
 P2911R1 - Python Bindings
 with Value-Based Reflection
 Authors: , Adam Lach Jagrut Dave
 Last Updated: Sep 18, 2023
 Status: In progress

 Abstract

 Python/C++ bindings are heavily used in numerical calculation packages such as NumPy. The

 goal of this paper is to discuss the benefits and challenges of using value-based reflection

 (P2320 and P1240R2) to simplify creating C++/Python bindings. A previous attempt at simplifying

 Python bindings using reflection, focused on Boost.Python and macro-based reflection, can be

 found in the appendix. This paper uses contemporary value-based reflection, which has a path

 forward towards being accepted into the C++ standard, and is aimed at pybind11, a popular open

 source Python library for binding existing C++ code to Python. Familiarity with value-based

 reflection APIs (P2320 and P1240R2) and pybind11 are assumed.

 Updates since P2911R0

 - Clarification about out of scope items.

 - Discussion on reflecting function parameter names, and when that should raise an invalid

 reflection error.

 - Provided a better example of dangerous behavior caused by default bindings

 - Detailed discussion on expanding a range of reflected entities to produce a range of their

 names, meta::name_of/names_of functions.

 - Added a section on overloaded operators bindings.

 - Added a section comparing the Classdesc framework with value-based reflection and

 future work.

 - Grammatical improvements.

mailto:alach3@bloomberg.net
mailto:jdave12@bloomberg.net

 Introduction

 Python bindings can be created by the means of the Python/C API . It is, however, rarely used 1

 directly in practice. Instead, wrapper libraries like Boost.Python or pybind11 are frequently used . 2

 For the sake of simplicity, this paper will focus on using C++ reflection to simplify creating Python

 bindings on top of pybind11.

 Out of Scope

 ● The Python/C API. Our research has not dwelled on the C API that allows for writing

 Python extensions. Though such an approach may provide performance benefits, we

 believe that most developers would prefer using the ergonomic API provided by pybind11,

 which is friendly to modern C++.

 ● For binding data members, pybind11 requires taking their address. However, this approach

 will not work with bit fields. One way to circumvent that problem is to generate setters

 and getters for such data members and bind them as properties . Automating that using 3

 reflection should not pose any difficulties.

 Use Cases

 We have used a simple implementation of an order crossing engine in C++, with a carefully

 tailored implementation to cover many common bindings applications like:

 ● Enumerations

 ● Data members

 ● Function members

 ● Constructors

 ● Inheritance

 ● Function overloads

 ● Nested type aliases

 ● Operators

 In this document, we discuss a subset of the above applications, which, in our opinion, are the

 most important and informative.

 3 See https://pybind11.readthedocs.io/en/stable/classes.html#instance-and-static-fields

 2 There are other ways to create Python bindings like Cython or SWIG, which are not considered in this
 paper since they are not good candidates to be used with C++ reflection.

 1 See https://docs.python.org/3/c-api/index.html

https://pybind11.readthedocs.io/en/stable/classes.html#instance-and-static-fields
https://docs.python.org/3/c-api/index.html

 C/C++

 C/C++

 Enumerations

 Enumerations are a common example of how reflection facilities can improve C++ code. To not

 part with this tradition, we start with an example showing Python bindings for an enum.

 struct Execution {

 enum class Type {
 new_,
 fill,
 partial,
 cancelled,
 rejected

 };

 };

 Typical bindings would look like:

 py::enum_<Execution::Type>(binding scope , "Type")
 .value("new_" , Execution::Type::new_)
 .value("fill" , Execution::Type::fill)
 .value("partial" , Execution::Type::partial)
 .value("cancelled" , Execution::Type::cancelled)
 .value("rejected" , Execution::Type::rejected);

 From the above, it can be seen that

 ● There is plenty of repetition.

 ● If Execution::Type is modified, then the bindings code has to be updated manually.

 ● If an enumeration value is added to Execution::Type no compiler error / warning will

 be emitted hence bindings code can easily diverge from the bound code.

 ● The names of individual enumerations have to be repeated as strings, which is prone to

 typos that cannot be detected by the compiler.

 With reflection, we can automate the task:

 C/C++

 C/C++

 bind_enum<Execution::Type>(binding_scope);

 Where bind_enum can be implemented as : 4

 template < typename T>
 std::string basename() {

 auto name = std::string{name_of(^T)}; // ^T reflects type T .

 if (size_t pos = name.rfind(':');
 pos != std::string::npos) {
 return name.substr(name.rfind(':') + 1);

 }
 return name;

 }

 template < typename EnumT, typename Scope>
 void bind_enum(Scope& s) {

 auto enum_ = py::enum_<EnumT>(s, basename<EnumT>().c_str());

 // members_of() produces an iterable list .
 // of all the members of an enumeration.
 // `template for` iterates over a range at compile time.

 template for (constexpr auto e : members_of(^EnumT)) {
 enum_.value(name_of(e), [:e:]); // [:e:] un-reflects e .

 }
 }

 Note that the reflection-based implementation does not suffer from any of the shortcomings

 mentioned earlier.

 Data members

 Binding public data members is a seemingly straightforward task. Consider a simple aggregate

 type:

 4 https://cppx.godbolt.org/z/T445M639n

https://cppx.godbolt.org/z/T445M639n

 C/C++

 C/C++

 C/C++

 C/C++

 struct Order {
 int side = 1 ;
 size_t quantity = 0 ;

 };

 The typical bindings code would look like:

 py::class_<Order>(binding scope , "Order")
 .def_readwrite("side" , &Order::side)
 .def_readwrite("quantity" , &Order::quantity);

 It can be seen that:

 ● The names of data members have to be repeated as strings, which are prone to typos

 that cannot be detected by the compiler.

 ● Since side and quantity are mutable public data members, it is reasonable to provide both

 read and write access from Python.

 With reflection, we can automate the task:

 bind_mem_var<Order>(binding_scope);

 Where bind_mem_var can be implemented as: 5

 template < typename ClassT, typename Scope>
 void bind_mem_var(Scope& s) {

 template for (constexpr auto e : data_member_range(^ClassT)){
 constexpr auto name = name_of(e);
 if constexpr (is_public(e) && !is_static_data_member(e)){

 if constexpr (has_const_type(e)) {

 5 https://cppx.godbolt.org/z/3efezYqEE

https://cppx.godbolt.org/z/3efezYqEE

 C/C++

 s.def_readonly(name, &[:e:]);
 } else {

 s.def_readwrite(name, &[:e:]);
 }

 }
 }

 }

 Note that the reflection-based implementation does not suffer from any of the shortcomings

 mentioned earlier. However, there is an important caveat related to the choice of the default

 behavior. Frequently, Python bindings expose a more limited API than that offered by the

 underlying C++ code. In that case, it would be beneficial to allow some way of customizing the

 behavior of bind_mem_var for select data members. We discuss bindings customization in more

 detail in the Conclusions section.

 Member functions

 Bindings for member functions can be exposed in a similar way to data members due to existing

 quasi-reflection capabilities of C++. Specifically, it is possible to reflect on the return type and

 argument types of a member function using existing C++ features. Considering a partial

 implementation of an order crossing engine:

 struct CrossingEngine {
 std::vector<Order> const& getAsks() const { return asks; }
 std::vector<Order> const& getBids() const { return bids; }

 private :
 std::vector<Order> asks;
 std::vector<Order> bids;

 };

 Naive bindings code could look like:

 C/C++

 C/C++

 Python

 py::class_<CrossingEngine>(binding_scope , "CrossingEngine")
 .def("getAsks" , &CrossingEngine::getAsks)
 .def("getBids" , &CrossingEngine::getBids);

 However, this bindings implementation might not be ideal since, by default, pybind11 will copy

 std::vector<Order> into a Python list object every time getAsks or getBids is invoked 6

 from Python.

 We can customize our implementation to avoid copying the return values as follows:

 PYBIND11_MAKE_OPAQUE(std::vector<Order>);
 py::class_<CrossingEngine>(binding_scope , "CrossingEngine")

 .def("getAsks" , &CrossingEngine::getAsks,
 return_value_policy::reference)

 .def("getBids" , &CrossingEngine::getBids,
 return_value_policy::reference);

 Note the need for PYBIND11_MAKE_OPAQUE and return_value_policy::reference
 policy.

 While this implementation solves the problem of unwanted data copies, it introduces yet another

 problem which is more subtle. It stems from the difference in object lifetime management in C++

 and Python. In cases of the latter, it is assumed that an object will be kept alive until at least one

 handle to that object exists. However, with our implementation of CrossingEngine , the

 references returned by getAsks and getBids will only be valid as long as the

 CrossingEngine object is alive. This has to be taken into account when creating bindings.

 For example, it is reasonable to expect the following Python code to work correctly:

 def execute_and_get_remaining_asks(orders):
 engine = CrossingEngine()

 6 This default approach is quite sensible as it avoids lifetime issues between Python and C++ and makes
 the resulting Python APIs more pythonic.

 C/C++

 C/C++

 C/C++

 for order in orders: engine.cross(order)
 return engine.getAsks()

 remaining_asks = execute_and_get_remaining_asks(orders)
 print (remaining_asks)

 It might happen that engine will be garbage collected before print(remaining_asks) is 7

 called. As a consequence, the C++ object representing CrossingEngine instance will be

 destroyed and remaining_asks will become a dangling reference. In order to address this

 shortcoming, it is possible to use return_value_policy::reference_internal instead of

 a plain return_value_policy::reference .

 PYBIND11_MAKE_OPAQUE(std::vector<Order>);
 py::class_<CrossingEngine>(binding scope , "CrossingEngine")

 .def("getAsks" , &CrossingEngine::getAsks,
 return_value_policy::reference_internal)

 .def("getBids" , &CrossingEngine::getBids,
 return_value_policy::reference_internal);

 It is straightforward to automate bindings for the basic case.

 bind_mem_fn<CrossingEngine>(binding_scope);

 Where bind_mem_fn can be implemented as: 8

 template < typename ClassT, typename Scope>
 void bind_mem_fn(Scope& s) {

 template for (constexpr auto e : member_fn_range(^ClassT)) {
 if constexpr (is_public(e) &&

 8 https://cppx.godbolt.org/z/aMzdfnKdr

 7 But it doesn’t have to, which is even worse.

https://cppx.godbolt.org/z/aMzdfnKdr

 C/C++

 !is_special_member_function(e)) {
 constexpr auto name = name_of(e);
 if constexpr (is_nonstatic_member_function(e)) {

 s.def(name, py::overload_cast<
 ...[:type_of(param_range(e)):]...

 >(&[:e:]));
 } else {

 s.def_static(name, &[:e:]);
 }

 }
 }

 }

 Note that the py::overload_cast<...> is just a static_cast<..> in disguise that is used

 to disambiguate different overloads of the same function.

 However, it is not possible to solve the problem of unwanted copies and object lifetime

 management without providing some degree of user customization. We discuss the problem of

 bindings customization in more detail in the Conclusions section.

 Constructors

 Constructors are slightly different from member functions since it is not possible to take their

 address. As a consequence, it is not possible to use existing C++ features to inspect the types of

 their parameters. To circumvent this limitation, pybind11 provides a special

 pybind11::init<...> utility.

 Consider a partial implementation of an Execution class:

 struct Execution {

 enum class Type { new_, fill, ... }

 Execution(Order order, Type type);
 Execution(Order order, Type type,

 double price, size_t quantity = 0);

 C/C++

 C/C++

 C/C++

 };

 The typical bindings code, excluding enum bindings (which were discussed before), looks as

 follows:

 py::class_<Execution>(binding_scope , "Execution")
 .def(py::init<Order, Execution::Type>(),

 py::arg("order"), py::arg("type"))
 .def(py::init<Order, Execution::Type, double , size_t>(),

 py::arg("order"), py::arg("type"),
 py::arg("price"), py::arg("quantity") = 0);

 While the usage of init should not be problematic to decipher, we simply pass all the argument

 types to the type list of the helper. The usage of py::arg allows the bindings module user to

 use a Python feature - keyword arguments.

 With reflection, we can automate the task as follows:

 bind_ctors<CrossingEngine>(binding_scope);

 Where bind_ctors could be implemented as:

 template < typename ClassT, typename Scope>
 void bind_ctors(Scope& s) {

 template for (constexpr auto e : member_fn_range(^ClassT)) {
 if constexpr (is_public(e) && is_constructor(e) &&

 !is_copy_constructor(e) &&
 !is_move_constructor(e)) {

 constexpr auto params = param_range(e);
 s.def(py::init<... typename [:type_of(params):]...>(),

 ...py::arg(name_of(^[:params:]))...);
 }

 C/C++

 }
 }

 Note that

 ● The implementation of bind_ctors cannot be validated with the lock3 implementation of

 P2320, since it lacks pack splicing capabilities;

 ● The type_of function will not work for this use case. Instead, the types_of function

 should be used, but it is not proposed for P1240 yet; and

 ● The syntax for expanding a range of reflections into a parameter list of names seems a bit

 clunky; we will discuss this in more detail in the Challenges section.

 At first glance, the above implementation is straightforward. However, using parameter names for

 keyword arguments is problematic. Parameter names are not part of a C++ function’s signature

 and can change between declaration and definition, or among multiple declarations.

 Consider the following code:

 struct X {
 X(int name);

 };

 X:X(int different_name) { (void)different_name; };

 The parameter name that should be provided while reflecting on the input parameter of X::X ,
 when both the declaration and definition are visible, is ambiguous. The only publicly available

 implementation of P2320 returns names of parameters of the definition when queried directly,

 i.e., param_range(^X::X) . However, it returns the names of parameters of the declaration when

 accessed indirectly via a reflection of the enclosing class, i.e.,

 param_range(*member_fn_range(^X).begin()) . This problem becomes even more severe 9

 when free functions are considered, since they can have multiple declarations with completely

 different parameter names. We discuss this in more detail in the Conclusions section.

 Overloaded Operators

 9 This is true even if the reflection is done inside the definition of X::X.

 C/C++

 Binding operators is a special problem. It is complicated by the fact that overloaded operators

 can exist as member functions of a class, as inline friend functions, and as free functions, and are

 subject to both ADL and visibility checks.

 Considering a simple class X with a set of associated operator+ overloads

 namespace xns {

 struct X {
 int v = 0 ;

 friend X operator +(X const& lhs, int rhs) {
 return X{lhs.v + rhs};

 }
 };

 X operator +(xns::X const& lhs, X const& rhs) {
 return X{lhs.v + rhs.v};

 }

 } // ::xns

 namespace yns {

 struct Y { double v = 0 .; };

 Y operator +(xns::X const& lhs, Y const& rhs) {
 return Y{lhs.v + rhs.v};

 }

 Y operator +(Y const& lhs, double rhs) {
 return Y{lhs.v + rhs.v};

 }

 } // ::yns

 A naive bindings implementation could look like:

 C/C++

 C/C++

 py::class_<xns::X>{}
 .def("__add__" , &xns::X:: operator +) // Error: cannot take address of

 an inline friend function

 .def("__add__" , static_cast <
 yns::Y (*)(xns::X const&, yns::Y const&)

 >(&yns:: operator +))
 .def("__add__" , static_cast <

 yns::Y (*)(xns::X const&, double)
 >(&yns:: operator +))

 .def("__add__" , &xns:: operator +);

 It is possible to improve on this with pybind11 helpers : 10

 py::class_<xns::X>{}
 .def(py::self + py::self)
 .def(py::self + int {})
 .def(py::self + double {})
 .def(py::self + yns::Y{});

 With that, all overloads are detected and bindings are created correctly.

 While attempting to automate operator bindings, the immediate challenge is how to detect all of

 the reachable operator+ overloads. The scalable reflection paper (P1240R2) does not mention

 any specific facilities that would allow us to do that. We have therefore resorted to scanning all

 namespaces recursively starting from the global namespace. It has to be noted, however, that

 based on the initial feedback from compiler implementers, it seems feasible to propose and

 implement the discovery of overloaded operators by name, even with ADL lookup. This would

 most likely be limited to non-template functions since the discovery of those cannot be done

 reliably without knowing all possible parameter types up front.

 With reflection, we can automate the task as follows:

 10 https://pybind11.readthedocs.io/en/stable/advanced/classes.html#operator-overloading

https://pybind11.readthedocs.io/en/stable/advanced/classes.html#operator-overloading

 C/C++

 C/C++

 template < typename T, typename Scope>
 void bind_operators(Scope& scope) {

 bind_namespace_operators<^::>(scope);
 bind_member_operators<^T>(scope);

 }

 Where bind_namespace_operators could be implemented as : 11

 template <info refl, typename T>
 void bind_namespace_operators(py::class_<T>& cls) {

 template for (constexpr auto e : member_range(refl)) {

 if constexpr (is_function(e)) {
 constexpr auto rng = param_range(e);
 constexpr auto len = detail::distance(rng.begin(), rng.end());

 if constexpr (len == 2) {
 constexpr auto param1_t = type_of(*params_range.begin());
 constexpr auto param2_t = type_of(*(++params_range.begin()));

 if constexpr (addable<T, typename [:param2_t:]>
 && same_as< typename [:param1_t:], T) {

 cls.def(py::self + typename [:param2_t :]{});

 } else
 if constexpr (addable< typename [:param1_t:], T>

 && same_as< typename [:param2_t:], T>){
 cls.def(typename [:param1_t:]{} + py::self);

 }
 }

 } else if constexpr (is_namespace(e)) {
 bind_namespace_operators<e>(cls);

 }

 11 https://cppx.godbolt.org/z/7q4jaxsrn

https://cppx.godbolt.org/z/7q4jaxsrn

 }
 }

 template < typename Lhs, typename Rhs>
 concept addable = requires (Lhs l, Rhs r) { l + r; };

 While this works for the overloads residing in the namespace yns , the friend inline operator of

 xns::X could not be detected. This seems to be an unintended limitation as the friend inline

 operator should either be discoverable as a namespace member or as a class member.

 While the approach we have taken to automate operator bindings is unlikely to scale well

 enough for any practical application, we have determined that there are use cases, especially

 ones involving templated code, where static reflection facilities will be insufficient to perform a

 task completely. In cases like this it would be useful to allow emitting diagnostic information at

 compile time (i.e. to the compiler output) which are not warnings or errors. Fortunately, there is

 already work going on to make that possible. 12

 Conclusions

 Advantages

 We have determined that:

 1. As expected, it is possible to achieve significant (~95%) boilerplate code reduction, as

 opposed to manually written bindings code;

 2. Using reflection for generating bindings avoids manual errors in many cases (e.g., enum

 bindings); and

 3. Most bindings can be reasonably automated with carefully selected default behaviors (i.e.,

 we have leveraged the defaults specified by pybind11).

 Challenges

 We have determined that:

 1. Feature gaps between between Python and C++, such as lifetime management, could be

 handled by customizing bindings;

 12 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2758r0.html

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2758r0.html

 2. Some reflection features, like parameter name reflection, can be dangerous and must be

 used with caution;

 3. Reflection-based automation is not foolproof. It can hide subtle problems and give a false

 sense of security; and

 4. The syntax for expanding a range of reflections into a parameter list of names is a bit

 clunky.

 In the following sections, we will discuss the various challenges in detail.

 Customization

 Bindings customization is needed in at least two applications:

 ● Overriding and/or improving binding defaults

 ● Bridging the gap between languages

 In some cases, automatically produced bindings may be correct, but suboptimal, and cause

 resource leaks or crashes. Suppose an object is returned from C++ code that holds a raw pointer

 to a resource, such as a file or a memory buffer. The default behavior of copying out results from

 C++ to Python would cause a shallow copy of the pointer, assuming the copy constructor is

 implicitly generated. Now, both Python and C++ have access to the pointer, and could try to

 manipulate the underlying resource independently. E.g., one side might close the underlying file,

 while the other expects it to be open, and tries to write to it. In case the pointer held a memory

 buffer, and concurrent access was allowed, the concurrency control mechanism may not work as

 it would not account for non-native language access, or the buffer itself could be deleted or

 re-allocated. Thus, automatically produced bindings could lead to dangerous behavior, and the

 programmer does need to be aware of the intricate behavior of the C++ classes that are bound.

 The second point is more about the specific features that both languages do and do not support.
 Some notable examples might be keyword arguments and garbage collection in Python and
 function overloading and polymorphism in C++. While pybind11 does a reasonably good job at
 providing facilities for bridging that gap, those facilities typically require additional work. Some of
 that work can be automated, e.g., function overloading, but some might require manual
 intervention, e.g., specifying the reference management policy.

 It should be clear at this point that some user customization is necessary for any reflection-based
 Python bindings implementation. We can approach that problem in two ways:

 ● By providing library-specific hooks
 ● By creating custom attributes

 C/C++

 C/C++

 Library-specific hooks can be implemented in a multitude of ways. A simple way is to create a
 constexpr list of modifications for reflected entities, like in the example below:

 constexpr auto customizations = {
 {^CrossingEngine::getAsks,
 return_value_policy::reference_internal},
 {^Order::side,
 value_access_policy::readonly},

 };

 bind_class<CrossingEngine>(scope, customizations);
 bind_class<Order>(scope, customizations);

 On the positive side, with this approach, it is possible to create and customize bindings of a code

 base that the bindings implementer has no control over. On the negative side, the customizations

 are disjoint from the C++ code that is being bound; therefore, there is a risk of the two diverging,

 and errors being introduced.

 Another option is to attach custom attributes to the code that is being bound:

 struct CrossingEngine {
 [[refl_bind::return_policy("reference_internal")]]
 std::vector<Order> const& getAsks() const { return asks; }

 [[refl_bind::return_policy("reference_internal")]]
 std::vector<Order> const& getBids() const { return bids; }

 ...
 };

 On the positive side, with this approach, customizations would naturally evolve alongside the

 code. On the negative side, adding user-defined attributes requires control of the source code

 that is the subject of bindings and, what is probably more important, adding the support for

 user-defined attributes to the C++ language, lifting the requirement of ignorability of attributes , 13

 and adding support for reflecting on attributes.

 13 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2552r0.pdf

 C/C++

 We believe that both approaches to customizations are valuable in their own right, with

 user-defined attributes being less error-prone, and, therefore, preferable where applicable.

 Parameter Names

 Python’s keyword arguments allow specifying function parameter names and their values at the

 point where a function is called. This feature improves readability and so is used quite heavily.

 Therefore, it is desirable to make keyword arguments automatically available with C++/Python

 bindings. The natural way of doing so is to reflect on parameter names. However, this is

 dangerous. C++ parameter names are not part of the function signature and can change between

 function declaration and definition – and even across different declarations of the same function.

 The code below illustrates this problem: 14

 # include <experimental/meta>
 # include <iostream>

 using namespace std::experimental::meta;

 // declaration 1
 void func(int x, int y);

 void print_func_params1() {
 std::cout << "func param names are: " ;
 template for (constexpr auto e : param_range(^func)) {

 std::cout << name_of(e) << ", " ;
 }
 std::cout << "\n" ;

 }

 // declaration 2
 void func(int a, int b);

 void print_func_params2() {
 std::cout << "func param names are: " ;
 template for (constexpr auto e : param_range(^func)) {

 std::cout << name_of(e) << ", " ;
 }
 std::cout << "\n" ;

 }

 14 https://cppx.godbolt.org/z/coq6KhvdK

https://cppx.godbolt.org/z/coq6KhvdK

 C/C++

 int main() {
 print_func_params1(); // prints: func param names are: x, y,
 print_func_params2(); // prints: func param names are: a, b,

 }

 Thus, reflecting on parameter names makes the code fragile, as developers don’t expect that

 changing forward declaration parameter names will impact the output of the program in any way.

 A quick survey of different compilers has found that there’s no fixed pattern of how function

 signatures are evaluated across the different declarations of a function that are accessible from a

 translation unit. Some compilers use the first declaration that they parse, while others use the

 last. A solution that has gained consensus in SG7 is that if reflecting on parameter names results

 in more than one name for a parameter, then that reflection should be considered invalid, and a

 compile time error should be raised. Alternatively, the first or last declaration could be chosen,

 provided a diagnostic is emitted, letting the developer know about the choice and its line of

 code.

 Another approach for creating unique parameter name lists is to introduce an attribute that

 explicitly specifies a function declaration or definition that should be used to infer parameter

 names. A function declared with that attribute, e.g., “infer_param_names” could be used to infer

 parameter names, rather than any other declaration or definition. This approach assumes that the

 C++ code to be bound is accessible to the developer who generates Python bindings, and the

 attribute is used in only one declaration, or the definition. E.g.,

 // A declaration of function foo. Parameter names used here are
 ignored.

 void foo(int n, int m);

 // Another declaration of function foo, with the special
 attribute.

 C/C++

 [[refl_bind::infer_param_names]] // Parameter names seen by
 Python are taken from this declaration.

 void foo(int apples, int bananas);

 // Function definition. Parameter names used here are ignored.

 void foo(int a, int b) {

 return a + b;

 }

 In the above example, the function foo()’s parameter name list as seen by Python would be

 {“apples”, “bananas"}, as indicated by the attribute infer_param_names.

 Expanding a Range of Parameters

 Consider a use-case where we need to expand a function parameter range into a range of names

 of those parameters:

 struct X {
 void fun(int y, float z) {};

 };
 void print(std::vector<py::arg> args) {

 for (auto const& arg : args)
 std::cout << arg.name << ',' ;

 std::cout << '\n' ;
 }

 int main() {
 constexpr auto param_range = param_range(^X::fun);
 print({/* expand to a vector of py::arg(param_name) */});

 }

 There are multiple ways to achieve this.

 1. py::arg(meta::name_of(param_range))...

 It is unclear whether this syntax would work, as we see no examples of range pack

 expansion for a range of reflections, without using the splicing operator in P1240r2.

 2. ...py::arg(meta::name_of([:param_range:]))...

 The meta::name_of(meta::info) takes a meta::info object, so this is unlikely to

 work; in fact we can confirm that meta::name_of([:*param_range.begin():]) 15

 does not compile.

 3. ...py::arg([:meta::name_of(param_range):])...

 Similarly applying meta::name_of(meta::info) inside a splicing expression also

 does not compile . 16

 4. ...py::arg(meta::name_of(^[:param_range:]))...

 This will probably work since meta::name_of(^[:*param_range.begin():])
 compiles fine , though the need to utilize ^ operator twice seems a bit clunky 17

 ...py::arg(meta::name_of(^[:meta::param_range(^X::fun):]))...

 5. py::arg(meta::names_of(param_range))

 This was an alternative proposed during the SG7 meeting where the initial draft of this

 paper was presented. While the proposed names_of library function would produce a list

 of strings from a range of parameters, it would not be able to generate py::arg s from a

 range of parameters. Simply doing py::arg(meta::names_of(param_range))
 would result in py::arg(“y”s,“x”s) instead of the desired { py::arg(“y”s),
 py::arg(“x”s) } .

 ABI Compatibility

 While the discussion of ABI compatibility is not strictly related to the usage of reflection for

 creating Python bindings, it has been an important consideration in C++/Python bindings

 discussion. ABI compatibility issues could occur in two cases:

 1. Bindings were created with a Python library version that is incompatible with the Python

 interpreter that is loading them.

 17 https://cppx.godbolt.org/z/9qnbn9x5G

 16 https://cppx.godbolt.org/z/a8ee54Ehe

 15 https://cppx.godbolt.org/z/rKb5WjGj9

https://cppx.godbolt.org/z/9qnbn9x5G
https://cppx.godbolt.org/z/a8ee54Ehe
https://cppx.godbolt.org/z/rKb5WjGj9

 2. A type that is passed between two Python/C++ binding libraries has different binary

 representations between the two.

 Point 1 is a ubiquitous problem for many Python features, and we will not be discussing it here.

 For point 2, the problem can typically occur when bindings are shared across libraries owned by

 different teams. To visualize this, consider three C++ libraries: A, B, and C, with the caveat that

 both A and B depend on C. It can be easily observed that if A creates an object of a type X

 belonging to C, which is subsequently passed to B, both A and B must use the same binary

 representation of X. To solve this problem at scale, we can see two approaches - using an

 integration build or fat bindings.

 Integration Build

 With this approach, all libraries and their bindings are built from source together and are

 deployed together. This way, the possibility of having multiple libraries with the same

 dependency, but different ABI representations, is eliminated

 Pros

 ● Allows bindings to be re-used across libraries

 ● Each library is comprised only the necessary binary code 18

 ● Handles singletons without additional work

 Cons

 ● Build and deployment time increase, all dependent libraries must be available when the

 integration build starts

 ● Can’t be safely used out of the box with the Python Package Index (PyPI)

 Fat Bindings

 With this approach, every binding library statically links its dependencies, hides symbols, and

 exposes every C++ type as a distinct type in Python, hence avoiding collisions.

 Pros

 ● No library re-use and hence no ABI problems 19

 ● Safe to use with the Python Package Index (PyPI)

 19 Notably pybind11 has an added feature that tries to recognize “compatible” types by additional means,
 which might still cause ABI compatibility problems.

 18 Only the code that is the subject of bindings and the bindings code itself. External dependencies and
 their bindings can be dynamically loaded by Python at runtime.

 Cons

 ● Not possible to share singletons among libraries without additional logic 20

 ● Library sizes are larger, as each library comprises both its own binary code and the binary

 code of all its dependencies

 ● Bindings cannot be re-used out of the box

 Comparison with Classdesc

 In the absence of type information from the compiler, the C++ language exposes limited type

 information to the programmer, and so some form of a preprocessing system is required to obtain

 this information. Classdesc could be considered a static reflection system. At its core, it is a C++

 preprocessor that reads C++ header files and generates overloaded function templates (or

 functor objects in later versions) that recursively call themselves on members of the class. The

 collection of overloaded functions is called a descriptor, and they are global functions. Classdesc

 consists of a simplified C++ parser/code generator along with support libraries implementing a

 range of reflection tasks, such as serialization and Python bindings. Classdesc classes are

 integrated with the build system, e.g., with a Makefile, and thus evolve with the evolution of the

 underlying C++ classes.

 Classdesc has been used for generating Python bindings via Boost.Python. pybind11 ‘s roots are

 also in Boost.Python, and thus the syntax for creating Python bindings is similar in both libraries.

 Value-based reflection APIs have the benefit of being able to work on meta-information from the

 compiler itself, without having to pre-process code to produce an additional layer of classes that

 enable reflection. Classdesc suffers from some implementation nuances, such as not being able

 to reflect on functions that return pointers, while value-based reflection suffers from issues such

 as not having a complete set of reflection APIs, or missing or buggy implementation features in

 the compiler.

 In terms of lines of code eliminated, the boilerplate lines of code eliminated by Classdesc are

 offset by the new code for shim classes needed for specific C++ features, such as containers,

 const and mutable attributes.

 In terms of build times and memory consumed, experiments need to be carried out compiling the

 same application package using Classdesc vs. value-based reflection, to arrive at comparative

 numbers. Both approaches lead to increased build times and memory usage.

 20 Since each extension links in all their dependencies and hides symbols, each module has its own version
 of a singleton. We do not know of any generic solution to this problem.

 Appendix

 1. Classdesc: C++ Reflection for Python Binding -

 https://accu.org/journals/overload/27/152/standish_2682/

 2. P2320R0 - The Syntax of Static Reflection -

 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2320r0.pdf

 3. P1240R2 - Scalable Reflection in C++ -

 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1240r2.pdf

 4. Pybind11 - https://pybind11.readthedocs.io/en/stable/

 5. Programming for every language, everywhere all at once - CoreCpp ‘22 talk -

 https://www.youtube.com/watch?v=43Tmqn-sFsk

 6. Reflection on attributes: https://wg21.link/p1887

https://accu.org/journals/overload/27/152/standish_2682/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2320r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1240r2.pdf
https://pybind11.readthedocs.io/en/stable/
https://www.youtube.com/watch?v=43Tmqn-sFsk
https://wg21.link/p1887

