complete design for a Contracts facility
MVP. As work proceeds for completing this feature proposal, open questions must be considered
and answered such that the feature will eventually have widespread adoption throughout the
entire C++ ecosystem. Fundamental design principles that help guide such decisions for the
Contracts facility are presented in this paper as are proposals that address most (if not all) of
the open questions affecting the design of the Contracts facility MVP.
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1 Introduction
The Contracts MVP being developed by SG211 is progressing smoothly toward a complete proposal
according to the agreed-upon schedule.2 SG21 has reviewed several papers and has reached a general
consensus on what will happen when a contract-checking annotation (CCA) is evaluated.

• [P2751R1], “Evaluation of Checked Contract-Checking Annotations,” clarified what content
will be allowed in the predicate of a CCA and how the results of that evaluation will be
interpreted.

• [P2811R7], “Contract-Violation Handlers,” described a link-time replaceable contract-violation
handler to allow for customized handling of contract violations at run time.

• [P2834R1], “Semantic Stability Across Contract-Checking Build Modes,” established that
having preconditions and postconditions evaluated outside the noexcept guarantee of a function
that is marked noexcept should not be considered.

• [P2877R0], “Contract Build Modes, Semantics, and Implementation Strategies,” made the
choice of semantics for a CCA implementation defined and, in particular, showed that such a
choice might vary between evaluations and is thus not a compile-time property of a CCA.

1See [P2521R4] and the forthcoming [P2900R0].
2See [P2695R1].
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Taking the above resolutions together, on top of the existing core MVP proposal, produces an almost
complete specification for Contracts as a C++ language feature.3 Some edge cases and other design
points, however, still need to be addressed.4

To motivate the choices we intend to make when suggesting answers to these design questions, we
will begin by identifying fundamental principles that will codify our design intentions for the C++
Contracts facility. These principles start with basic goals and build up to concrete requirements
that all proposals should meet (or maximize) when making engineering decisions for what should
become part of C++.

2 Guiding Principles
Each principle proposed in this paper comes from the author’s experience, follows from SG21’s
earlier principles, or aims to maximize some aspect of the quality of the Contracts facility that
eventually becomes adopted by the C++ Standard.

2.1 CCAs Check Plain-Language Contracts

When programmers of any language set out to write a subroutine (or function), they have in mind
some notion of what will happen when the subroutine is invoked (for a given subset of syntactically
valid inputs). The part of that notion to which the programmer is willing to commit as unchanging
with changes to the implementation is what we generally refer to as the function’s contract. Hence,
for any function that can be relied upon by clients, a contract must exist between the callers of that
function and its implementers. This contract, which we call the plain-language contract, exists as a
combination of the explicit (through documentation) and implicit (through choice of programming
language, coding style, local conventions, etc) agreements to which both parties agree.

A plain-language contract can capture a boundless variety of different conditions, requirements, and
promises that might exist between callers and callees. Some of these are prone to being validated
with a simple C++ expression, such as x > 0, while others are completely beyond the scope of the
C++ abstract machine, such as “clients of this function have paid their bills recently.”

That a plain-language contract is absolute is important to understand; if both parties agree to
something, they make no guarantees about what happens if that agreement is violated, i.e., the
behavior is undefined. Often, such as when transmitting input across untrusted boundaries, this
contract must include guarantees about the handling of bad input, and neither the existence of bad
input nor the handling of it is in the purview of contract checking.5

A contract-checking annotation encodes in C++ an algorithm that can detect when a plain-language
contract has been violated; i.e., the fundamental agreement between caller and callee cannot be met
given the detected condition. When writing a CCA, that new annotation must be checking some
aspect of a plain-language contract to detect violations of the agreement that exists between the
caller and callee of the function.

3I.e., barring an actual syntax for the feature, which is the subject of a separate, ongoing series of discussions
orthogonal to the issues in this paper. For this paper, we will be using the C++20 attribute-like syntax (see [P0542R0]).

4See [P2834R1] for the initial explorations of some of these solutions based on the principles described by that
paper. See also [P2896R0], which enumerates the open design questions addressed by this paper.

5See [P2053R0] for more on this subject.
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Any CCA that identifies a condition as a defect that is not related to its associated plain-language
contract is clearly doing something above and beyond checking the requirements of that plain-
language contract. If, for any kind or placement of CCA, there are ways in which that CCA might be
evaluated where the predicate might indicate a violation when the CCA’s associated plain-language
contract is not violated or not relevant, then a false-positive bug will have been diagnosed, which
would be a defect in the structure of the Contracts facility itself.

Therefore, a CCA, when introduced anywhere, must always evaluate in ways that validate its
associated plain-language contract.

Principle 1: CCAs Check a Plain-Language Contract

Each contract-checking annotation placed on the declaration of a function must, when it is
evaluated, identify violations of the plain-language contract of that function.

2.2 Program Semantics Are Independent of Chosen CCA Semantic

The fundamental conceit of a contract-checking facility is that running a program with CCAs
checked at run time should tell us something meaningful about what happens when the same
source code is evaluated with the CCA not checked at run time. If a design choice made by the
contract-checking facility leads to the inability to detect bugs that occur when checks are disabled
by enabling checking, then the facility will have failed on a fundamental level.

The ramifications of allowing the choice of semantic (i.e., checked or unchecked) to impact the results
of the noexcept operator were thoroughly explored in [P2834R1]. This paper clearly showed that
the seemingly innocuous decision to allow enabled checking to impact the results of the noexcept
operator could easily lead to situations in which a small bug remains entirely undetectable by the
contract-checking facility because the act of enabling contract checks at run time alters higher-level
control flow to avoid the bug entirely.

The adoption of [P2877R0], which allows the selection of CCA semantics to potentially occur at run
time, renders compile-time consideration of the semantic of a CCA moot. Still, all design decisions
related to runtime-evaluated CCAs must nonetheless conform to this important stability principle,
whereby the current semantic has no impact (apart from evaluating the predicate) on any aspect
of the behavior of the program. On the other hand, compile-time evaluation might still occur and
might differ based on implementation-defined build options. Such variance at compile time would
again open up the same risks for a Contracts design to fail to satisfy its most fundamental purpose.

Therefore, the fundamental principle of [P2834R1] still stands as one that must guide all behaviors
of CCAs within any C++ contract-checking facility.

Principle 2: Program Semantics Are Independent of Chosen CCA Semantics

The semantic with which a CCA is evaluated must not affect the compile-time semantics
surrounding that annotation, e.g., any observable traits of expressions or function invocations
involving evaluation of the CCA.

Importantly, different build options that alter the semantics chosen for CCAs at compile time (for
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platforms that choose to offer such options) must not lead to distinct, well-formed programs having
different behaviors, other than the behaviors that are part of the evaluation of CCAs6 themselves
(and potentially their predicates). The very existence of a CCA and its predicate might ODR-use
entities, cause compile-time evaluations, or trigger template instantiation, but those effects must be
independent of the semantic chosen for any particular CCA evaluation. The potential side effects of
such instantiations are completely independent of the chosen semantic.

2.3 Zero Overhead

While the first major risk to Contracts being a viable contract-checking facility is failing to detect
bugs, the second major risk is failure to be adopted. If projects and enterprises commonly disallow
the use of Contracts due to fundamental design flaws, such as unavoidable pessimizations introduced
even when building with all CCAs ignored, then all SG21’s effort to design a product will have
been for naught. The mere rumor that adding a CCA might increase runtime overhead would
be a huge headwind against rapid adoption of the facility. A natural consequence would be that
developers think they have compelling reasons to continue using macro-based contract-checking
facilities indefinitely.

Macros (such as assert) that expand to nothing when the facility is disabled are inherent to
most macro-based contract-checking facilities. This characteristic results in there being no tangible
runtime overhead to having CCAs in a program’s source code, thus minimizing the factors that
might discourage ubiquitous use of Contracts.

Expanding to absolutely nothing does bring with it a fundamental problem that experience has
taught us we should strive to avoid with the Contracts facility: bit rot. When an unchecked build
ignores CCA predicates completely (i.e., it treats them as arbitrary token soup), failing to maintain
CCA predicates when changes are made to the APIs they use can become commonplace. Teams
that do not regularly compile their software with Contracts checked can quickly find themselves
unable to compile checked builds because of the invalidity of poorly maintained CCA predicates.
To avoid bit rot, a highly prudent practice is to continue to syntactically check CCA predicates,
which invariably brings with it compile-time side effects, such as template instantiations, and some
amount of constant evaluation to validate the predicate’s semantic correctness.

Other than those compile-time effects of validating a predicate,7 no other inherent runtime overhead
is associated with having a CCA in source code. An unevaluated operand, such as an expression
argument passed to the sizeof operator, has the properties we want to emulate.

• The expression is parsed and must be valid.

• The type of the expression must be determined, and this includes performaing overload
resolution, template instantiations, and anything else needed to determine what the actual
expression would do if evaluated.

6Note that when control flow reaches a CCA, it is evaluated: preconditions when the function they are attached to
is called, postconditions when the function they are attached to returns normally, and assertions where they appear as
statements or expressions. On each evaluation, a semantic is chosen (per [P2877R0]), and if that semantic is checked,
the predicate might then be evaluated to determine if a violation has occurred.

7Such as stateful changes that result from compile-time verification of the CCA predicate, like those related to
[CWG2118], or the odr-use of static data members of templates which might result in
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• Entities named in the expression are used only for their declarations and are not, however,
odr-used; thus, for example, local entities are not captured by enclosing lambdas.

This property leads to our next fundamental principle.

Principle 3: Zero Overhead for Ignored Predicates

The behavior of code surrounding a CCA evaluated with the ignore semantic is as if the
CCA’s predicate was an unevaluated operand, i.e., placed as the argument of a sizeof
operator.

By following this principle, we also reduce (to nothing, we hope) the possibility of users wrapping
CCA usage in macros that remove them entirely in some builds, thus reducing the chance of having
non-ABI-compatible builds when mixing checked and unchecked code in the same application. This
benefit hinges on one of the major gains achieved by adopting [P2877R0]: Mixed-semantic builds
are, when supported, required to be valid and cannot be ODR violations, thus greatly increasing
the ability to manage contract enablement at various granularities.

2.4 CCAs Identify Defects

There is a key relationship between these last two principles in that both relate to an expectation that
contract behaviors do not alter the fundamental semantics of a program. This desire to not change
the behavior of a program is tied to the property of Contracts that they are intended to observe
the correctness of a program, and most importantly are not expected to impact that correctness
in either direction. In the case of Principle 2 (chosen semantic independence), this expectation is
tied to wanting a program to retain semantics when choosing between the available semantics for
evaluation of a CCA — currently ignore, observe, and enforce. In the case of Principle 3 (zero
overhead) this expectation is tied to the relationship between the ignore semantic and an imaginary
nothing semantic that is achieved by not having the CCA present in the program source at all.

Put another way, these principles express two equations related to what we expect of a program
that does not violate a contract, and the specific semantics of evaluating a CCA are intended to
impact, to varying degrees, only those programs that have contract violations:

• Independence <=> ignore == observe == enforce == assume

• Zero-Overhead <=> ignore == nothing

Both of these principles have, as a foundation, an underlying principle that guides the need for
adhering to them. Just as we demonstrated in [P2834R1] that altering compile-time behavior based
on semantics can hide or introduce new bugs, any violation of the above principles will do the same.

Of course, evaluating a predicate in order to check it can, invariably lead to defects in a program. A
mis-written predicate or actively checking a destructive8 contract check can both fundamentally
change the semantics of how a program runs even with valid inputs. On the other hand, when
the impact introducing a CCA has on the behavior of a program alters control flow that occurs
before even evaluating that CCA the feature itself loses the ability to correctly help ascertain the
correctness of the program without the presence of contract checking at all.

8See [P2751R1].
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Thus we arrive at a more fundamental principle that underlies many of the design decisions we must
make for Contracts. This comes down to what a CCA means when it is introduced into an existing
program (even as that program is being developed):

Principle 4: CCAs Identify Defects

When introduced into an existing program a CCA identifies defects in that program.

Now let’s explore some of the ramifications of this principle.

First it is worth mentioning that there are occasions where a CCA is written as part of the
fundamental design of a program, and without the CCA present the program will fail or be invalid.
The primary such case is a program whose purpose is to test a contract-violation handler — such a
program will arrange for CCAs to be evaluated with specific semantics and then deliberately violate
contracts to test the respones of the contract-violation handler. Such a program is certainly not bad
or defective simply for violating contract checks — but that is because the CCAs are an essential
part of its behavior, and there is no meaningful preexisting program to which they have been added.

On the other hand, the general use for CCAs is to apply them to validate the correctness of a
program at various potential points in its execution. A CCA declaratively states what is a defect
in the program, and those checks are correlated to the function contracts and internal engineering
assumptions that were made when writing the code itself. The program with no CCAs in it is the
program under test, and it is in those programs that a developer will inevitably wish to find defects.

Importantly, in order for a CCA to test a program for defects the introduction of that CCA to a
program must not change its semantics outside the evaluate of the CCA itself. If the introduction of
a CCA to a program changes the semantics of that program (i.e., if it violates Principle 3) then the
original program is put into a class that is not actually checkable for defects. We do not expect
to be able to do all possible testing in the MVP, but it would certainly be a bad start to preclude
subsets of code with the simplest usage of Contracts.

One might think that the fact that evaluation of a CCA may itself have side effects violates this
principle, however there are reasons to not be concerned with that:

• A CCA predicate whose evaluation has side effects that adversely impact the correctness of a
program is bad, but fixing this issue is entirely within the hands of the writer of the predicate.

• An incorrect contract check might flag a correct program as invalid and alter the semantics of
an otherwise correct program. This situation, however, is still a situation of writing a program
with a defect — the same incorrect logic outside of a CCA would be just as invalid when
attempting to correctly implement a program.

• When a CCA has a checked (or assumed) semantic and there is an input that leads to a
contract violation the semantics of the program in question clearly change from the program
without the CCA. This, however, is simply the case of realizing distinct concrete behaviors for
what is otherwise labelled by the parties involved in the plain-language contract as undefined
behavior.

7



2.5 Choose Ill-Formed to Enable Flexible Evolution

Early in the process of identifying a path for bringing Contracts back into the C++ draft Standard,
SG21 solicited and amassed9 a wide array of use cases for guiding the scope of our next attempt
at a viable MVP for a C++ Contracts facility. Despite valiant efforts to refine the semantics and
functionality addressed by the MVP, a large number of these use cases will remain unsupported
until more work is done and further consensus has been achieved.

When standardizing a solution, we would be wise to leave room for satisfying the use cases that SG21
will address after an initial feature is integrated into C++. To facilitate that evolution, decisions
made today must not prevent migration to a more broadly applicable feature in future revisions.

When deciding how to provide this essential freedom, a few specification tools are available to us.

• One choice, which was made for quite a few aspects of the C++20 Contracts facility, is to
leave the behavior that is not finalized as undefined behavior. This option has the advantage
of allowing implementations the flexibility to experiment with various possible solutions along
with the severe disadvantage of all those solutions being nonportable and possibly conflicting.
SG21 had early consensus to refrain from using undefined behavior in this fashion because
doing so is generally perceived to be a source of reduced safety, not increased flexibility or
correctness.

• A middle ground rarely chosen is to simply make certain behaviors implementation defined.
While generally appearing safer than undefined behavior , this approach still results in code
that is nonportable when different platforms define distinct and incompatible behaviors for
the same constructs.

• Another specification tool available to us is to make what we are unsure of ill-formed. That is,
given two or more plausible solutions whose behaviors largely but incompletely overlap, rather
than making all of that behavior undefined or even implementation defined, we might choose
to define the overlapping behavior and (to strongly discourage inconsistency) to leave the
remaining, nonoverlapping behavior ill-formed. Implementations are still, in this case, free to
provide conforming extensions that implement potential evolutionary paths but, when asked
to strictly conform to the Standard, will have consistent, well-defined behavior.

• Finally, when we have consensus on a solution but are unclear whether the solution in question
will be implementable on all platforms, we might choose to specify the full solution and make it
conditionally supported. Using this approach, however, effectively introduces multiple dialects
of the language on different platforms, which is often an approach the WG21 community has
avoided.

In general, given the history of SG21’s consensus to focus on the safety and portability of the
Contracts feature being developed, the preferable option is to leave room for evolution by making
the available design space ill-formed in the current implementation.

9See [P1995R1].
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Principle 5: Make Undecided Behaviors Ill-Formed

To accommodate use cases that are not yet supported by the current contracts proposal,
prefer to keep extensibility flexible by declaring unresolved behavior ill-formed, rather than
either undefined (”unsafe”) or implementation defined (nonportable).

2.6 Contract Reliability

Depending the checking of contracts is often a sign of bad design; CCAs, by their very nature,
are carefully designed to introduce defensive checks that are redundant in any correct program.
On the other hand, when diagnosing a problem, being able to identify which checks have passed
often becomes critically important so that we can reason about where a defect might actually be
occurring. In other words, when checks are being enforced, knowing that such checks are going to
be evaluated and enforced is quite helpful.

Principle 6: Checked Contracts Must Be Checked

The evaluation of a CCA — and thus the checking of a CCA with a checked semantic —
must not be silently elided.

For normal function invocations, Principle 6 is easy to follow. When the function is invoked, all
CCAs on that function will be evaluated. Special member functions, however, alter this analysis
slightly due to the possibility of eliding the invocation of certain special member functions entirely.

• Copy elision allows what would appear to be places where a copy constructor or a destructor
should be invoked to be skipped entirely.

• Trivial default constructors and destructors can be elided by the compiler since they do
nothing. Libraries may also elide their invocation through identifying triviality via Standard
Library traits such as std::is_trivially_destructible.

• Trivial copy constructors and assignment operators can be replaced by an equivalent bitwise
copy. Just as with the other potentially trivially operations, this property may be detected
through Standard Library traits, and higher-level libraries can replace explicitly copying or
assigning with corresponding calls to std::memcpy or std::memmov.

Given the common understanding of copy elision in the language, requiring CCAs be evaluated if
they appertained to an elided copy constructor, move constructor, or destructor seems ill advised.
The other operations that are elidible when trivial, however, pose a separate concern that we will
address in Section 3.1.

2.7 Feature Orthogonality

C++ is a rich, powerful, multi-paradigm language. An impedance mismatch between features, where
a developer is forced to choose to use one — only one — of a set of features, greatly harms adoption
of all those features. For unrelated features, we cannot, as designers, assume that users will not
prioritize using all features and then be incapable of meeting their own needs if the features are
incompatible.
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Principle 7: Unrelated Language Features Should Remain Orthogonal

A language feature must minimize how much its use impedes the use of other language
features.

2.8 Contracts Do Not Change Concepts

So we have a fundamental dilemma with Contracts in that we want two distinct things:

1. Adding a CCA to a program should be able to provide us with mechanisms to have that CCA
checked and for our program to react to the results of that check, thus changing the semantics
of a program (when the CCA is violated or our CCA’s predicate has side effects).

2. Adding a CCA to a program should allow us to identify if there were bugs in the program
before the CCA was introduced, and thus program evaluation “leading up to” and “in close
proximity to” the CCA should remain unchanged.

Principle 2 (chosen semantic independence), Principle 3 (zero overhead), and Principle 4 (CCAs
identify defects) are all fundamentally based on (or are in some way equivalent to) a common
underlying principle.

One problem with their statements is that they are trying to identify specific cutouts that both
identify those changes that the language shouldn’t enable when introducing CCAs while not
preventing changes that result from the freedom as user has when given the full power of C++ to
implement CCA predicates.

When discussing this, a few different ideas came up for how to identify the changes that we want to
avoid:

• Timur Doumler suggested that his mental model was to think about whether the introduction
of a CCA would result in something that can be detected with an if constexpr check.

• Lisa Lippincott suggested that any CCA introduced should not change overload resolution, as
things simply detectable by if constexpr might not be guaranteed to change results.

A somewhat pithy by concise statement of this principle does arise though:

Principle 8: Concepts Can’t See Contracts

A concept must not be able to identify the presence or absence of a CCA.

The question, of course, is how to identify when a design choice for CCAs would or would not allow
for violations of this principle.

For that purpose, if we can find an exemplar program that shows a change in overload resolution
when introducing a CCA, that is a clear indication of this principle being violated. Appendix A
describes a mechanism for writing such litmus tests and easily identifying their results by recognizing
cases of ODR unuse.

To think of this in terms of Timur’s mental model where you want to view a change in the results of
an if constexpr branch, an exemplar is slightly less exact. Reconciling the two models results in the
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test needing to identify cases where all conformant implementations would change their results for
the branch based on the presence of the CCA. Otherwise, you might have an if constexpr branch
that depends on values, or specific changes in values, that are not themselves guaranteed by the
Standard. An if constexpr branch that changes is a clear sign that you are close to violating this
problem, but an easy proof that all changes might result in such a violation will not always be
present.

When this principle is violated, you get all of the same problems of violating our earlier principles:

• A checked build no longer identify bugs in the original program.

• A checked build might introduce new bugs without ever evaluating the CCAs that were
introduced.

• The introduction of CCAs that are not even checked (i.e., all are ignored) might change
performance characteristics drastically, based on subtle interactions between the changed
properties and surrounding libraries. (I.e., making a move constructor not noexcept might
change some algorithms from constant time to linear).

In other words, when you have a piece of software and are adding CCAs to it, you want to find
bugs in your software while also still running it as-is.

2.9 Other Principles

Many other principles guide all our individual design decisions and form an input into any developer’s
calculus regarding the quality of any given piece of language design.

• Do not pay for what you do not use. — New language features must impose a cost only when
being used.

• Maximize teachability and simplicity. — Language features that cannot be easily under-
stood lead to defects when they are used, so all designs should strive to remain intuitive,
understandable, and clearly specified.

• Refer to Occam’s Razor. — When multiple solutions are available, choose the simplest one.

Each of these principles is individually important, yet they do not supersede the more focused
principles we have already articulated that apply directly to allow Contracts achieve the goals they
are attempting to achieve, which we believe apply specifically to the proposals in this paper.

For example, we do not believe it is important to choose simplicity for simplicity’s sake, or to follow
naive assumptions whose application would be in conflict with our guiding principles.

3 Proposals
Each subsection within this section discusses a distinct open question in the specification of the
Contracts MVP and provides a proposed resolution based on the principles we have introduced
above.

Some proposals are made of multiple constituent parts. The individual parts throughout a section
are not numbered, and a final complete, numbered proposal will be made near the end of each
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section.

Some proposals have multiple options that are consistent with our principles, and these options
address cases in which conflicting needs arise from distinct principles that would result in distinct
proposals when prioritized differently.

3.1 Trivial Special Member Functions

A trivial operation — constructor, destructor, or assignment operator — is one that (1) is generated
entirely by the compiler and (2) invokes no user-provided code. The copy and move operations,
when trivial, become bitwise copyable (and thus may be replaced by, e.g., memmove). The default
constructor and destructor, when trivial, do nothing.10

Providing a body — even an empty one — for a special member function results in that function
never being trivial. Defaulting a user-declared special member function (via = default on the first
declaration) will result in it being trivial as long as it doesn’t need to invoke any user-provided code
for a base-class or member object.

The definition of the trivially copyable trait has evolved over the years, but the main point is that
all the default-generated copy and move constructors and copy and move assignment operators are
trivial (and hence, can treat the object as pure data) as long as at least one of them is not deleted.
For a type to be trivially copyable, it must also be trivially destructible; i.e., the compiler-generated
destructor is a no-op.

Now consider that, to minimize runtime overhead and still get substantial coverage, common practice
allows for any type that happens to have one or more (programmatically verifiable) class (object)
invariants to assert them in the one place where the flow of control must pass for every constructed
object: the destructor. This defensive-checking strategy is particularly effective at catching memory
overwrites.11

Now imagine we have a trivially copyable value type, such as this heavily elided Date class:
class Date {

int d_year; // [ 1 .. 9999 ]
int d_month; // [ 1 .. 12 ]
int d_day; // [ 1 .. 31 ]

public:
static bool isValidYMD(int year, int month, int day);

// Return true if year/month/day represents a valid date.

Date(int year, int month, int day) pre(isValidYMD(year, month, day));
// Create a Date object having a valid date.

int year() const { return d_year; }
// ...

10See also the mention of this issue in [P2521R4], Section 4.4, “Annotations on trivial ops.,” {con.trv}.
11Feel free to ask the author for stories about the pain that comes from developers who decide to implement types

that overwrite their own members by calling memset(this,0,sizeof(this)) in their constructor bodies, under some
misguided belief that doing so improved performance and correctness. In particular, if such a class has any member,
such as std::string, that has a nontrivial default constructor that does more than just zero-initialize, this ill-fated
choice leads to painful-to-diagnose problems that such invariant checking can often readily detect.
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};

In the Date class above, the user-declared value constructor creates a valid Date object set to the
specified year, month, and day, and in a checked build, its precondition check invokes the class
member function isValid to ensure (or perhaps just to observe) that the date is, in fact, valid. From
then on, the only way to change the value of this object is through the use of its compiler-generated
assignment operations.12

As previously stated, the Date class above is trivially copyable, but let’s now add a defaulted
destructor having a precondition check that validates its invariants:

~Date() pre(isValidYMD(d_year, d_month, d_day)) = default;
// Destroy this object.

Notice that the precondition itself applies the public class member function, isValidYMD, to the
private data members, e.g., d_year, of the class. The Committee has long since agreed13 that all
CCAs are part of a function’s implementation; hence, a CCA that is associated with a member
function fairly deserves private access to the data members of the class.

If CCAs are ignored, the destructor does nothing, and because no user-supplied definition is available,
one might reasonably presume that this special member function remains trivial. In a checked build,
however, code provided by the user is expected to run when an object of this type is destroyed. In
some sense, this Date type is almost14 trivially destructible and thus, at least notionally, trivially
copyable.

Following Principle 2, i.e., we cannot change the semantics of code based on which semantic CCAs
are evaluated with, means that we cannot take the approach of treating this Date class as if it were
trivially destructible and trivially copyable in an unchecked build but not in a checked build.

Once again, we are left with three alternatives.

1. Specify that defaulted special member functions that have associated CCAs are never trivial
in any build mode. The implication is that merely having an inactive precondition could
substantially impact performance,15 even in an unchecked (e.g., ignored) build.

12Recall that, just by declaring any non-special-member constructor, we suppress even the declaration of the default
constructor. All five remaining special member functions, however, are generated as usual.

13During a Standards Committee meeting in 2015 that involved CCAs, Bjarne Stroustrup expressed the need for a
CCA on a member function to have private access to the implementation of the function’s class so that the CCA could
write efficient preconditions without having to expose extra functions in a public API that were not directly relevant
to clients. This discussion led to a paper, [P1289R1], which was considered and achieved consensus in November 2018.
This result has remained the SG21 consensus, as indicated in Section 4.3 of [P2521R4].

14See [lakos21], Section 2.1.”Generalized Pods,” “Use Cases,” “Skippable destructors (notionally trivially destruc-
tible),” pp. 464–470, especially pp. 469–470.

15Although a special member function that has an empty body supplied by the user will provide no code and
therefore would seem to be no different than the empty body supplied by the compiler, the copy constructor being
trivial gives the compiler special permission to bypass calling that copy constructor entirely. This optimization is
particularly effective for contiguous sequences of such objects — e.g., std::vector<my_trivially_copyable_type> —
since repeated calls to the copy constructor can be replaced by a single call to memmove. For an object to be considered
trivially copyable, however, it must have a trivial destructor. Note that the compiler’s ability to see that the body of a
user-supplied destructor is empty doesn’t make that destructor trivial, nor does such compiler ability give license to
the library to use memmove for a type that would otherwise be trivially copyable but for its almost trivial destructor.
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2. Apply Principle 5 and make the application of CCAs to a defaulted, trivial special member
function ill-formed. In a future Standard, the option to opt out of this restriction explicitly
with a label (such as pre skippable (true)) would remain open for those who wish to use
both features.

3. Treat contract checks on trivial functions as skippable without notice. That is, if the function
itself is considered trivial in an unchecked build mode, it will report so in every build mode.
Libraries may circumvent the execution of these special member functions, even in checked
build modes. (Note that we are skipping the check itself, not just any side effects that executing
the check might have produced.) If, however, the compiler would be eliding invocation of the
trivial function, it might nonetheless choose to evaluate the CCAs, followed by the trivial
operation, depending on the user’s chosen build mode and optimization level.

In the case of the first alternative above, the potential loss in runtime performance from not doing
the memmove invocation could be substantial, perhaps even dramatic, and would introduce a strong
disincentive to adding such defensive checks to otherwise trivial functions, thus violating Principle 3.
Hence, we consider the first alternative to be nonviable.

The second alternative allows us to add an opt-in for the third alternative in the future and adheres
most strongly to Principle 6 by preventing a situation where CCAs might become unreliable.

The third alternative is much more consistent with our conclusion with respect to the noexcept
specifier in that it keeps the two language features — namely triviality and contract checking —
maximally orthogonal, adhering to Principle 7. This latter approach does come with the risk of
perhaps omitting checks that an uninitiated author might have intended the client to run in every
case — i.e., including even those cases in which use of an equivalent memmove would be substantially
more runtime performant. Fortunately, the duly informed author of a CCA for a special member
function can always easily opt into this other slower but safer behavior:

~Date() pre(isValid(d_year, d_month, d_day)) { } // empty body
// Destroy this object.

Simply by providing an empty function body (see the example above), a function that was otherwise
trivial can easily be made nontrivial in every build mode, thus removing the permission for libraries
or the compiler to skip the invocation of this destructor and the evaluation of its associated checks.
Consider that the checks are on the destructor, so there’s nothing to skip on the copy constructor,
and the compiler could easily run the checks on destruction in a checked build even though no
code had to run to destroy the object. If the author of the class fails to realize the triviality of the
function and, as a result, some check isn’t run, no affirmative harm is done since the check was
defensive (redundant) anyway and therefore entirely useless in every correctly written program.

Finally, we note that all contract checks are presumed to be purely defensive and thus entirely
redundant in a defect-free program. Turning off runtime contract checking on otherwise trivial
functions is, in effect, just one more way for developers to control if and to what extent their
programs are checked at run time. Hence, as long as the presence of a CCA doesn’t affect the
compile-time result of evaluating a trait on a type, we might imagine giving the compiler explicit
(e.g., via a compiler switch) freedom to sometimes refrain from invoking such runtime checks on
trivial types, perhaps in collaboration with the totality of the (e.g., optimization) build modes.
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If we prioritize Principle 7 (orthogonality) and accept the risk to Principle 6 (reliability) imposed
by potentially skipping CCAs, then we arrive at our proposed resolution for this design decision.

Proposal 1.A: CCAs Do Not Affect Triviality

A (defaulted) special member function having preconditions or postconditions may still be
trivial. Note that trivial special member functions might be replaced (by the language or a
library) by bitwise copies or even elided completely, both of which would skip evaluation of
any CCAs associated with that function.

Alternatively, we can favor Principle 6 with the Contracts MVP and make function triviality
incompatible with having CCAs.

Proposal 1.B: No CCAs on Trivial Special Member Functions

A trivial (defaulted) special member function having preconditions or postconditions is
ill-formed.

Alternatively, we also have the general question for defaulted functions in general over whether
you are defaulting the interface of the function or defaulting the implementation of the function.
Delaying this question requires delaying that decision for all defaulted functions.

Proposal 1.C: No CCAs on Defaulted Functions

A function defaulted on its first declaration having preconditions or postconditions on that
declaration is ill-formed.

3.2 Implicit Lamba Captures

As with any other function that may be defined in C++, functions defined using a lambda expression
must be annotatable with precondition and postcondition CCAs and must contain assertion CCAs
within their bodies. Any issues related to name resolution or appurtenance, such as those raised for
trailing return types by [P2036R3], must be resolved by the syntax adopted for Contracts, such as
is done in [P2935R0].

Proposal 2.1: CCAs Allowed on Lambdas

Precondition and postcondition CCAs may be placed on a lambda expression such that they
appertain to the closure object’s call operator. Assertion CCAs may appear within the body
of a lambda expression.

Similar to affecting the triviality of a special member function, another area in which a CCA might
be capable of having an impact on program behavior occurs when the predicate of a CCA within a
lambda ODR-uses a local entity. In such cases, that entity might be implicitly captured as part of
the generated closure object, thus affecting its size and possibly incurring a large cost to initialize it
when that capture is by-value.

15



In some sense, not capturing at all when a CCA will be ignored and capturing only when a CCA
would have other semantics might be possible. With the adoption of [P2877R0], no mechanism is
available to have such properties as what is captured be based on the semantic that a CCA will
have when evaluated. Additionally, having such a fundamental property of the closure object as the
list of members it contains (and thus its size) be dependent on the chosen semantic of a CCA would
be a violation of Principle 2 and thus should not be considered.

While simply allowing a capture might seem like a minimal violation of the zero-overhead principle
(Principle 3), consider that the object referenced might far exceed the cost and scope of the lambda
itself:

std::function<int()> foo(const std::vector<S>& v)
{

int ndx = pickIndexAtRandom(v);
return [=]()

pre( 0 <= ndx && ndx < v.size() ) // needs to capture v
{

return ndx; // Obviously we intend this to capture ndx by value.
};

}

Because the full v object must be captured by-value due to referencing it to get its size in the
precondition of the lambda, this simple constant-time function becomes linear in the size of v due
to the capture. That is a subtle and significant performance hit due to the presence of a CCA.

We are left with two options.

1. Allow the implicit capture from a CCA expression, which will happen regardless of the semantic
with which the CCA is evaluated.

2. Make an implicit capture due to a CCA’s expression ill-formed, preventing subtle costs due to
the presence of a CCA.

Choosing the first alternative would violate Principle 3, ensuring that no runtime or object-size
overhead is associated with any contract checks compared to simply not having such checks present
in the program in the first place. The potentially significant and hidden cost of such captures might
discourage the adoption of the Contracts facility in general.

The second alternative — i.e., making ill-formed the ODR-use of a local entity that is not already
ODR-used in the body of the lambda apart from any CCA — creates zero overhead when ignored,
has no effect on object size, and yet clearly informs users when they are referencing a value that is
not directly relevant to the body of the lambda. This approach is both consistent with Principle 3
and, if there is any doubt about whether it is the correct long-term direction, is also an application
of Principle 5.

One workaround, for those who want to capture that dubious value anyway, is simply to add an
odr-use of the varaible in question within the body of the lambda:

std::function<int()> foo(const std::vector<S>& v)
{

int ndx = pickIndexAtRandom(v);
return [=]()
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pre( 0 <= ndx && ndx < v.size() ) // needs to capture v
{

static_cast<void>(v); // force implicit capture of v
return ndx; // Obviously we intend this to capture ndx by value.

};
}

Another option is to add an init-capture to make an explicit copy of the variable in question:
std::function<int()> foo(const std::vector<S>& v)
{

int ndx = pickIndexAtRandom(v);
return [=,v=v]() // capture v in a new variable named v

pre( 0 <= ndx && ndx < v.size() ) // uses captured variable v
{

return ndx; // Obviously we intend this to capture ndx by value.
};

}

Of course, when thinking about the compilation error due to the lack of capture of v, a developer
will quickly realize that much better alternatives are available: assert that ndx is in the proper
range prior to initializing the lambda or capture only v.size() for use in the lambda’s precondition.

Even more significantly, should the captured variable be a new capture not only is extra work done
by the closure object’s initializer, the very nature of the closure object changes from a captureless
lambda to one with a capture. Consider the following functions which would distinguish between
closure objects with and without captures:

template <typename T>
std::true_type f(T t)

{ return {}; }

template <typename T>
std::false_type f(T t)

requires std::is_convertible_v<T, bool(*)()>
{ return {}; }

Given the above, we could easily see how lambdas which alter whether they capture values would
result in different code paths being taken based solely on the presence of contract checks:

void g()
{

auto x = [](){ return true; }
static_assert( ! decltype( f(x) )::value ); // convertible to bool(*)()

auto y = []() pre(x()) { return true; }
static_assert( decltype( f(x) )::value ); // not convertible

}

This reasoning all comes together into one additional proposal regarding lambdas.
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Proposal 2.2: CCA ODR-Use Does Not Implicitly Capture

Within the expression of a CCA that is attached to or within a lambda, the ODR-use of a
local entity does not implicitly capture that entity.

The reference to the local entity from the CCA will still continue to attempt to name the member of
the closure object instead of the local entity itself. Therefore, if no other factor creates that member
of the closure (either an explicit capture or an ODR-use that is not in a CCA), a program will be
ill-formed.

In comparison to the proposal in [P2890R0], we have complete agreement on the need to support
CCAs on lambda functions, and the only difference is whether the exception for captures of local
entities from within CCAs should be made.

3.3 Compile-Time Evaluation

The specifics of evaluating a CCA at compile time have not been thoroughly pinned down in the
MVP and, more importantly, might violate some of our fundamental principles if no additional
changes are made.

Currently, after the adoption of [P2877R0], any evaluation of a CCA might or might not evaluate
the predicate and detect a violation, and nothing about that proposal was specific to runtime
evaluations. Therefore, even during compile-time evaluations, whether a CCA would be checked
(i.e., have the observe or enforce semantic) or not (i.e., have the ignore semantic) is implementation
defined. Note that this semantic is allowed to vary not only from one CCA to another, but also
from one evaluation of a given CCA to the next evaluation of the same CCA.

For runtime evaluations, the contract-violation handling process involves invoking the global,
replaceable contract-violation handler, which clearly can’t be known when compiling an individual
translation unit (TU).

Egregious differences between the behavior of compile-time evaluation and runtime evaluation are
ill advised, so we propose retaining the meanings of the potential semantics of CCA evaluation at
compile time and simply changing the effects of violations in a way that has similar spirit but does
not allow the same customizability; we change an attempt to invoke the contract-violation handler
into one that simply emits a diagnostic, the mechanism we use for the compiler to emit information
about a problem to the user.

When a CCA being enforced is violated, we must also decide what happens when the implementation-
defined program termination occurs, and again we have two potential choices.

1. Make the enclosing constant-evaluated expression ineligible to be a constant expression. This
option is the typical specification tool used to say something cannot be done at compile time.

2. Make the program ill-formed, with no ability to choose a separate control flow path or to
evaluate at run time instead.

With Option 1, one can then decide, based on the evaluation semantic, what to do in other contexts,
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altering program semantics based on the chosen semantic.16 Allowing this form of detection of the
chosen semantic would violate Principle 2, and we, therefore, consider this option nonviable. We
are thus obliged to choose Option 2, making any constant evaluation that violates a checked CCA
ill-formed.

Proposal: Compile-Time Contract Violations Emit Diagnostics

When the contract-violation process is evaluated at compile time (i.e., a CCA is violated
when being evaluated with the observe or enforce semantic), a diagnostic will be emitted.
When the evaluation is performed with the enforce semantic, the program is ill-formed.

The other major aspect of CCA evaluation that we must consider is the evaluation of the predicate
itself and whether that must be eligible for compile-time evaluation. More importantly, can that
predicate being ineligible for constant evaluation render the enclosing expression ineligible for being
a constant expression?

Recall from [P2877R0] that we can effectively consider the evaluation of a CCA with expression X
to be of this form:

switch (__current_contract_semantic()) {
case semantic::ignore:

break;
case semantic::observe:

if (X) {} else {
__invoke_violation_handler(contract_info, semantic::observe);

}
break;

case semantic::enforce:
if (X) {} else {

__invoke_violation_handler(contract_info, semantic::enforce);
__terminate_on_enforced_violation();

}
break;

}

The above proposal is equivalent to saying that the intrinsic __current_contract_semantic() is a
valid core constant expression, and that __current_contract_semantic is constexpr or consteval.
As described in [P2877R0], implementations have a wide range of flexibility in what this function
may do.

• An implementation that provides a single, global switch to choose the semantics for all CCAs
might, for example, when that chosen semantic is enforced, install a version of semantic
computation:

consteval semantic __current_contract_semantic()
{

return semantic::enforce;
}

16See the example of detecting violations of the precondition of sqrt on page 21 to understand how being evaluable
at compile time can be used to alter program semantics.
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• A different configuration might choose to provide a mode in which the semantic computation
function that is installed makes different decisions at compile or run time:

constexpr semantic __current_contract_semantic()
{

if consteval {
// constant-evaluation semantic:
return semantic::enforce; // or something else, based on compiler flags

}
else {

// runtime semantic
return semantic::ignore; // or something else, based on compiler flags

}
}

• Other implementations might inspect link-time properties to determine the runtime semantic,
provide mechanisms to select the compile-time or runtime semantic based on the location of
the CCA being evaluated, or do any number of other operations that produce the behavior
such implementations have defined for the selection of CCA semantics.

When determining if an expression containing a CCA can be evaluated at compile time, we will
need to identify two things:

1. Is each individual evaluation within the process of evaluating a CCA eligible to be part of a
constant expression?

2. If the expression is not eligible, what happens?

The first question we have already answered above for the violation handler and termination: Neither
can be performed at compile time, and it is ill-formed if the termination on enforced violation
happens at compile time. The full expansion above, however, shows us we must answer questions
about additional parts of this expansion as well.

First, is the computation of the semantic, which is the implementation-defined manner in which a
semantic is chosen for the evaluation of a CCA, eligible to be done as part of a constant expression?
If we were to allow the answer to this question to be no, then doing contract checking at compile time
would be impossible; the very act of determining the semantic for a CCA would make the enclosing
expression no longer a constant expression. This decision would be highly unfortunate, effectively
making the use of CCAs completely incompatible with compile-time programming. Therefore, we
propose that the selection can be done at compile time.

Proposal: Semantic May Be Selected At Compile Time

The implementation-defined choice of semantic when evaluating a CCA may be evaluated as
part of a core constant expression; i.e., selecting the semantic as part of evaluating a CCA
does not make the expression containing the CCA ineligible to be a core constant expression.

The other question is what happens when the expression, X, is ineligible to be evaluated at compile
time. Here we note that one chosen semantic — the ignore semantic — can always make the
answer to this question irrelevant. When evaluating a CCA and given our previous proposal, if the
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ignore semantic is chosen, the rest of the evaluation will always be eligible to be part of a constant
expression; no other evaluations will be performed. Therefore, because we are striving to maintain
Principle 2 (program semantics are independent of chosen CCA semantics), the evaluation of the
expression must be just as eligible to be part of a constant expression as the empty branch in the
ignore case is. Therefore, if the evaluation of the predicate, X, is not eligible to be part of a constant
expression, we must treat that as defect. In the case where the CCA semantc is observe we will
expect a diagnostic, and where it is enforce the program will additionally be ill-formed.

Just as we do with contract violations, we should allow observing a CCA that fails to be evaluable
at compile time to emit a diagnostic while enforcing such a CCA should be ill-formed.

Proposal: Use of Nonconstant-Eligible Predicates When Constant Evaluation Is Required Is
Ill-Formed

In an expression that is a valid core constant expression, evaluation of a predicate that
is not eligible to be a core constant expression emits a diagnostic. If the semantic of the
corresponding CCA is enforce, the program is ill-formed.

Note the importance of this situation being ill-formed when enforced, rather than the expression
simply being ineligible to be a constant expression; some manifestly constant-evaluated contexts
are also SFINAE contexts and thus would allow control flow to alter based on which semantic is
selected for evaluating a CCA.

Consider the following prototypical example of a function with a narrow contract, also a function
one might consider beneficial to use at compile time:

constexpr double sqrt(double x) pre(x >= 0);

Now, interestingly, we can make a concept check that could tell us whether a given expression is a
valid Boolean constant expression:

#include <type_traits> // for std::bool_constant

template <double x>
concept can_constexpr_sqrt = requires { std::bool_constant<sqrt(x)>(); };

Now, code could be written in terms of this concept that would have highly unintuitive behavior
since it depends entirely on the chosen semantic of the precondition check on sqrt at compile
time:

template <double x>
void f()
{

if constexpr (can_constexpr_sqrt<x>) {
// #1 --- processing if x >= 0 or preconditions are disabled

}
else {

// #2
}

}
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The code block at #2 is reachable only if we were to allow the precondition check failure to be
subject to SFINAE and thus let the concept check fail instead of making the program ill-formed
when the attempt to form the result sqrt(-1.0) was made. With our proposals, the above code
would be ill-formed if the precondition’s predicate is evaluated; otherwise, the code would always
flow through to the block at #1. This behavior is the same as what we would observe in evaluating
this code at run time with no attempt to use it at compile time.

The same reasoning must be applied to potentially constant variables that are not constexpr — i.e.,
reference or non-volatile const-qualified variables of integral or enumeration types. These variables
are usable in a constant expression if their initializers are core constant expressions, but they are
also fine to initialize with noncore constant expressions (and thus dynamically initialize at run time).

Here, following Principle 2 is again important as is keeping any well-formed behavior consistent
with the behavior when CCAs are ignored. To determine this, an evaluation with all CCAs ignored
must first be done to ascertain if the expression, without CCAs, is eligible to be a core constant
expression. When this trial evaluation is not eligible for the initialization of a potentially constant
variable, the CCAs should not matter; the initialization will happen as a dynamic initialization at
run time, and any contract violations that might be detected will happen then. A trial evaluation
that determines that a CCA is a core constant expression will cause the variable initialization to be
a manifestly constant-evaluated context, and thus the rules above will apply.

For such variables, we want to make ill-formed (and not SFINAE-able) any attempt to use them in
a manifestly constant-evaluated context.

Proposal: Nonconstant Eligible Initializers Evaluate CCAs at Run Time

If the initializer of a nonconstexpr potentially-constant variable is not itself a core constant
expression when all its CCAs are evaluated with the ignore semantic, then that initializer is
not a core constant expression; hence, no attempt will be made to perform constant evaluation
on the expression again with CCAs potentially having different semantics.

We call out this last proposal because we should not aggressively enforce contracts at compile time
that might never be evaluated at run time. Consider, for example, a function that demands to be
evaluated at runtime for certain inputs as it cannot be used at compile time in large parts of its
domain:

int compute_value(int n); // not constexpr

consteval bool at_compile_time()
// Return true if evalutaed at compile time, false otherwise.

{
if consteval { return true; }
else { return false; }

}

constexpr bool do_compute(int n)
pre( n == 0 || !at_compile_time() )

{
if (n == 0) {

return 17;
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}
else {

return compute_value(n);
}

}

void g()
{

const int i = do_compute(0); // can be compile time
const int i = do_compute(1); // must be computed at runtime

}

In the above, do_compute is evaluable with an input of 0 at compile time, but any other input
must be computed at runtime. Without the precondition check on do_compute that is exactly what
happens in g(). Introducing the precondition check at compile time would result in a failure, even
though it could be evaluated at compile time — and that is why we must not be checking CCAs
until we first determine if an expression is a core constant expression or not.

For each CCA with a checked semantic during the second evaluation we need o then ask the question
of if it would make the larger expression a non-core constant expression or if it would identify a
contract violation. In either case we emit a diagnostic, and if the semantic is enforce the program
should be ill-formed.

All these proposals related to constant evaluation address individual aspects of the constant
evaluation process and how it relates to CCA evaluation. Putting this all together produces one
complete proposal that accomplishes all the above goals:

Proposal 3: Evaluation of CCAs at Compile Time

When determining whether an expression is a core constant expression, first determine if the
expression is a core constant expression by evaluating it with all CCAs having the ignore
semantic.

• If it is a core constant expression or if it is not a core constant expression but is in a
manifestly constant-evaluated context, re-evaluate the expression while evaluating the
CCAs with semantics chosen in an implementation-defined manner.
– If the semantic is observe or enforce and the CCA would cause the expression to

fail to be a core constant expression if evaluated, or it would result i na contract-
violation if evaluated, emit a diagnostic. If the semantic is enforce, the program is
ill-formed.

– If the expression is not a core constant expression, the program is ill-formed.
• Otherwise, the expression is not a core constant expression.

This is the same general proposal put forth in [P2894R1], though that paper goes to significant
efforts to present the solution in a way more easily digestible to those unfamiliar to the mechanics
of constant expression evaluation.

By only hypothetically evaluating CCAs, we enable the ability to observe CCAs whose predicates
are not checkable at compile time and treat them as violations, continuing on to the rest of the
core constant expression after recognizing that the CCA produces a diagnostic. This process also
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removes any side effects that might occur from impacting the rest of the evaluation of the CCA,
and thus the result of the trial evaluation and the final evaluation will invariably be the same.

Note that for a runtime-evaluated CCA, it is possible to distinguish between observed and enforced
CCAs programmatically by inspecting the return value of the semantic() member function of the
contract_violation object passed into the contract-violation handler. For a constant-evaluated
CCA however, such a distinction cannot be made programmatically but only observed through the
program being either well-formed or ill-formed.

With the multi-step algorithm proposed above to determine whether an expression containing a
CCA is a core constant expression, constant evaluation with contracts might seem hard to teach
or understand. This algorithm does not, however, significantly add to the already complex rules
for how a const-qualified variable of integral or enumeration type behaves like a constexpr variable
based on how it is initialized.

For general users of modern C++, who are taught to prefer constexpr and constinit over abusing
const variables at compile time, the simple rule that your program will fail to compile (or produce
a warning) if a contract violation is detected during constant evaluation is easy to understand and
follow and will benefit programmers by calling out defects in their compile-time evaluations.

3.4 Virtual Functions

With the adoption of [P2954R0] by SG21, CCAs on virtual functions have the following behavior.

• CCAs may be placed on virtual functions that do not override any other virtual functions.

• A virtual function that overrides exactly one with CCAs inherits the CCAs of that overridden
function.

• Virtual functions that override multiple functions may do so only if none of those functions
have CCAs.

The problem is that inheritance of CCAs from a base class violates Principle 1. By introducing a
CCA on a base-class virtual function, all derived class virtual functions implicitly get that same
virtual function. The general case for well-defined object-oriented implementations might be okay
with this, but in some cases that will misidentify defects in software that are not actually wrong.

In particular, consider a derived class that has a wider contract on a function than its base class:
class Car {

virtual void drive(int speed);
// The behavior is undefined unless the specified speed
// is less than 100.

};

class FastCar {
void drive(int speed) override;

// The behavior is undefined unless the specified speed
// is less than 169.

};

This FastCar is a completely fine derived class for Carand can be used anywhere Car can.
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Now consider adding a CCA to Car to validate the precondition of drive:
class Car {

virtual void drive(int speed) pre( speed < 100 );
};

The default inheritance of this CCA in FastCar will cause all code that drives a FastCar fast to
break — even code that knowingly has a FastCar and reasonably wants to take advantage of the
fact that it has a FastCar in hand.

This results in the following (partial) proposal to fix the current SG21 MVP behavior to adhere to
our stated principles.

Proposal: CCAs Are Not Inherited

A virtual member function that has no precondition or postcondition CCAs on its declaration
will have no precondition or postcondition CCAs (and will not inherit those of any functions
it may be overriding).

Properly allowing variance of CCAs across class hierarchies requires checking both the CCAs of
the virtual function being invoked as well as those of the concrete implementation found through
virtual dispatch.17 This solution might, however, not be ready for SG21 to adopt at this time.

Consider a test function where we use a virtual function via dynamic dispatch through both
base-class and derived-class references:

void testCars()
{

FastCar fc;

Car& cr = fc;
cr.drive(120); // CCAs of Car::drive and FastCar::drive

// should be checked.

FastCar& fcr = fc;
fcr.drive(120); // CCAs of FastCar::drive should be checked.

}

With the current MVP, the CCAs of Car::drive and FastCar::drive are the same, so the behavior
will be compatible with the above. The current MVP behavior without inherited CCAs does not
give a clear answer as to what CCAs would be checked in the above calls.

Without a more complete solution, we must then apply Principle 5 and remove the ability to put
CCAs on virtual function declarations until that more complete solution is adopted:

17After the initial MVP achieves consensus, the forthcoming [P2755R0] — or possibly other papers — will propose
that the best approach here is to check both the CCAs that are visible based on the static type through which
the function is being invoked as well as those of the specific concrete function selected by virtual dispatch, thus
guaranteeing that all expectations of both caller and callee are satisfied.
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Proposal 4: No CCAs on Virtual Functions

It is ill-formed to place a pre() or post() CCA on a virtual function, i.e., a member function
marked virtual or that overrides a virtual function in a base class.

3.5 Coroutines

When users begin to consider what pre() and post() might mean when applied to a coroutine, a
few frequent misunderstandings and open questions would need to be resolved.

• Do preconditions get applied if the body of the coroutine does not begin to execute for a
coroutine that starts suspended?

• Are the function parameters named in a precondition referring to the parameters of the
function invocation or the copies made within the coroutine frame? What about parameters
named by a postcondition?

• Is a return value named by a postcondition a reference to the function’s returned value, to a
value returned by co_return, or to something returned by co_yield?

While perhaps clear answers could be provided, they all leave unsatisfied other obvious needs for
providing contract checks on coroutines: pre and post alone do not provide anything like a complete
solution for the contract checks on the interface of a coroutine.

Some considerations must also be addressed.

• For coroutine handle types that perhaps are not awaitable and cannot themselves be used
with co_await, such as std::generator, whether a given function is a coroutine is unclear
from a client perspective. In this context, pre and post have clear meanings in terms of the
production of that initial returned object. Callers must be able to treat pre and post in the
same fashion independently of whether the function being invoked is a coroutine or not.

• For the implementer of a coroutine, however, many more entry and exit points are generally
available between a coroutine and other code; each call to co_return, co_yield, and even
co_await is a distinct part of the Promise–type-specific interface the coroutine has with the
outside world. Any one of these boundaries might have requirements for correctness that would
be beneficial for a user of the coroutine to know and thus could have meaning when placed on
the coroutine’s declaration.

• When invoking a coroutine, normally a return object is produced and returned to the caller,
and little ambiguity arises about when a postcondition would get evaluated for that object.
Invoking a coroutine within a co_await expression, however, is a fairly involved process,
which may involve evaluation before and after suspension and resuming of the call-side
coroutine, and when exactly postconditions should be evaluate or which specific options are
even implementable becomes unclear.

Should a co_await expression result in suspension, arbitrary amounts of other code might
execute prior to resumption, any of which may invalidate a postcondition of the coroutine.
Evaluation such as this would break the fundamental intuition many have that a postcondition
hold in the code immediately following invocation of a function that had that postcondition.
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• Caller-side CCA checks would naturally be able to apply only to the actual function arguments,
not the copies within the coroutine frame. This restriction can lead to subtle bugs if properties
are checked that do not propagate through such copies.

Possibly worse, forcing a coroutine parameter to be const by referring to it from a postcondition
not only prevents modification of that parameter within the coroutine body (which is usually
a manageable cost), but also causes the initialization of the copy (normally done with an
xvalue referring to the original function parameter) to be done with a potentially much more
expensive copy operation, not a move operation.

In general, having preconditions and postconditions refer to objects that the body of the
function can never actually see is a pitfall that must be considered very carefully.

Currently, no concrete proposal covers the full breadth of the interface a coroutine has with its
callers. Without this complete picture, we cannot yet know if pre and post will have a meaning that
is correct and useful to those calling into or implementing coroutines. Possibly pre and post with
their semantics applied caller-side are the optimal solution for coroutines, even with the potential
risks. Additionally, coroutines might benefit more from having bespoke kinds of CCAs that have
different, coroutine-specific semantics (which, due to callers generally being unaware if a function is
coroutine, would need to be fully implemented in the coroutine definition) that avoid these pitfalls.

Therefore, we apply Principle 5 to decide that we should disallow any CCAs on a coroutine until we
have a more complete picture of what we intend to provide.

Proposal 5: No CCAs on Coroutines

Specifying a precondition or postcondition on a function that is a coroutine is ill-formed.
That is, a function that has a co_return, co_yield, or co_await expression in its definition
and also has a pre() or post() CCA is ill-formed.

Note that Proposal 5 intentionally says nothing about assertions. Contract checks to identify defects
can still be added to a coroutine (or within the function so defined by the Promise type); they must
simply be manually put within the body and cannot have additional control points by which they
can be automatically injected.

In comparison to [P2957R0], this paper agrees completely on the treatment of assertion CCAs within
a coroutine body. That paper, however, proposes semantics for precondition and postcondition
CCAs on coroutines, which we propose disallowing until a more complete and intuitive picture can
be provided for the interactions between coroutines and Contracts.

3.6 Contracts on First Declarations

SG21 has agreed that, for the MVP, CCAs shall not be repeated on multiple declarations and must
always be on the first declaration encountered for a function. This placement reduces the need
for answering questions about behavior if, for instance, a function is invoked in one place without
having seen the CCAs on that function yet and in another place after CCAs have been seen.

Note the great benefit to insulating CCAs from either readers of a function’s primary declaration or
from client translation units; i.e., long-term, allowing CCAs to be repeated on later declarations,
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omitted from the first declaration and repeated at a later point, or even partially declared on one
declaration and then fully defined on a subsequent declaration will be necessary. None of these
possibilities would circumvent the one approach being allowed by the MVP: to support CCAs
on first declarations only. Therefore, SG21 has followed Principle 5 to leave flexibility for future
evolution and must simply define the behavior of the minimal feature we are supporting.

To fully define what we mean by restricting CCAs to be on first declarations only, we need to break
down a few points.

• What is a first declaration?

• If multiple first declarations can appear in the same program, when are such CCAs the same?

• What happens if CCAs are not the same?

To allow for functions to be declared in multiple modules or in different header files, modern
C++ would determine first based on reachability. In general, one declaration (A) is reachable from
another (B) if A precedes B within the same TU or if A is declared in a module imported (directly or
transitively) by the TU containing B. A declaration D for an entity is a first declaration of that entity
if no other declarations for D are reachable. Interestingly, by declaring the same function (which
must be attached to the global module fragment) in multiple different modules and importing those
modules into a third one, multiple declarations can be first declarations of that function.

Definition: First Declarations

A declaration D for an entity is a first declaration of that entity if no other declarations for
that entity are reachable from D — i.e., if no such declaration occurs earlier in the same TU
and no such declaration is exported or used by a module that has been imported.

Given a clear definition of what is or is not a first declaration, we can restate the general rule in the
MVP for CCAs being on first declarations only.

Proposal 6.1: CCAs on First Declarations Only

A function declaration that is not a first declaration shall not have pre() or post() CCAs
attached to it.

To define if CCAs are the same, we will want to use the one-definition rule (ODR). This rule, however,
applies to definitions, not declarations. Using part of the approach taken in C++20 Contracts,18 we
can define CCAs on different declarations for the same entity to be the same if they would be the
same if placed in a function definition (at the same place where their declaration occurs), excluding
potential renaming of function parameters, template parameters, or return value identifiers.

18See [N4820] for the draft Standard that included the C++20 Contracts proposal wording.
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Definition: CCA Sameness

A CCA, c1, on a function declaration, d1, is the same as a CCA, c2, on a function declaration,
d2, if their predicates, p1 and p2, would satisfy the one-definition rule if placed in function
definitions on the declarations d1 and d2, respectively, except for the renaming of parameters,
return value identifiers, and template parameters.

With the ability to identify if two CCAs are the same, we can easily extend this definition to two
lists of CCAs being the same if all corresponding elements of the lists are the same. Since CCAs are
always going to be evaluated in lexical order, an observable difference occurs between two otherwise
identical lists of CCAs if they are reordered:

void f(int x) pre(x > 0) pre(x > 1);
void g(int x) pre(x > 1) pre(x > 0);

void test()
{

f(0); // violates x > 0
g(0); // violates x > 1

}

Therefore, the order must be considered when comparing lists of CCAs, and we compare the
corresponding elements (in order) when determining if lists are the same.

Finally, the question of when to check that CCAs on a function are declared consistently across
multiple first declarations must be addressed. Should the function declarations be in distinct TUs
with no compile-time awareness of one another, we have little choice but to make a mismatch
ill-formed, no diagnostic required (IFNDR).

Whether CCAs match when there are multiple first declarations reachable from the same point
could be checked in two situations:

1. When importing a module that contains a first declaration for a function that is already
reachable

2. When invoking a function with multiple first declarations that are reachable

Both options would require potentially large implementation difficulty, so we recommend leaving
detection of mismatched CCAs as a quality of implementation decision; in practice, CCAs should
mismatch only when declarations are being copied and pasted inappropriately instead of sourced
from a header file with a single, canonical definition, so demanding extraordinary effort to detect
such defects does not present as an incredibly high priority.

Proposal 6.2: Function CCA Lists Must Be Consistent

The list of CCAs on all first declarations (in all TUs) for a function shall be the same, no
diagnostic required.

Because nonfirst declarations may have no CCAs on them, nothing else needs to be said for the
Contracts MVP. If CCAs on nonfirst declarations were allowed, they would generally be from
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different source locations, and validating that the redeclared CCA lists were the same as the original
would be straightforward and needed, and mismatches would then be ill-formed, not IFNDR.

3.7 Are CCAs potentially throwing?

Whether a CCA should be considered potentially throwing is a question that needs to be answered
for a variety of reasons:

• With the ability to use assertion CCAs as expressions, it is now possible to write noexcept(contract_assert( X )),
and so we must decide if this is always true, always false, ill-formed, or somewhere in be-
tween.

static_assert(noexcept(contract_assert( true ))); // true or false?
static_assert(noexcept(contract_assert( false ))); // true or false?
static_assert(noexcept(contract_assert( X ))); // true or false?

• The language has a number of locations where a function’s exception specification is implicitly
deduced. Implicitly-declared special member functions might result in the use of a default
argument that has an assertion CCA in it:

struct B
{

B(int i = contract_assert( false ) , 0);
}
struct D : B
{
};
static_assert(noexcept(D())); // true or false?

Explicitly defaulted special member functions might even have precondition or postcondition
CCAs attached to them which might be considered potentially throwing:

struct S
{

S() pre(true) = default;
};
static_assert(noexcept(S()); // true or false?

In the absence of the CCAs, all of these constructors would deduce a non-throwing exception
specification.

• New language features often get considered, such as noexcept(auto),19 which would deduce
exception specifications in additional contexts, and the question of what exception specification
should be deduced in such cases must be understood and answered:

void f() noexcept(auto) pre(true);
static_assert(noexcept(f())); // true or false

Currently, these decisions all come down to needing an answer to the same question: Is a CCA
potentially-throwing? How we answer that question is not as simple as it might appear:

19See [N3207], [N4473], and [P0133R0].
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• Installing a noexcept(true) contract-violation handler at link time will, as a side effect,
effectively make all CCA evaluations in a program never capable of emitting an exception.
Thus, by the time a program is actually executing it can be definitively known whether any
CCA can or cannot throw.

• The fact that a throwing contract-violation handler might be installed leads to the possibility
that, without further knowledge not available at compile time, any CCA might conceivably
allow an exception to escape.

• If a CCA is considered potentially throwing then there are two cases where a CCA’s introduction
into code will fundamentally alter the semantics of code surrounding that CCA:

1. Any code with a deduced exception specification will now deduce noexcept(false) in the
presence of a CCA. For example, adding a postcondition to a defaulted special member
function will result in that function’s deduced exception specification no longer being
noexcept(false):

class S {
class S_impl;
std::unique_ptr<S_impl> d_pimpl;

public:
S(S&& orig) post(orig.d_impl == nullptr) = default;

};

As can be seen here, the simple desire to capture that a type’s moved-from state is empty
results in producing a type whose move constructor is now no longer noexcept, a change
that can have significant performance impact on uses of this type in containers.

Similarly a CCA can alter the exception specification when introduced into a default
member initializer or default function argument:

class B {
int d_i1 = contract_assert( true ), 17;
B(int i = contract_assert( true ) , 34);

};
class D : B {
};

In this example, the implicit default constructor of D without the above assertions would
have been noexcept(true). On the other hand, with the addition of assertions in the
two initializers, both invoked by the implicitly defined constructor of D, the default
constructor would now deduce noexcept(false).

2. Code which applies the noexcept operator directly to an expression containing an assertion
CCA would branch in a different direction should that CCA be considered potentially
throwing.

void f()
{

if constexpr (noexcept(contract_assert( true ))) {
// CCA is not potentially-throwing
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}
else {

// CCA is potentially-throwing
}

}

Of course, such code as the above is nonsensical without the CCA, and so the zero-
overhead principle has no impact on it.

There might, however be cases where macros are used to amend a third-party function
with assertions to check that function’s preconditions:

#define CHECKED_X() ( contract_assert( x_preconditions() ), x() )
void g()
{

bool x_noexcept = noexcept(x());
bool checked_x_noexcept = noexcept(CHECKED_X());

}

Should the assertion CCA above be considered potentially throwing the above code would
result in different values of x_noexcept and checked_x_noexcept. Code that branched on
this property would thus potentially follow very different paths resulting in the addition
of checking of the contract of x changing the behavior of the code around it, clearly
violation Principle 3.

To find a solution we can consider what the question of whether an expression is potentially throwing
is truly asking.

• Does this expression allow an exception to escape under any circumstances?

• Does this expression allow an exception to escape when it has well-defined behavior?

• Does this expression allow an exception to escape when no contract is violated?

The question clearly cannot be the first one, as then any expression with undefined behavior would
have to be considered potentially throwing. The second two questions, however, differ today only
in what they exclude to restrict their domain to only those programs for which they are most
meaningful.

Limiting the question of potentially-throwing only those cases where an expression’s evaluation
does not violate a contract allows CCAs to continue to satisfy the zero-overhead principle by not
altering fundamental properties of a program — whether a function is noexcept — when a CCA is
introduced.

Proposal 7.A: Potentially-Throwing Does Not Consider CCAs

When determining if a set of expressions is potentially-throwing CCAs are not considered. If
there are no non-CCA expressions the query is ill-formed.

This approach brings with it two important considerations:
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• It appears to be surprising to many that noexcept(contract_assert(true)) could be true
even though, with a throwing contract-violation handler, the expression could conceivably
throw.

Of course, for all those who install a non-throwing contract-violation handler, and in all
programs where a contract is not violated, readers might equally hope that the noexcept
operator would return true and avoid pessimizing (or even fundamentally altering) correct
programs for the sake of incorrect ones.

Since there are no non-CCA expressions to which this noexcept operator is being applied,
we therefore avoid this confusion by making the operation ill-formed. In effect we treat
noexcept(contract_assert(true)) as equivalent to the invalid expression noexcept() when
removing the CCAs from consideration.

On the other hand, an expression such as noexcept(contract_assert(true) , 17) would be
equivalent to noexcept(17) and evaluate to true. We know of few real use-cases for even asking
this question in code, and so see no major issues with the answer being potentially surprising.

• Situations where an exception specification is deduced will deduce noexcept(true) when a
CCA would be the only potential source of exceptions in an expression. This means that
a throwing violation handler would then throw straight into the noexcept boundary on the
function should there be a violation, resulting in program termination instead of an opportunity
to recover.

However, to support recovery using a throwing violation handler a program must already
adhere to a number of stringent guidelines related to the implicit and explicit presence of
noexcept in the language:

– Do not put CCAs on or call functions that use CCAs in a function that is explicitly
noexcept(true).

– Do not put CCAs on or call functions that use CCAs in a function (the destructor) that
is implicitly noexcept(true)

– Do not put CCAs on or call functions that use CCAs in a destructor for an object that is
used as an automatic variable or a directly or indirectly owned subobject of an automatic
variable (i.e., any object which might be destroyed during stack unwinding), as emitting
an exception during unwinding will result in program termination.

Ignoring CCAs when considering whether a function’s implementation is potentially throwing
would simply extend these guidelines to include functions with deduced exception specifications:

– Do not put CCAs on or call functions that use CCAs in a member initializer, default
argument of a special member function, or on a defaulted special member function that
is not otherwise noexcept(false).

Of course, to check contracts in any of these situations while still supporting recovery using a
throwing violation handler one must simply add explicit noexcept(false) annotations to the
functions that envelope the use of a CCA.

33



As an alternative until consensus is reached, the only remaining proposal that would meet or
principles would be to apply Principle 5, and make any cases where we ask the question ill-formed:

Proposal 7.B: CCAs are Neither Nonthrowing nor Potentially-Throwing

A CCA is neither nonthrowing or potentially throwing, and any use of a CCA in a situation
where this must be determined is ill-formed.

This approach would make ill-formed certain operations:

• The noexcept operator may not be applied to an expression containing an assertion CCA.

• A precondition or postcondition CCA cannot be added to a defaulted special member function
that does not have an explicit exception specification.

• An special member function may not be defaulted if its definition would require evaluating a
default member initializer or default argument that contains an assertion CCA.

Each of these may be worked around by providing explicit noexcept specifications in the appropriate
places.

To accept the semantic impact and potential cost noexcept(false) can be added to defaulted special
member functions:

struct S{
S() noexcept(false) pre(true) = default;

};

To retain existing behavior in the presence of added CCAs an appropriate expression to deduce the
same exception specification that would be implicitly deduced must be formulated, which can be
accomplished though it might be burdensome:

template <typename L, typename R>
struct P {

L d_lhs;
R d_rhs;

P()
noexcept(noexcept(L()) && noexcept(R()))
pre(true)
= default;

};

The largest risk we see with this proposal is that the easier approach of simply adding noexcept(true)
is much more likely to be taken, and that brings with it the risk of turning what would otherwise
have been a potentially-throwing special member function into one which is now noexcept(true) as
a result of wanting to add CCAs to that function. This could result in a recoverable bad_alloc from
a default constructor becoming program termination.
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4 Conclusion
SG21 has come a long way while finalizing a design for a Contracts MVP. Even with the small,
focused scope of the MVP, open questions remain and must be addressed prior to having Contracts
as an adopted feature in ISO C++. This paper has attempted to wrap up the remaining known edge
cases that are essential to address to have a complete feature proposal ready to be integrated into
the rich, powerful, and sometimes challenging language that C++ is. Should any further questions
arise during the adoption of this proposal, we hope these same principles can guide remaining
decisions to keep the Contracts facility’s design clear and consistent.

As a foundation for reasoning about undecided features for the C++ Contracts facility, and the
SG21 MVP in particular, we have presented four principles:

• Principle 1 — CCAs Check a Plain-Language Contract

• Principle 2 — Program Semantics Are Independent of Chosen CCA Semantics

• Principle 3 — Zero Overhead for Ignored Predicates

• Principle 4 — CCAs identify Bugs

• Principle 5 — Make Undecided Behaviors Ill-Formed

• Principle 6 — Checked Contracts Must Be Checked

• Principle 7 — Unrelated Language Features Should Remain Orthogonal

Based on these principles, the open questions for the Contracts MVP have been addressed by the
following proposals.

• Either of

– Proposal 1.A — CCAs Do Not Effect Triviality

– Proposal 1.B — No CCAs on Trivial Special Member Functions

– Proposal 1.C — No CCAs on Defaulted Functions

• Proposal 2.1 — CCAs Allowed on Lambdas

• Proposal 2.2 — CCA ODR-Use Does Not Implicitly Capture

• Proposal 3 — Evaluation of CCAs at Compile Time

• Proposal 4 — No CCAs on Virtual Functions

• Proposal 5 — No CCAs on Coroutines

• Proposal 6.1 — CCAs on First Declarations Only

• Proposal 6.2 — Function CCA Lists Must Be Consistent

• Either of

– Proposal 7.A — Potentially-Throwing Does Not Consider CCAs

– Proposal 7.B — CCAs are Neither Nonthrowing nor Potentially-Throwing
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Finally, adoption of each of these reasoned proposals will serve two important objectives.

1. All outstanding design issues presented in [P2896R0] will be resolved.

2. The SG21 Contracts proposal will be a robust, initially useful, easy-to-evolve facility that
integrates well with the whole of the C++ language and is ready to adopt and release in a
timely fashion.

Acknowledgments
Thanks to Lori Hughes, Jens Maurer, John Lakos, Andrzej Krzemieński, and Daniel Krügler, for
reviewing this paper and providing feedback.

Extra thanks to Timur Doumler for extensive discussion and contributions to make this paper
significantly easier to understand.

Even more thanks to Lisa Lippincott who, as always, provided profound insight into how to formulate
and consider the principles that we have represented here.

A ODR Unuse Is Bad
Putting a contract check that succeeds in a program should not make it have a defect or remove a
defect — both of these options are instances of checks being destructive.20 Of course, with the full
power of C++ available in contract predicates it is certainly not possible for the core language to
prevent all possible destructive checks from being introduced into a program.

On the other hand, at the heart of many of our principles is the recognition that a well-designed
Contracts feature will not allow a CCA to alter the semantics of the program simply by existing or
being evaluated, as such an alteration would lead to contract checks silently becoming destructive.

The challenging question, however, is when to consider a change in program behavior based on a
CCA being present or evaluated to be a change so significant as to require having the core language
prevent it. Conceptually, it is the semantics of the program in the immediate neighborhood around
(and most importantly immediately before) the CCA which should not be altered by the presence of
the CCA. The further away the change is, the more likely it is that it alters something unrelated to
the CCA and thus not important to the program’s correctness.

As a first consideration, should a CCA’s introduction alter overload resolution to cause the program
to resolve different entities than originally resolved we would have indication that the language has
allowed a fundamental change in semantics due to the presence of a CCA. Identifying when overload
resolution has changed is challenging considering that we are at the same time adding a whole new
odr-using expression to the program.

But one thing the addition of the odr use from the CCA’s predicate cannot do is remove an odr use
the program previously had. A change in overload resolution, however, can mean that the previously
resolved function is no longer odr-used.

20See [P2751R1].

36



Therefore, we posit that a design decision that allows the introduction of a CCA to remove an
odr-use from a function is a sign of a bad decision.

• Something that can be identified with a trait, such as trivial copyability, can definitely lead to
changes in overload resolution:

template <typename T>
void do_copy(T* to, T* from, std::true_type)
{

std::memcpy(to, from, sizeof(T));
}

template <typename T>
void do_copy(T* to, T* from, std::false_type)
{

*to = *from;
}

template <typename T>
void copy(T* to, T* from)
{

do_copy(to, from, std::is_trivially_copyable<T>{});
}

Now consider a type with a trivial copy constructor to which you wish to add a precondition:
struct S {

S() = default;
S(const S&) pre(true) = default;

};

void f()
{

S s1, s2;
copy(&s1, &s2);

}

Without the precondition, S is trivially copyable and this program instantiates and odr-uses
the function template do_copy<S>(S*, S*, std::true_type). If adding the CCA to the copy
constructor of S were to make that type no longer trivially copyable, this overload of do_copy
would no longer be odr-used and instead the overload do_copy<S>(S*, S*, std::false_type)
would be linked into the program.

• A similar example involving allowing lambdas to implicitly capture can be found on page 17.

There may be a wider set of destructive CCAs that we can identify in the language in the future,
but as a starting point for how the language can help prevent introducing itself as the source of
CCAs being destructive this litmus test is quite effective.
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