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 Abstract 

 Python/C++ bindings are heavily used in numerical calculation packages such as NumPy. The 

 goal of this paper is to discuss the benefits and challenges of using value-based reflection 

 (P2320 and P1240R2) to simplify creating C++/Python bindings. A previous attempt at simplifying 

 Python bindings using reflection, focused on Boost.Python and macro-based reflection, can be 

 found in the appendix. This paper uses contemporary value-based reflection, which has a path 

 forward towards being accepted into the C++ standard, and is aimed at pybind11, a popular open 

 source Python library for binding existing C++ code to Python. Familiarity with value-based 

 reflection APIs (P2320 and P1240R2) and pybind11 are assumed. 

 Updates since P2911R0 

 -  Clarification about out of scope items. 

 -  Discussion on reflecting function parameter names, and when that should raise an invalid 

 reflection error. 

 -  Provided a better example of dangerous behavior caused by default bindings 

 -  Detailed discussion on expanding a range of reflected entities to produce a range of their 

 names,  meta::name_of/names_of  functions. 

 -  Added a section on overloaded operators bindings. 

 -  Added a section comparing the Classdesc framework with value-based reflection and 

 future work. 

 -  Grammatical improvements. 
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 Introduction 

 Python bindings can be created by the means of the Python/C API  . It is, however, rarely used 1

 directly in practice. Instead, wrapper libraries like Boost.Python or pybind11 are frequently used  . 2

 For the sake of simplicity, this paper will focus on using C++ reflection to simplify creating Python 

 bindings on top of pybind11. 

 Out of Scope 

 ●  The Python/C API. Our research has not dwelled on the C API that allows for writing 

 Python extensions. Though such an approach may provide performance benefits, we 

 believe that most developers would prefer using the ergonomic API provided by pybind11, 

 which is friendly to modern C++. 

 ●  For binding data members, pybind11 requires taking their address. However, this approach 

 will not work with bit fields. One way to circumvent that problem is to generate setters 

 and getters for such data members and bind them as properties  . Automating that using 3

 reflection should not pose any difficulties. 

 Use Cases 

 We have used a simple implementation of an order crossing engine in C++, with a carefully 

 tailored implementation to cover many common bindings applications like: 

 ●  Enumerations 

 ●  Data members 

 ●  Function members 

 ●  Constructors 

 ●  Inheritance 

 ●  Function overloads 

 ●  Nested type aliases 

 ●  Operators 

 In this document, we discuss a subset of the above applications, which, in our opinion, are the 

 most important and informative. 

 3  See  https://pybind11.readthedocs.io/en/stable/classes.html#instance-and-static-fields 

 2  There are other ways to create Python bindings like Cython or SWIG, which are not considered in this 
 paper since they are not good candidates to be used with C++ reflection. 

 1  See  https://docs.python.org/3/c-api/index.html 

https://pybind11.readthedocs.io/en/stable/classes.html#instance-and-static-fields
https://docs.python.org/3/c-api/index.html
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 Enumerations 

 Enumerations are a common example of how reflection facilities can improve C++ code. To not 

 part with this tradition, we start with an example showing Python bindings for an enum. 

 struct  Execution  { 

 enum  class  Type  { 
 new_, 
 fill, 
 partial, 
 cancelled, 
 rejected 

 }; 

 }; 

 Typical bindings would look like: 

 py::enum_<Execution::Type>(  binding  scope  ,  "Type"  ) 
 .value(  "new_"  ,  Execution::Type::new_) 
 .value(  "fill"  ,  Execution::Type::fill) 
 .value(  "partial"  ,  Execution::Type::partial) 
 .value(  "cancelled"  ,  Execution::Type::cancelled) 
 .value(  "rejected"  ,  Execution::Type::rejected); 

 From the above, it can be seen that 

 ●  There is plenty of repetition. 

 ●  If  Execution::Type  is modified, then the bindings  code has to be updated manually. 

 ●  If an enumeration value is added to  Execution::Type  no compiler error / warning will 

 be emitted hence bindings code can easily diverge from the bound code. 

 ●  The names of individual enumerations have to be repeated as strings, which is prone to 

 typos that cannot be detected by the compiler. 

 With reflection, we can automate the task: 
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 bind_enum<Execution::Type>(  binding_scope  ); 

 Where  bind_enum  can be implemented as  : 4

 template  <  typename  T> 
 std::string  basename()  { 

 auto  name  =  std::string{name_of(^T)};  // ^T reflects  type T  . 

 if  (size_t  pos  =  name.rfind(  ':'  ); 
 pos  !=  std::string::npos)  { 
 return  name.substr(name.rfind(  ':'  )  +  1  ); 

 } 
 return  name; 

 } 

 template  <  typename  EnumT,  typename  Scope> 
 void  bind_enum(Scope&  s)  { 

 auto  enum_  =  py::enum_<EnumT>(s,  basename<EnumT>().c_str()); 

 // members_of() produces an iterable list  . 
 // of all the members of an enumeration. 
 // `template for` iterates over a range at compile  time. 

 template  for  (  constexpr  auto  e  :  members_of(^EnumT))  { 
 enum_.value(name_of(e),  [:e:]);  // [:e:] un-reflects  e  . 

 } 
 } 

 Note that the reflection-based implementation does not suffer from any of the shortcomings 

 mentioned earlier. 

 Data members 

 Binding public data members is a seemingly straightforward task. Consider a simple aggregate 

 type: 

 4  https://cppx.godbolt.org/z/T445M639n 

https://cppx.godbolt.org/z/T445M639n
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 struct  Order  { 
 int  side  =  1  ; 
 size_t  quantity  =  0  ; 

 }; 

 The typical bindings code would look like: 

 py::class_<Order>(  binding  scope  ,  "Order"  ) 
 .def_readwrite(  "side"  ,  &Order::side) 
 .def_readwrite(  "quantity"  ,  &Order::quantity); 

 It can be seen that: 

 ●  The names of data members have to be repeated as strings, which are prone to typos 

 that cannot be detected by the compiler. 

 ●  Since side and quantity are mutable public data members, it is reasonable to provide both 

 read and write access from Python. 

 With reflection, we can automate the task: 

 bind_mem_var<Order>(  binding_scope  ); 

 Where  bind_mem_var  can be implemented  as: 5

 template  <  typename  ClassT,  typename  Scope> 
 void  bind_mem_var(Scope&  s)  { 

 template  for  (  constexpr  auto  e  :  data_member_range(^ClassT)){ 
 constexpr  auto  name  =  name_of(e); 
 if  constexpr  (is_public(e)  &&  !is_static_data_member(e)){ 

 if  constexpr  (has_const_type(e))  { 

 5  https://cppx.godbolt.org/z/3efezYqEE 

https://cppx.godbolt.org/z/3efezYqEE
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 s.def_readonly(name,  &[:e:]); 
 }  else  { 

 s.def_readwrite(name,  &[:e:]); 
 } 

 } 
 } 

 } 

 Note that the reflection-based implementation does not suffer from any of the shortcomings 

 mentioned earlier. However, there is an important caveat related to the choice of the default 

 behavior. Frequently, Python bindings expose a more limited API than that offered by the 

 underlying C++ code. In that case, it would be beneficial to allow some way of customizing the 

 behavior of  bind_mem_var  for select data members.  We discuss bindings customization in more 

 detail in the Conclusions section. 

 Member functions 

 Bindings for member functions can be exposed in a similar way to data members due to existing 

 quasi-reflection capabilities of C++. Specifically, it is possible to reflect on the return type and 

 argument types of a member function using existing C++ features. Considering a partial 

 implementation of an order crossing engine: 

 struct  CrossingEngine  { 
 std::vector<Order>  const&  getAsks()  const  {  return  asks;  } 
 std::vector<Order>  const&  getBids()  const  {  return  bids;  } 

 private  : 
 std::vector<Order>  asks; 
 std::vector<Order>  bids; 

 }; 

 Naive bindings code could look like: 
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 py::class_<CrossingEngine>(  binding_scope  ,  "CrossingEngine"  ) 
 .def(  "getAsks"  ,  &CrossingEngine::getAsks) 
 .def(  "getBids"  ,  &CrossingEngine::getBids); 

 However, this bindings implementation might not be ideal since, by default, pybind11 will copy 

 std::vector<Order>  into a Python list object  every  time  getAsks  or  getBids  is invoked 6

 from Python. 

 We can customize our implementation to avoid copying the return values as follows: 

 PYBIND11_MAKE_OPAQUE(std::vector<Order>); 
 py::class_<CrossingEngine>(  binding_scope  ,  "CrossingEngine"  ) 

 .def(  "getAsks"  ,  &CrossingEngine::getAsks, 
 return_value_policy::reference) 

 .def(  "getBids"  ,  &CrossingEngine::getBids, 
 return_value_policy::reference); 

 Note the need for  PYBIND11_MAKE_OPAQUE  and  return_value_policy::reference 
 policy. 

 While this implementation solves the problem of unwanted data copies, it introduces yet another 

 problem which is more subtle. It stems from the difference in object lifetime management in C++ 

 and Python. In cases of the latter, it is assumed that an object will be kept alive until at least one 

 handle to that object exists. However, with our implementation of  CrossingEngine  , the 

 references returned by  getAsks  and  getBids  will only  be valid as long as the 

 CrossingEngine  object is alive. This has to be taken  into account when creating bindings. 

 For example, it is reasonable to expect the following Python code to work correctly: 

 def  execute_and_get_remaining_asks(orders): 
 engine  =  CrossingEngine() 

 6  This default approach is quite sensible as it avoids lifetime issues between Python and C++ and makes 
 the resulting Python APIs more pythonic. 
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 for  order  in  orders:  engine.cross(order) 
 return  engine.getAsks() 

 remaining_asks  =  execute_and_get_remaining_asks(orders) 
 print  (remaining_asks) 

 It might happen  that  engine  will be garbage collected  before  print(remaining_asks)  is 7

 called. As a consequence, the C++ object representing  CrossingEngine  instance will be 

 destroyed and  remaining_asks  will become a dangling  reference. In order to address this 

 shortcoming, it is possible to use  return_value_policy::reference_internal  instead of 

 a plain  return_value_policy::reference  . 

 PYBIND11_MAKE_OPAQUE(std::vector<Order>); 
 py::class_<CrossingEngine>(  binding  scope  ,  "CrossingEngine"  ) 

 .def(  "getAsks"  ,  &CrossingEngine::getAsks, 
 return_value_policy::reference_internal) 

 .def(  "getBids"  ,  &CrossingEngine::getBids, 
 return_value_policy::reference_internal); 

 It is straightforward to automate bindings for the basic case. 

 bind_mem_fn<CrossingEngine>(  binding_scope  ); 

 Where  bind_mem_fn  can be implemented  as: 8

 template  <  typename  ClassT,  typename  Scope> 
 void  bind_mem_fn(Scope&  s)  { 

 template  for  (  constexpr  auto  e  :  member_fn_range(^ClassT))  { 
 if  constexpr  (is_public(e)  && 

 8  https://cppx.godbolt.org/z/aMzdfnKdr 

 7  But it doesn’t have to, which is even worse. 

https://cppx.godbolt.org/z/aMzdfnKdr


 C/C++ 

 !is_special_member_function(e))  { 
 constexpr  auto  name  =  name_of(e); 
 if  constexpr  (is_nonstatic_member_function(e))  { 

 s.def(name,  py::overload_cast< 
 ...[:type_of(param_range(e)):]... 

 >(&[:e:])); 
 }  else  { 

 s.def_static(name,  &[:e:]); 
 } 

 } 
 } 

 } 

 Note that the  py::overload_cast<...>  is just a  static_cast<..>  in disguise that is used 

 to disambiguate different overloads of the same function. 

 However, it is not possible to solve the problem of unwanted copies and object lifetime 

 management without providing some degree of user customization. We discuss the problem of 

 bindings customization in more detail in the Conclusions section. 

 Constructors 

 Constructors are slightly different from member functions since it is not possible to take their 

 address. As a consequence, it is not possible to use existing C++ features to inspect the types of 

 their parameters. To circumvent this limitation, pybind11 provides a special 

 pybind11::init<...>  utility. 

 Consider a partial implementation of an Execution class: 

 struct  Execution  { 

 enum  class  Type  {  new_,  fill,  ...  } 

 Execution(Order  order,  Type  type); 
 Execution(Order  order,  Type  type, 

 double  price,  size_t  quantity  =  0  ); 
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 }; 

 The typical bindings code, excluding enum bindings (which were discussed before), looks as 

 follows: 

 py::class_<Execution>(  binding_scope  ,  "Execution"  ) 
 .def(py::init<Order,  Execution::Type>(), 

 py::arg(  "order"  ),  py::arg(  "type"  )) 
 .def(py::init<Order,  Execution::Type,  double  ,  size_t>(), 

 py::arg(  "order"  ),  py::arg(  "type"  ), 
 py::arg(  "price"  ),  py::arg(  "quantity"  )  =  0  ); 

 While the usage of  init  should not be problematic  to decipher, we simply pass all the argument 

 types to the type list of the helper. The usage of  py::arg  allows the bindings module user to 

 use a Python feature - keyword arguments. 

 With reflection, we can automate the task as follows: 

 bind_ctors<CrossingEngine>(  binding_scope  ); 

 Where  bind_ctors  could be implemented as: 

 template  <  typename  ClassT,  typename  Scope> 
 void  bind_ctors(Scope&  s)  { 

 template  for  (  constexpr  auto  e  :  member_fn_range(^ClassT))  { 
 if  constexpr  (is_public(e)  &&  is_constructor(e)  && 

 !is_copy_constructor(e)  && 
 !is_move_constructor(e))  { 

 constexpr  auto  params  =  param_range(e); 
 s.def(py::init<...  typename  [:type_of(params):]...>(), 

 ...py::arg(name_of(^[:params:]))...); 
 } 
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 } 
 } 

 Note that 

 ●  The implementation of bind_ctors cannot be validated with the lock3 implementation of 

 P2320, since it lacks pack splicing capabilities; 

 ●  The  type_of  function will not work for this use case.  Instead, the  types_of  function 

 should be used, but it is not proposed for P1240 yet; and 

 ●  The syntax for expanding a range of reflections into a parameter list of names seems a bit 

 clunky; we will discuss this in more detail in the Challenges section. 

 At first glance, the above implementation is straightforward. However, using parameter names for 

 keyword arguments is problematic. Parameter names are not part of a C++ function’s signature 

 and can change between declaration and definition, or among multiple declarations. 

 Consider the following code: 

 struct  X  { 
 X(  int  name); 

 }; 

 X:X(  int  different_name)  {  (  void  )different_name;  }; 

 The parameter name that should be provided while reflecting on the input parameter of  X::X  , 
 when both the declaration and definition are visible, is ambiguous. The only publicly available 

 implementation of P2320 returns names of parameters of the definition when queried directly, 

 i.e.,  param_range(^X::X)  . However, it returns the  names of parameters of the declaration when 

 accessed indirectly via a reflection of the enclosing class, i.e., 

 param_range(*member_fn_range(^X).begin())  . This problem  becomes even more severe 9

 when free functions are considered, since they can have multiple declarations with completely 

 different parameter names. We discuss this in more detail in the Conclusions section. 

 Overloaded Operators 

 9  This is true even if the reflection is done inside the definition of  X::X. 
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 Binding operators is a special problem. It is complicated by the fact that overloaded operators 

 can exist as member functions of a class, as inline friend functions, and as free functions, and are 

 subject to both ADL and visibility checks. 

 Considering a simple class  X  with a set of associated  operator+  overloads 

 namespace  xns  { 

 struct  X  { 
 int  v  =  0  ; 

 friend  X  operator  +(X  const&  lhs,  int  rhs)  { 
 return  X{lhs.v  +  rhs}; 

 } 
 }; 

 X  operator  +(xns::X  const&  lhs,  X  const&  rhs)  { 
 return  X{lhs.v  +  rhs.v}; 

 } 

 }  // ::xns 

 namespace  yns  { 

 struct  Y  {  double  v  =  0  .;  }; 

 Y  operator  +(xns::X  const&  lhs,  Y  const&  rhs)  { 
 return  Y{lhs.v  +  rhs.v}; 

 } 

 Y  operator  +(Y  const&  lhs,  double  rhs)  { 
 return  Y{lhs.v  +  rhs.v}; 

 } 

 }  // ::yns 

 A naive bindings implementation could look like: 
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 py::class_<xns::X>{} 
 .def(  "__add__"  ,  &xns::X::  operator  +)  // Error:  cannot take address of 

 an inline friend function 

 .def(  "__add__"  ,  static_cast  < 
 yns::Y  (*)(xns::X  const&,  yns::Y  const&) 

 >(&yns::  operator  +)) 
 .def(  "__add__"  ,  static_cast  < 

 yns::Y  (*)(xns::X  const&,  double  ) 
 >(&yns::  operator  +)) 

 .def(  "__add__"  ,  &xns::  operator  +); 

 It is possible to improve on this with pybind11 helpers  : 10

 py::class_<xns::X>{} 
 .def(py::self  +  py::self) 
 .def(py::self  +  int  {}) 
 .def(py::self  +  double  {}) 
 .def(py::self  +  yns::Y{}); 

 With that, all overloads are detected and bindings are created correctly. 

 While attempting to automate operator bindings, the immediate challenge is how to detect all of 

 the reachable  operator+  overloads. The scalable reflection  paper (P1240R2) does not mention 

 any specific facilities that would allow us to do that. We have therefore resorted to scanning all 

 namespaces recursively starting from the global namespace. It has to be noted, however, that 

 based on the initial feedback from compiler implementers, it seems feasible to propose and 

 implement the discovery of overloaded operators by name, even with ADL lookup. This would 

 most likely be limited to non-template functions since the discovery of those cannot be done 

 reliably without knowing all possible parameter types up front. 

 With reflection, we can automate the task as follows: 

 10  https://pybind11.readthedocs.io/en/stable/advanced/classes.html#operator-overloading 

https://pybind11.readthedocs.io/en/stable/advanced/classes.html#operator-overloading
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 template  <  typename  T,  typename  Scope> 
 void  bind_operators(Scope&  scope)  { 

 bind_namespace_operators<^::>(scope); 
 bind_member_operators<^T>(scope); 

 } 

 Where  bind_namespace_operators  could be implemented  as  : 11

 template  <info  refl,  typename  T> 
 void  bind_namespace_operators(py::class_<T>&  cls)  { 

 template  for  (  constexpr  auto  e  :  member_range(refl))  { 

 if  constexpr  (is_function(e))  { 
 constexpr  auto  rng  =  param_range(e); 
 constexpr  auto  len  =  detail::distance(rng.begin(),  rng.end()); 

 if  constexpr  (len  ==  2  )  { 
 constexpr  auto  param1_t  =  type_of(*params_range.begin()); 
 constexpr  auto  param2_t  =  type_of(*(++params_range.begin())); 

 if  constexpr  (addable<T,  typename  [:param2_t:]> 
 &&  same_as<  typename  [:param1_t:],  T)  { 

 cls.def(py::self  +  typename  [:param2_t  :]{}); 

 }  else 
 if  constexpr  (addable<  typename  [:param1_t:],  T> 

 &&  same_as<  typename  [:param2_t:],  T>){ 
 cls.def(  typename  [:param1_t:]{}  +  py::self); 

 } 
 } 

 }  else  if  constexpr  (is_namespace(e))  { 
 bind_namespace_operators<e>(cls); 

 } 

 11  https://cppx.godbolt.org/z/7q4jaxsrn 

https://cppx.godbolt.org/z/7q4jaxsrn


 } 
 } 

 template  <  typename  Lhs,  typename  Rhs> 
 concept  addable  =  requires  (Lhs  l,  Rhs  r)  {  l  +  r;  }; 

 While this works for the overloads residing in the namespace  yns  , the friend inline operator of 

 xns::X  could not be detected. This seems to be an  unintended limitation as the friend inline 

 operator should either be discoverable as a namespace member or as a class member. 

 While the approach we have taken to automate operator bindings is unlikely to scale well 

 enough for any practical application, we have determined that there are use cases, especially 

 ones involving templated code, where static reflection facilities will be insufficient to perform a 

 task completely. In cases like this it would be useful to allow emitting diagnostic information at 

 compile time (i.e. to the compiler output) which are not warnings or errors. Fortunately, there is 

 already work going on  to make that possible. 12

 Conclusions 

 Advantages 

 We have determined that: 

 1.  As expected, it is possible to achieve significant (~95%) boilerplate code reduction, as 

 opposed to manually written bindings code; 

 2.  Using reflection for generating bindings avoids manual errors in many cases (e.g., enum 

 bindings); and 

 3.  Most bindings can be reasonably automated with carefully selected default behaviors (i.e., 

 we have leveraged the defaults specified by pybind11). 

 Challenges 

 We have determined that: 

 1.  Feature gaps between between Python and C++, such as lifetime management, could be 

 handled by customizing bindings; 

 12  https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2758r0.html 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2758r0.html


 2.  Some reflection features, like parameter name reflection, can be dangerous and must be 

 used with caution; 

 3.  Reflection-based automation is not foolproof. It can hide subtle problems and give a false 

 sense of security; and 

 4.  The syntax for expanding a range of reflections into a parameter list of names is a bit 

 clunky. 

 In the following sections, we will discuss the various challenges in detail. 

 Customization 

 Bindings customization is needed in at least two applications: 

 ●  Overriding and/or improving binding defaults 

 ●  Bridging the gap between languages 

 In some cases, automatically produced bindings may be correct, but suboptimal, and cause 

 resource leaks or crashes. Suppose an object is returned from C++ code that holds a raw pointer 

 to a resource, such as a file or a memory buffer. The default behavior of copying out results from 

 C++ to Python would cause a shallow copy of the pointer, assuming the copy constructor is 

 implicitly generated. Now, both Python and C++ have access to the pointer, and could try to 

 manipulate the underlying resource independently. E.g., one side might close the underlying file, 

 while the other expects it to be open, and tries to write to it. In case the pointer held a memory 

 buffer, and concurrent access was allowed, the concurrency control mechanism may not work as 

 it would not account for non-native language access, or the buffer itself could be deleted or 

 re-allocated. Thus, automatically produced bindings could lead to dangerous behavior, and the 

 programmer does need to be aware of the intricate behavior of the C++ classes that are bound. 

 The second point is more about the specific features that both languages do and do not support. 
 Some notable examples might be keyword arguments and garbage collection in Python and 
 function overloading and polymorphism in C++. While pybind11 does a reasonably good job at 
 providing facilities for bridging that gap, those facilities typically require additional work. Some of 
 that work can be automated, e.g., function overloading, but some might require manual 
 intervention, e.g., specifying the reference management policy. 

 It should be clear at this point that some user customization is necessary for any reflection-based 
 Python bindings implementation. We can approach that problem in two ways: 

 ●  By providing library-specific hooks 
 ●  By creating custom attributes 
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 Library-specific hooks can be implemented in a multitude of ways. A simple way is to create a 
 constexpr list of modifications for reflected entities, like in the example below: 

 constexpr  auto  customizations  =  { 
 {^CrossingEngine::getAsks, 
 return_value_policy::reference_internal}, 
 {^Order::side, 
 value_access_policy::readonly}, 

 }; 

 bind_class<CrossingEngine>(scope,  customizations); 
 bind_class<Order>(scope,  customizations); 

 On the positive side, with this approach, it is possible to create and customize bindings of a code 

 base that the bindings implementer has no control over. On the negative side, the customizations 

 are disjoint from the C++ code that is being bound; therefore, there is a risk of the two diverging, 

 and errors being introduced. 

 Another option is to attach custom attributes to the code that is being bound: 

 struct  CrossingEngine  { 
 [[refl_bind::return_policy(  "reference_internal"  )]] 
 std::vector<Order>  const&  getAsks()  const  {  return  asks;  } 

 [[refl_bind::return_policy(  "reference_internal"  )]] 
 std::vector<Order>  const&  getBids()  const  {  return  bids;  } 

 ... 
 }; 

 On the positive side, with this approach, customizations would naturally evolve alongside the 

 code. On the negative side, adding user-defined attributes requires control of the source code 

 that is the subject of bindings and, what is probably more important, adding the support for 

 user-defined attributes to the C++ language, lifting the requirement of ignorability of attributes  , 13

 and adding support for reflecting on attributes. 

 13  https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf
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 We believe that both approaches to customizations are valuable in their own right, with 

 user-defined attributes being less error-prone, and, therefore, preferable where applicable. 

 Parameter Names 

 Python’s keyword arguments allow specifying function parameter names and their values at the 

 point where a function is called. This feature improves readability and so is used quite heavily. 

 Therefore, it is desirable to make keyword arguments automatically available with C++/Python 

 bindings. The natural way of doing so is to reflect on parameter names. However, this is 

 dangerous. C++ parameter names are not part of the function signature and can change between 

 function declaration and definition – and even across different declarations of the same function. 

 The code below  illustrates this problem: 14

 #  include  <experimental/meta> 
 #  include  <iostream> 

 using  namespace  std::experimental::meta; 

 // declaration 1 
 void  func(  int  x,  int  y); 

 void  print_func_params1()  { 
 std::cout  <<  "func param names are: "  ; 
 template  for  (  constexpr  auto  e  :  param_range(^func))  { 

 std::cout  <<  name_of(e)  <<  ", "  ; 
 } 
 std::cout  <<  "\n"  ; 

 } 

 // declaration 2 
 void  func(  int  a,  int  b); 

 void  print_func_params2()  { 
 std::cout  <<  "func param names are: "  ; 
 template  for  (  constexpr  auto  e  :  param_range(^func))  { 

 std::cout  <<  name_of(e)  <<  ", "  ; 
 } 
 std::cout  <<  "\n"  ; 

 } 

 14  https://cppx.godbolt.org/z/coq6KhvdK 

https://cppx.godbolt.org/z/coq6KhvdK


 C/C++ 

 int  main()  { 
 print_func_params1();  // prints: func param names  are: x, y, 
 print_func_params2();  // prints: func param names  are: a, b, 

 } 

 Thus, reflecting on parameter names makes the code fragile, as developers don’t expect that 

 changing forward declaration parameter names will impact the output of the program in any way. 

 A quick survey of different compilers has found that there’s no fixed pattern of how function 

 signatures are evaluated across the different declarations of a function that are accessible from a 

 translation unit. Some compilers use the first declaration that they parse, while others use the 

 last. A solution that has gained consensus in SG7 is that if reflecting on parameter names results 

 in more than one name for a parameter, then that reflection should be considered invalid, and a 

 compile time error should be raised. Alternatively, the first or last declaration could be chosen, 

 provided a diagnostic is emitted, letting the developer know about the choice and its line of 

 code. 

 Another approach for creating unique parameter name lists is to introduce an attribute that 

 explicitly specifies a function declaration or definition that should be used to infer parameter 

 names. A function declared with that attribute, e.g., “infer_param_names” could be used to infer 

 parameter names, rather than any other declaration or definition. This approach assumes that the 

 C++ code to be bound is accessible to the developer who generates Python bindings, and the 

 attribute is used in only one declaration, or the definition. E.g., 

 // A declaration of function foo. Parameter names used here are 
 ignored. 

 void  foo(  int  n,  int  m); 

 // Another declaration of function foo, with the special 
 attribute. 
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 [[refl_bind::infer_param_names]]  // Parameter names  seen by 
 Python are taken from this declaration. 

 void  foo(  int  apples,  int  bananas); 

 // Function definition. Parameter names used here are ignored. 

 void  foo(  int  a,  int  b)  { 

 return  a  +  b; 

 } 

 In the above example, the function foo()’s parameter name list as seen by Python would be 

 {“apples”, “bananas"}, as indicated by the attribute infer_param_names. 

 Expanding a Range of Parameters 

 Consider a use-case where we need to expand a function parameter range into a range of names 

 of those parameters: 

 struct  X  { 
 void  fun(  int  y,  float  z)  {}; 

 }; 
 void  print(std::vector<py::arg>  args)  { 

 for  (  auto  const&  arg  :  args) 
 std::cout  <<  arg.name  <<  ','  ; 

 std::cout  <<  '\n'  ; 
 } 

 int  main()  { 
 constexpr  auto  param_range  =  param_range(^X::fun); 
 print({/*  expand  to  a  vector  of  py::arg(param_name)  */}); 

 } 

 There are multiple ways to achieve this. 



 1.  py::arg(meta::name_of(param_range))... 

 It is unclear whether this syntax would work, as we see no examples of range pack 

 expansion for a range of reflections, without using the splicing operator in P1240r2. 

 2.  ...py::arg(meta::name_of([:param_range:]))... 

 The  meta::name_of(meta::info)  takes a  meta::info  object,  so this is unlikely to 

 work; in fact we can confirm  that  meta::name_of([:*param_range.begin():]) 15

 does not compile. 

 3.  ...py::arg([:meta::name_of(param_range):])... 

 Similarly applying  meta::name_of(meta::info)  inside  a splicing expression also 

 does not compile  . 16

 4.  ...py::arg(meta::name_of(^[:param_range:]))... 

 This will probably work since  meta::name_of(^[:*param_range.begin():]) 
 compiles fine  , though the need to utilize ^ operator  twice seems a bit clunky 17

 ...py::arg(meta::name_of(^[:meta::param_range(^X::fun):]))... 

 5.  py::arg(meta::names_of(param_range)) 

 This was an alternative proposed during the SG7 meeting where the initial draft of this 

 paper was presented. While the proposed  names_of  library  function would produce a list 

 of strings from a range of parameters, it would not be able to generate  py::arg  s from a 

 range of parameters. Simply doing  py::arg(meta::names_of(param_range)) 
 would result in  py::arg(“y”s,“x”s)  instead of the  desired  { py::arg(“y”s), 
 py::arg(“x”s) }  . 

 ABI Compatibility 

 While the discussion of ABI compatibility is not strictly related to the usage of reflection for 

 creating Python bindings, it has been an important consideration in C++/Python bindings 

 discussion. ABI compatibility issues could occur in two cases: 

 1.  Bindings were created with a Python library version that is incompatible with the Python 

 interpreter that is loading them. 

 17  https://cppx.godbolt.org/z/9qnbn9x5G 

 16  https://cppx.godbolt.org/z/a8ee54Ehe 

 15  https://cppx.godbolt.org/z/rKb5WjGj9 
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 2.  A type that is passed between two Python/C++ binding libraries has different binary 

 representations between the two. 

 Point 1 is a ubiquitous problem for many Python features, and we will not be discussing it here. 

 For point 2, the problem can typically occur when bindings are shared across libraries owned by 

 different teams. To visualize this, consider three C++ libraries: A, B, and C, with the caveat that 

 both A and B depend on C. It can be easily observed that if A creates an object of a type X 

 belonging to C, which is subsequently passed to B, both A and B must use the same binary 

 representation of X. To solve this problem at scale, we can see two approaches - using an 

 integration build or fat bindings. 

 Integration Build 

 With this approach, all libraries and their bindings are built from source together and are 

 deployed together. This way, the possibility of having multiple libraries with the same 

 dependency, but different ABI representations, is eliminated 

 Pros 

 ●  Allows bindings to be re-used across libraries 

 ●  Each library is comprised only the necessary binary code 18

 ●  Handles singletons without additional work 

 Cons 

 ●  Build and deployment time increase, all dependent libraries must be available when the 

 integration build starts 

 ●  Can’t be safely used out of the box with the Python Package Index (PyPI) 

 Fat Bindings 

 With this approach, every binding library statically links its dependencies, hides symbols, and 

 exposes every C++ type as a distinct type in Python, hence avoiding collisions. 

 Pros 

 ●  No library re-use and hence no ABI problems 19

 ●  Safe to use with the Python Package Index (PyPI) 

 19  Notably pybind11 has an added feature that tries to recognize “compatible” types by additional means, 
 which might still cause ABI compatibility problems. 

 18  Only the code that is the subject of bindings and the bindings code itself. External dependencies and 
 their bindings can be dynamically loaded by Python at runtime. 



 Cons 

 ●  Not possible to share singletons among libraries without additional logic 20

 ●  Library sizes are larger, as each library comprises both its own binary code and the binary 

 code of all its dependencies 

 ●  Bindings cannot be re-used out of the box 

 Comparison with Classdesc 

 In the absence of type information from the compiler, the C++ language exposes limited type 

 information to the programmer, and so some form of a preprocessing system is required to obtain 

 this information. Classdesc could be considered a static reflection system. At its core, it is a C++ 

 preprocessor that reads C++ header files and generates overloaded function templates (or 

 functor objects in later versions) that recursively call themselves on members of the class. The 

 collection of overloaded functions is called a descriptor,  and they are global functions. Classdesc 

 consists of a simplified C++ parser/code generator along with support libraries implementing a 

 range of reflection tasks, such as serialization and Python bindings. Classdesc classes are 

 integrated with the build system, e.g., with a Makefile, and thus evolve with the evolution of the 

 underlying C++ classes. 

 Classdesc has been used for generating Python bindings via Boost.Python. pybind11 ‘s roots are 

 also in Boost.Python, and thus the syntax for creating Python bindings is similar in both libraries. 

 Value-based reflection APIs have the benefit of being able to work on meta-information from the 

 compiler itself, without having to pre-process code to produce an additional layer of classes that 

 enable reflection. Classdesc suffers from some implementation nuances, such as not being able 

 to reflect on functions that return pointers, while value-based reflection suffers from issues such 

 as not having a complete set of reflection APIs, or missing or buggy implementation features in 

 the compiler. 

 In terms of lines of code eliminated, the boilerplate lines of code eliminated by Classdesc are 

 offset by the new code for shim classes needed for specific C++ features, such as containers, 

 const and mutable attributes. 

 In terms of build times and memory consumed, experiments need to be carried out compiling the 

 same application package using Classdesc vs. value-based reflection, to arrive at comparative 

 numbers. Both approaches lead to increased build times and memory usage. 

 20  Since each extension links in all their dependencies and hides symbols, each module has its own version 
 of a singleton. We do not know of any generic solution to this problem. 



 Appendix 

 1.  Classdesc: C++ Reflection for Python Binding - 

 https://accu.org/journals/overload/27/152/standish_2682/ 

 2.  P2320R0 - The Syntax of Static Reflection - 

 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2320r0.pdf 

 3.  P1240R2 - Scalable Reflection in C++ - 

 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1240r2.pdf 

 4.  Pybind11 -  https://pybind11.readthedocs.io/en/stable/ 

 5.  Programming for every language, everywhere all at once - CoreCpp ‘22 talk - 

 https://www.youtube.com/watch?v=43Tmqn-sFsk 

 6.  Reflection on attributes:  https://wg21.link/p1887 
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