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Abstract

After long, careful, and hopefully thorough deliberation, SG21 is delivering in this paper a
proposal for a Contracts facility that has been carefully considered with the highest bar possible
for consensus. With the features proposed here, C++ users will at long last have the ability to
add contract assertions that may be leveraged in their ecosystems in numerous ways.
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Revision 1 (October 2023 mailing)
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• Various minor additions and clarifications

Revision 0 (Post 2023-06 Varna Meeting Feedback)

• Original version of the paper gathering the post-Varna SG21 consensus for the contents of the
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1 Introduction
There is a long and storied history behind the attempts to add a Contracts facility to C++. The
current step we, collectively, are on in that journey is for SG21 to produce a contracts MVP as part
of the plan set forth in [P2695R0]. This paper is that MVP.

In this paper you will find three primary sections. The first, Section 2, introduces the general
concepts and the terminology that will be used throughout this paper and provides an overview over
the scope of the proposal. The second, Section 3, describes the design of the proposed Contracts
facility carefully, clearly, and precisely. The third, Section 4, contains the formal wording changes
needed (relative to the current draft C++ standard) to add Contracts to the C++ language. This
paper is intended to contain enough information to clarify exactly what we intend for Contracts to
do, and contain the needed wording to match that information.

What this paper is explicitly not is a collection of motivation for the use of contracts, instructions
on how to use them, the history of how this design came to be, or an enumeration of alternative
designs that have been considered. Do not fear if you are looking for such information, however,
for it is all amply available in the sister-paper to this one, [D2899R0] — Contracts for C++ —
Rationale. That paper will contain, for each section or subsection of the design section of this paper,
as complete a history as possible for the decisions in that section. That paper will also, importantly,
contain citations to the many papers written by the valiant members of WG21 and SG21 that have
contributed to making this proposal a complete thought.

TODO: Note that there are still currently a number of remaining open design questions
about the design presented in this paper. More details on the ongoing discussions related to
those decisions can be found in [P2896R0], and a brief description of each of those issues be
presented here in a box like this one.

2 Overview
We will begin by providing the general concepts and the terminology that will be used throughout
this paper (and hopefully, in general, many of the other papers discussing these topics) as well as
an overview over the scope of the proposed Contracts facility.

2.1 What are Contracts?

A contract is a formal interface specification for a software component such as a function or a class.
It is a set of conditions that expresses expectations on how the component interoperates with other
components in a correct program, in accordance with a conceptual metaphor with the conditions
and obligations of legal contracts.

A contract violation occurs when a condition that is part of a contract does not hold when the
relevant program code is executed. A contract violation usually constitutes a bug in the code, which
distinguishes it from an error. Errors are often recoverable at runtime, while contract violations can
usually only be addressed by fixing the bug in the code.
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A precondition is a part of a function contract where the responsibility for satisfying it rests in
the hands of the caller of the function. Generally, these are requirements placed on the arguments
passed to a function and/or the global state of the program upon entry into the function.

A postcondition is a part of a function contract where the responsibility for satisfying the condition
lies in the hands of the callee, i.e. the implementer of the function itself. These are generally
conditions that will hold true regarding the return value of the function or the state of global objects
when a function completes execution normally.

An invariant is a condition on the state of an object, or a set of objects, that is maintained over a
certain amount of time. A class invariant is a condition that a class type maintains throughout
the lifetime of an object of that type between calls to its public member functions. There are other
kinds of invariants, such as loop invariants. Often these are expected to hold on the entry or exit of
functions, or at specific points in control flow, and they are thus amenable to checking using the
same facilities that check preconditions and postconditions.

Contracts are often specified in human language in the documentation of the software, for example
in the form of comments within the code or in a separate specification document; a contract specified
in this way is a plain language contract. For example, the C++ Standard defines plain language
contracts — preconditions and postconditions — for the functions in the C++ Standard Library.

Conditions that are part of a contract can also be specified in code. A language feature that allows
the programmer to specify contract conditions in code is called a Contracts facility. Programming
languages such as Eiffel and D have a Contracts facility; this paper proposes a Contracts facility for
C++. A Contracts facility can make contract conditions checkable — at runtime and at compile
time — to detect contract violations, verifiable, usable to guide static analysis and optimization,
and consumable by other tooling. When used correctly, this approach can significantly improve the
safety and correctness of software.

2.2 Components of the proposed Contracts facility

A contract assertion is a syntactic C++ construct that contains the information needed to specify
an algorithm to detect the violation of a condition that is part of a contract.

We propose three kinds of contract assertions:

• A precondition specifier is attached to a function and is evaluated after function parameters
are initialized and before the function body begins.

• A postcondition specifier is attached to a function and is evaluated when a function returns
normally.

• An assertion expression is an expression of type void that may be placed wherever a void
expression may be placed, and is evaluated when control flow reaches it.

Precondition and postcondition specifiers are named what they are because, in general that is
the kind of contract condition for which they detect violations. Precondition and postcondition
specifiers can be added to the declarator of a function or lambda expression, and are collectively
called function contract specifiers; assertion expressions are expressions of type void and can be
placed anywhere such expressions are allowed.
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Each contract assertion has a predicate which is a potentially evaluated expression that will be
contextually converted to bool in order to identify contract violations. When it would evaluate to
true, there is no contract violation. When it would evaluate to false, there is a contract violation.
Other results that pass through the evaluation of the contract assertion, such as throwing, are
treated as contract violations as well. Other results that do not pass through the evaluation of the
contract assertion, such as terminating, entering an infinite loop, or invoking std::longjmp, happen
as they would when evaluating any other C++ expression.

Each contract assertion has points of evaluation based on its kind and syntactic position. Precondition
specifiers evaluate immediately after function parameters are initialized. Postcondition specifiers
evaluate immediately after local variables in the function are destroyed when a function returns
normally. Assertion expressions evaluate at the point in the function where control flow reaches
them.

There is a function ::handle_contract_violation, called the contract-violation handler , that will
be invoked when a contract violation has been detected. The implementation-provided version
of this function, the default contract-violation handler , has implementation-defined effects; the
recommended practice is that the default contract-violation handler outputs diagnostic information
about the contract violation. It is implementation-defined whether this function is replaceable,
giving the user the ability to install their own user-defined contract-violation handler at link time
by defining their own function with the appropriate name and signature.

The evaluation of a contract assertion does not necessarily mean evaluating its predicate. The exact
meaning depends on the contract assertion semantic chosen, which is done in an implementation-
defined manner — most likely controlled by a command-line option to the compiler, although
platforms might provide other avenues for selecting a semantic, and the exact forms and flexibility
of this selection is not mandated by this proposal. Each individual evaluation of a contract assertion
is done with a specific contract semantic, and the implementation-defined mechanism for choosing
this semantic may vary from one evaluation to the next (or, possibly, may be the same across all
evaluations — read your implementation documentation and look at how you configured your build
to find out.)

The ignore semantic does nothing. Note that even though the predicate of an ignored contract
assertion is not evaluated, it is still parsed and is a potentially-evaluated expression, thus it odr-uses
entities that it references. Therefore it must always be a well-formed, evaluable expression.

The enforce semantic determines if there has been a contract violation. If so, the contract-violation
handler will be invoked. If the contract-violation handler returns normally, the program will be
terminated in an implementation-defined manner. If there is no contract violation, program execution
will continue from the point of evaluation of the contract assertion.

The observe semantic determines if there has been a contract violation. If so, the contract-violation
handler will be invoked. If there is no contract violation, or the contract-violation handler returns
normally, program execution will continue from the point of evaluation of the contract assertion.

Because both the enforce and observe semantics must identify if there has been a contract violation,
these are called checked semantics. They will always either evaluate the contract predicate or
evaluate a side-effect free expression that provably produces the same result as the predicate would.
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Because the ignore semantic does not need to, nor is it even allowed to, detect a contract violation,
it is called an unchecked semantic. The predicate will never be evaluated.

The evaluation of a contract assertion with a checked semantic is also called a contract check;
evaluating a contract assertion with a checked semantic is also called checking the contract assertion.

When checking a contract assertion, the value of the predicate must be determined, either by
evaluating a side-effect free expression that produces the same result or by evaluating the expression
itself. A side-effect free expression would be one that has no side effects observable outside of the
cone of evaluation of the expression — i.e., the only core-language side effects it contains are those
that modify (non-volatile) variables whose lifetime starts and ends within the expression itself. If the
resulting value is true, control flow continues as normal; when the value is false or an exception is
thrown, there is a contract violation. Other forms of abnormal exit from evaluation (such as longjmp
or program termination) happen as normal.

Note that not all contract conditions can be specified via a contract assertion, and of those who can,
some cannot be checked at runtime without violating the complexity guarantees of the function (e.g.
the precondition of binary search that the input range is sorted), without additional instrumentation
(e.g. a precondition that a pair of pointers denotes a valid range), or at all. Therefore, we do not
expect that function contract specifiers can, in general, cover the entire plain-language contract of a
function; however, they should always specify a subset of the plain-language contract.

3 Proposed design

3.1 Syntax

We propose three kinds of contract assertions: precondition specifiers, postcondition specifiers, and
assertion expressions, introduced with pre, post, and contract_assert, respectively, followed by the
predicate in parentheses:

int f(const int x)
pre (x != 1)
post (r : r != 2)

{
contract_assert (x != 3);
return x;

}

The predicate is an expression contextually convertible to bool. The grammar requires the expression
inside the parentheses to be a conditional-expression. This guards against the common typo a = b
instead of a == b by making the former ill-formed without an extra pair of parentheses around the
assignment-expression.

3.1.1 Function contract specifiers

A function contract specifier is a contract assertion that may be applied to the declarator of a
function (see Section 3.2.6 for which declarations) or of a lambda expression. We propose two kinds
of function contract specifiers: precondition specifiers and postcondition specifiers.

A precondition specifier is introduced with pre:
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int f(int i)
pre (i >= 0); // precondition

A postcondition specifier is introduced with post:
void clear()

post (empty()); // postcondition

A postcondition specifier may introduce a name to the return object of the function, called the
return-name, via a user-defined identifier preceding the predicate and separated from it by a colon:

int f(int i)
post (r: r >= i) // r refers to the return object of f

The exact semantics of the return-name are discussed in Section 3.2.3.

pre and post are contextual keywords. They are parsed as introducing a precondition or postcondition
specifier, respectively, only in the syntactic position where these appear. In all other contexts, they
are parsed as identifiers. This minimizes the possibility that the introduction of pre and post could
break existing C++ code.

Function contract specifiers appear at the end of a function declarator, immediately before the
semicolon (or, if the declaration is a definition, immediately before the function body):

void f(int i) override final
pre(i >= 0);

template <typename T>
auto g(T x) -> bool

requires std::integral<T>
pre (x > 0);

The only exception to this is the pure-specifier = 0, which appears after the function contract
specifiers:

struct X
{

virtual void f() pre(c) = 0;
};

For lambda expressions, function contract specifiers appear at the end of the declarator, immediately
before the opening brace:

int f() {
auto f = [] (int i)

pre (i > 0)
{ return ++i) };

return f(42);
}

There may be any number of function contract specifiers, in any order, specified for a function.
Precondition specifiers do not have to precede postcondition specifiers, rather they may be freely
intermingled:
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void f()
pre (a)
post (b)
pre (c); // OK

3.1.2 Assertion expressions

An assertion expression is a kind of contract assertion that is an expression of type void and
may appear anywhere such an expression may appear. An assertion expression is introduced with
contract_assert followed by the predicate in parentheses:

void f()
{

contract_assert(i != 0); // assertion (as a statement)
}

class X
{

int* _p;
public:

X(int* p)
: _p(contract_assert(p), p)) // assertion (as a subexpression)
{}

};

Unlike pre and post, contract_assert is a full keyword. This is necessary in order to be able to
disambiguate an assertion expression from a function call expression. The keyword contract_assert
is chosen instead of assert to avoid a clash with the existing assert macro from header <cassert>.

3.2 Semantic rules for contract assertions

3.2.1 Name lookup and access control

For precondition specifiers, name lookup in the predicate is generally performed as if the predicate
came immediately before the body of the function or lambda expression. For functions, the declaration
to which the contract assertion is attached is considered instead of the declaration that is part of
the function’s definition, i.e. name lookup in the predicate uses the parameter names that are visible
to the contract assertion and not those visible to the function definition.

Access control is applied based on that behavior, i.e. the predicate may reference anything that
might be referenced from within the body of the function or lambda expression (however, there is a
special rule that the program is ill-formed if such references trigger implicit lambda captures; see
Section 3.2.11). When the precondition specifier is part of a member function, protected and private
data members of that function’s type may be accessed. When a precondition is part of a function
that is a friend of a type, full access to that type is allowed.

For postcondition specifiers, name lookup first considers its return value name (see Section 3.2.3),
if any, to be in a synthesized enclosing scope around the precondition. For all other names, name
lookup and access control is performed in the same fashion as for a precondition specifier.
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For assertion expressions, name lookup and access control occurs as if the predicate’s expression
were located at the place where the assertion expression is located.

3.2.2 Implicit const-ness of local entities

A contract check is supposed to observe the state of the program, not change it, exceptions such as
logging notwithstanding. To prevent accidental bugs due to unintentional modifications of entities
inside a contract predicate, identifiers referring to local variables and parameters inside a contract
predicates are const lvalues. This is conceptually similar to how identifiers referring to members are
implicitly const lvalues in a const member function. In particular, in a contract predicate,

• an identifier that names a variable with automatic storage duration of object type T, a variable
with automatic storage duration of type reference to T, or a structured binding of type T whose
corresponding variable has automatic storage duration, is an lvalue of type const T;

• *this is implicitly const.

These const amendments are shallow (on the level of the lvalue only); attempting to invent “deep
const” rules would make raw pointers and smart pointers likely behave differently, which is not
desirable. The type of lvalues referring to namespace-scope or local static variables is not changed;
such accesses are more likely to be intentionally modifying, e.g. for logging or counting:

int global = 0;

void f(int x, int y, char *p, int& ref)
pre((x = 0) == 0) // error: assignment to const lvalue
pre((*p = 5)) // OK
pre((ref = 5)) // error: assignment to const lvalue
pre((global = 2)) // OK

{
contract_assert((x = 0)); // error: assignment to const lvalue
int var = 42;
contract_assert((var = 42)); // error: assignment to const lvalue

static int svar = 1;
contract_assert((svar = 1)); // OK

}

Class members declared mutable can be modified as before. Expressions that are not lexically part of
the contract condition are not changed. The result of decltype(x) is not changed, as it still produces
the declared type of the entity denoted by x. However, decltype((x)) yields const T&, where T is
the type of the expression x.

Modifications of local variables and parameters inside a contract predicate are possible — although
discouraged — via applying a const_cast, except that modifications of const objects continue to be
undefined behavior as elsewhere in C++. This includes parameters required to be declared const
because they are used in a postcondition (see Section 3.2.4):

int g(int i, const int j)
pre(const_cast<int&>(++i)) // OK (but discouraged)
pre(const_cast<int&>(++j)) // UB
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post(const_cast<int&>(++i)) // OK (but discouraged)
post(const_cast<int&>(++j)) // UB

{
int k = 0;
const int l = 1;
contract_assert(const_cast<int&>(++k)); // OK (but discouraged)
contract_assert(const_cast<int&>(++l)); // UB

}

Overload resolution results (and thus, semantics) may change if a predicate is hoisted into or out of
a contract predicate:

struct X {};
bool p(X&) { return true; }
bool p(const X&) { return false; }

void my_assert(bool b) { if (!b) std::terminate(); }

void f(X x1)
pre(p(x1)) // fails

{
my_assert(p(x1)); // passes

X x2;
contract_assert(p(x2)); // fails
my_assert(p(x2)); // passes

}

However, arguably such an overload set that yields different results depending on the const-ness of
the parameter is in itself a bug.

When a lambda inside a contract predicate captures a non-function entity by copy, the type of the
implicitly declared data member is T, but (as usual) naming such a data member inside the body of
the lambda yields a const lvalue unless the lambda is declared mutable. When the lambda captures
such an entity by reference, the type of an expression naming the reference is const T. When the
lambda captures this of type “pointer to T”, the type of the implicitly declared data member is
“pointer to const T”:

void f(int x)
pre([x] { return x = 2; }()) // error: x is const
pre([x] mutable { return x = 2; }()) // OK, modifies the copy of the parameter
pre([&x] { return x = 2; }()) // error: ill-formed assignment to const lvalue
pre([&x] mutable { return x = 2; }()); // error: ill-formed assignment to const lvalue

struct S {
int dm;
void mf() // not const

pre([this]{ dm = 1; }()) // error: ill-formed assignment to const lvalue
pre([this] () mutable { dm = 1; }()) // error: ill-formed assignment to const lvalue
pre([*this]{ dm = 1; }()) // error: ill-formed assignment to const lvalue
pre([*this] () mutable { dm = 1; }()) // OK, modifies a copy of *this

{}
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};

3.2.3 Postcondition specifiers: referring to the return value

A postcondition specifier may optionally specify a return-name introducing a name that refers to
the return object of the function. This is conceptually similar to how the identifiers in a structured
binding are not references, but merely names referring to the elements of the unnamed structured
binding object. As with a variable declared within the body of a function or lambda expression,
the introduced name cannot shadow function parameter names. Note that this introduced name is
visible only in the predicate to which it applies, and does not introduce a new name into the scope
of the function.

For a function f with the return type T, the return-name is an lvalue of type const T; decltype(r)
is T, while decltype((r)) is const T&. This is consistent with the implicit const-ness of identifiers
naming local entities and parameters in contract predicates (see Section 3.2.2).

Modifications of the return value in the postcondition predicate are possible via applying a const_cast,
although they are strongly discouraged. Note that even in the case that the object is declared const
at the callsite or the function’s return type is const-qualified, such modifications are not undefined
behavior, because at the point where the postcondition is checked, initialization of the result object
has not yet completed, and therefore const semantics do not apply to it:

struct S {
S();
S(const S&) = delete; // non-copyable non-movable
int i = 0;
bool foo() const;

};

const S f()
post(r: static_cast<S&>(r).i = 1) // OK (but discouraged)

{
return S{};

}

const S y = f(); // not UB
bool b = f().foo(); // not UB

It might be useful to clarify the relevant existing wording to make this intent more clear; such a
clarification is being proposed in [CWG2841].

The address of the return-name refers to the address of the return object, except for trivially
copyable types, for which it may also refer to a temporary object created by implementation that
will later be used to initialise the return object; this dispensation exists to make sure that adding a
postcondition specifier does not alter a function’s ABI by making it impossible to pass the return
value in a register.

This means that for non-trivially copyable types, we now have a reliable way to obtain the address
of the return object inside a postcondition specifier, something that was previously not possible:
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X f(X* ptr)
post(r: &r == ptr) // guaranteed to pass if X is not trivially copyable

{
return X{};

}

int main() {
X x = f(&x);

}

If a postcondition names the return value on a non-templated function with a deduced return type
that postcondition must be attached to the declaration that is also the definition (and thus there
can be no earlier declaration):

auto f1() post (r : r > 0); // error, type of r not readily available

auto f2() post (r : r > 0) // ok, type of r is deduced below
{ return 5; }

template <typename T>
auto f3() post (r : r > 0); // ok, postcondition instantiated with template

auto f4() post (true); // ok, return value not named

3.2.4 Postcondition specifiers: referring to parameters

If a function parameter is odr-used by a postcondition specifier’s predicate, that function parameter
must have reference type or be const. That function parameter must be declared const on all
declarations of the function (even though top-level const-qualification of function parameters is
discarded in other cases) including the declaration that is part of the definition:

void f(int i) post ( i != 0 ); // error: i must be const

void g(const int i) post ( i != 0 );
void g(int i) {} // error: missing const for i in definition

void h(const int i) post (i != 0);
void h(const int i) {}
void h(int i); // error: missing const for i in redeclaration

Without this rule, it would be impossible to reason about postcondition predicates on a function
declaration because the parameter value might have been modified in the definition.

Consider, for example the following declaration of a clamp function:
double clamp(double min, double max, double value)

post( r : (value < min && r == min)
|| (value > max && r == max)
|| (r == value) );
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The postcondition is clearly intended to validate that value is clamped to be within the range
[min,max]. The following, however, would be an implementation of clamp that would both fail to
violate the postcondition and fail to be remotely useful:

double clamp(double min, double max, double value)
{

min = max = value = 0.0;
return 0.0;

}

Requiring that the parameters be const both such extreme failures and subtle variations on this
theme, allowing the caller to reason about the meaning of the postcondition without the need
to inspect the implementation to validate that it does not modify the variables on which the
postcondition depends.

3.2.5 Not part of the immediate context

The predicate of a function contract specifier, while lexically a part of a function declaration, is not
considered part of the immediate context.

template <std::regular T>
void f(T v, T u)

pre ( v < u ); // not part of std::regular

template <typename T>
constexpr bool has_f =

std::regular<T> &&
requires(T v, T u) { f(v, u); };

static_assert( has_f<std::string>); // OK: has_f returns true
static_assert(!has_f<std::complex<float>>); // ill-formed: has_f causes hard instantiation error

As a consequence, we may have a function template that works well for a given type, but stops
working the moment we add a contract assertion.

3.2.6 Multiple Declarations

Any function declaration is a first declaration if there are no other declarations of the same function
reachable from that declaration. Function contract specifiers may only be attached to function
declarations that are first declarations.

It is ill-formed, no diagnostic required (IFNDR) if there are multiple first declarations for the same
function that have different lists of contract assertions.

In effect, all places where a function might be used or defined must see an equivalent list of function
contract specifiers attached to that function declaration.
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TODO: When comparing contract assertions on different function declarations, the com-
parison is done by applying the one-definition rule (ODR) to an imaginary function body
that contains the contract assertion predicate (with a similarly imaginary declaration for the
return value in scope). Function parameters, template parameters, and the return value may
all have different names — the ODR requires that the entities found by name lookup be the
same.

3.2.7 Virtual Functions

If a virtual function overrides another, it may not have function contract specifiers attached directly
to it. In other words, only the root of a virtual function hierarchy may have function contract
specifiers.

A function that overrides a function with contract assertions will inherit those contract assertions.
The contract assertions will be evaluated in the context of the base class function declaration.

It is ill-formed for a function to override multiple functions from different base classes if any of them
have function contract specifiers.1

TODO: There is ongoing discussion about how to handle virtual functions for the MVP or
whether contract assertions on virtual functions should even be allowed.

3.2.8 Defaulted and deleted functions

It is ill-formed for a function defaulted on its first declaration to have precondition or postcondition
specifiers:

struct X {
X() pre (true) = default; // Error (pre on function defaulted on first declaration)

};

struct Y {
Y() pre (true); // OK (pre on function defaulted on non-first declaration)

};

Y::Y() = default;

Further, it is ill-formed for an explicitly deleted function to have precondition or postcondition
specifiers:

struct X {
X() pre (true) = delete; // Error

};

1See [P2954R0].
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3.2.9 Coroutines

It is ill-formed for a coroutine — i.e. a function containing a co_yield, co_return, or co_await state-
ment — to have precondition or postcondition specifiers. It is, however, valid to use contract_assert
within the body of a coroutine. This restriction might be relaxed in a future Standard.

3.2.10 Function Pointers

A contract assertion may not be attached to a function pointer. The contract assertions on a function
have no impact on its type, and thus no impact on what happens what a function with contracts is
converted into.

When a function is invoked through a function pointer, its function contract specifiers must still be
evaluated as normal.

3.2.11 Implicit lambda captures

For lambdas with default captures, contract assertions that are part of the lambda need to be
prevented from triggering lambda captures that would otherwise not be triggered. If all potential
references to a local entity implicitly captured by a lambda occur only within contract assertions
attached to that lambda (precondition or postcondition specifiers on its declarator or assertion
expressions inside its body), the program is ill-formed:

void test() {
auto f1 = [=] pre(i > 0) {}; // OK, no local entities are captured

int i = 1;

auto f2 = [=] pre(i > 0) {}; // error: cannot implicitly capture i here
auto f3 = [i] pre(i > 0) {}; // OK, i is captured explicitly
auto f4 = [=] {

contract_assert(i > 0); // error: cannot implicitly capture i here
};
auto f5 = [=] {

contract_assert(i > 0); // OK, i is referenced elsewhere
(void)i;

};
auto f6 = [=] pre([]{

bool x = true;
return [=]{ return x; }(); // OK, x is captured implicitly

}()) {};
}

Without such a rule, adding a contract assertion to a program could change the observable properties
of the closure type or cause additional copies or destructions to be performed, thereby altering the
program the contract assertion is supposed to verify.
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3.3 Evaluation and contract-violation handling

3.3.1 Point of evaluation

All precondition specifiers attached to a function are evaluated after the initialization of function
parameters and before the evaluation of the function body begins. Note that a constructor’s member
initializer list and a function-try block are considered to be part of the function body.

All postcondition specifiers attached to a function are evaluated after the return value has been
initialized and local automatic variables have been destroyed, but prior to the destruction of function
parameters.

Multiple precondition or postcondition specifiers are evaluated in the order in which they are
declared.

An assertion expression will be evaluated at the point where control flow reaches the expression.

3.3.2 Contract Semantics: ignore, enforce, observe

Each evaluation of a contract assertion is done with a contract semantic that is implementation-
defined to be one of ignore, enforce, or observe. Chains of consecutive evaluations of contract
assertions may have individual contract assertions repeated any number of times (with certain
restrictions and limitations — see Section 3.3.5), and may involve evaluating the same contract
assertion with different semantics.

The ignore semantic does not attempt to determine if there has been a contract violation. It is
therefore an unchecked semantic. The only effects of an ignored contract are that the predicate is
parsed and the entities it references are odr-used. Note that this makes an ignored contract assertion
different from an ignored assert macro (if NDEBUG is defined): in the former case, the predicate is
never evaluated, but it still needs to be a well-formed, evaluable expression, while in the latter case,
the tokens comprising the predicate are entirely removed by the preprocessor.

The enforce semantic is a checked semantic. It determines if there has been a contract violation. If so,
the contract-violation handler will be invoked. If the contract-violation handler returns normally, the
program will be terminated in an implementation-defined manner. If there is no contract violation,
program execution will continue from the point of evaluation of the contract assertion.

The observe semantic is a checked semantic. It determines if there has been a contract violation. If
so, the contract-violation handler will be invoked. If there is no contract violation, or the contract-
violation handler returns normally, program execution will continue from the point of evaluation of
the contract assertion.

In addition to the three contract semantics provided by the C++ Standard, an implementation may
provide additional contract semantics, with implementation-defined behavior, as a vendor extension.

3.3.3 Selection of Semantics

The semantic a contract assertion will have is implementation-defined. The selection of semantic
(ignore, enforce, or observe) may happen at compile time, link time, load time, or runtime. Different
contract assertions can have different semantics, even in the same function. The same contract
assertion may even have different semantics for different evaluations.
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The semantic a contract assertion will have cannot be identified through any reflective functionality
of the C++ language. It is therefore not possible to branch at compile time on whether a contract
assertion is checked or unchecked, or which concrete semantic it has. This is another important
difference between contract assertions and the assert macro.

It is expected that there will be various compiler flags to choose globally the semantics that will be
assigned to contract assertions, and that this flag does not need to be the same across all translation
units. Whether the contract assertion semantic choice can be delayed until link or runtime is also,
similarly, likely to be controlled through additional compiler flags.

It is recommended that an implementation provide modes to set all contract assertions to have, at
translation time, the enforce or the ignore semantic. Other additional flags are implicitly encouraged.

When nothing else has been specified by a user, it is recommended that a contract assertion will
have the enforce semantic. It is understood that compiler flags like -DNDEBUG, -O3, or similar might
be considered to be “doing something” to indicate a desire to prefer speed over correctness, and
these are certainly conforming decisions. The ideal, however, is to make sure that the beginner
student, when first compiling software in C++, does not need to understand contracts to benefit
from the aid that will be provided by notifying that student of their own mistakes.

3.3.4 Detecting a violation

When a contract assertion is being evaluated with a checked semantic it must be determined if the
predicate will not return true.

The contract assertion’s predicate may be evaluated, and a number of possible results may be
considered:

• If the predicate evaluates to true, there is no contract violation and execution will continue
normally after the point of evaluation of the contract assertion.

• If the predicate evaluates to false, there is a contract violation and the contract-violation
invocation process will begin with a detection_mode of predicate_false.

• If the evaluation of the predicate results in an exception escaping that exception will be caught
and, within the handler for that exception, the contract-violation invocation process will begin
with a detection_mode of evaluation_exception.

• If the evaluation of the predicate results in a call to std::longjmp or program termination
that process continues as normal.

If it can be determined that the predicate would evaluate to true or false then the predicate does
not need to be evaluated. In other words, the compiler may generate a side-effect free expression
that provably produces the same results as the predicate and evaluate that expression instead of
the predicate, effectively evaluating the predicate itself zero times. In such cases the side effects of
the predicate will not occur, even for an enforced or observed contract assertion. When this results
in a determination that the predicate would return false the contract-violation invocation process
will begin with a detection_mode of predicate_false.

18



3.3.5 Consecutive and Repeated Evaluations

A vacuous operation is one that should not, a priori, be able to alter the state of a program which a
contract could observe, and thus could not induce a contract violation. Examples of such vacuous
operations include

• doing nothing, such as an empty statement

• performing trivial initialization, including trivial constructors and value-initializing scalar
objects

• performing trivial destruction, including destruction of scalars and invoking trivial destructors

• initializing reference variables

• invoking functions as long as none of the function parameters require a nonvacuous operation
to initialize

• returning from a function, as long as the initialization of the return value does not require a
nonvacuous operation to be performed.

Two contract assertions shall be considered consecutive when they are separated only by vacuous
operations. A contract assertion sequence is a sequence of consecutive contract assertions. These
will naturally include:

• Checking all precondition specifiers on a single function when invoking that function

• Checking all postcondition specifiers on a single function when that function returns normally

• Checking consecutive assertion expressions

• Checking the precondition specifiers of a function and any assertion expressions that are at
the beginning of the body of that function

• Checking the precondition specifiers of a function f1 and the precondition specifiers of the first
function f2 invoked by f1, when all statements preceding the invocation of f2 and preparing
the arguments to the invoked function f2 involves no non-trivial operations

• Checking the postcondition specifiers of a function f1 and the precondition specifiers of the
next function f2 invoked immediately after f1 returns, when the destruction of the arguments
of f1 and the preparation of the arguments of f2 involve no non-trivial operations

At any point within a contract assertion sequence, any previously evaluated contract assertions may
be evaluated again with the same or a different contract semantic.2

In practice, this means that the preconditions and postconditions of a function may be checked, as
a group, any number of times.

3.3.6 The Contract-Violation Handler

The Contract-Violation handler is a function named ::handle_contract_violation that is attached
to the global module. This function will be invoked when a contract violation is detected.

2Note that an equivalent formulation of this is that the entire sequence of contract assertions already evaluated up
to a point may be repeated with an arbitrary subset of those contract assertions evaluated with the ignore semantic.
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This function

• shall return void,

• shall take a single argument of type const std::contracts::contract_violation&,

• may or may not be noexcept.

The implementation-provided version of this function is called the default contract-violation handler
and has implementation-defined effects. The recommended practice is that the default contract-
violation handler will output diagnostic information describing the pertinent properties of the
provided std::contracts::contract_violation object. There is no user-accessible declaration of the
default contract-violation handler provided by the Standard Library, and no way for the user to call
it directly.

Whether this function is replaceable is implementation defined. When it is replaceable, that replace-
ment is done in the same way it would be done for the global operator new and operator delete —
by defining a function with the correct name and a signature that satisfies the requirements listed
above. Such a function is called a user-defined contract-violation handler .

On platforms where there is no support for a user-defined contract-violation handler it is ill-formed,
no diagnostic required to provide a function with the name and signature needed to attempt to
replace the default contract-violation handler. This allows platforms to issue a diagnostic informing
a user that their attempt to replace the contract-violation handler will fail on their chosen platform.
At the same time, not requiring such a diagnostic allows use cases like compiling a translation unit
on a platform that supports user-defined contract-violation handlers but linking it on a platform
that does not — without forcing changes to the linker to detect the presence of a user-defined
contract-violation handler that will not be used.

3.3.7 The Contract-Violation Handling Process

Upon detection of a contract violation, the contract-violation handling process will begin.

A contract_violation object will be produced in an unspecified manner — it may already exist
in read-only memory, it may be populated at runtime on the stack. This object will be passed to
the violation handler, and its lifetime will continue at least through the point where the violation
handler completes execution. The same lifetime guarantee applies to any objects accessible through
the contract_violation object’s interface, such as the string returned by the comment property.

The value of the location property of the contract_violation is unspecified. It is recommended
that it be the source location of the caller of a function when a precondition is violated. For other
contract assertion kinds, or when the location of the caller is not used, it is recommended that the
source location of the contract assertion itself is used. Based on implementation and user choices it
may be empty or have some other value.

The value of the comment property is unspecified. It is recommended that it contain a textual
representation of the contract assertion’s predicate. Based on implementation and user choices it
may be empty, have a truncated or otherwise modified version of the contract assertion’s predicate,
or contain some other message intended to identify the contract assertion for the purpose of aiding
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in diagnosing the bug. The value of the comment should be a null-terminated multi-byte string
(NTMBS) in the string literal encoding.

Note that an implementation that chooses to allow users to select a mode where no information is
provided for the comment or location properties, and thus one would could assume that information
is not present in generated object files and executables, is still a conforming implementation.

The value of the detection_mode property indicates the shape of the event that led to invocation of
the contract-violation handler.

• A value of predicate_false means the predicate either was evaluated and produced a value of
false or the predicate would have produced a value of false if evaluated.

• A value of evaluation_exception indicates that the predicate was evaluated and an exception
escaped that evaluation.

• A value of evaluation_undefined_behavior indicates that the implementation has chosen to
invoke the contract-violation handler within a program execution with undefined behavior.
This is informative.

• Implementation-defined values indicate an alternate method in which a contract-violation
handler was detected.

The value of the semantic property indicates the semantic with which the contract assertion was
being evaluated when a contract-violation was detected.

The value of the will_continue property indicates whether control flow will resume after the point
of evaluation of the contract assertion should the contract-violation handler return normally. In
general this will have a value of true if the contract assertion was being evaluated with a semantic
of observe, and false if the semantic was enforce. For other implementation-defined semantics this
value must still be determined.

3.3.8 Compile-time Evaluation

TODO: The semantics of contract assertions during constant evaluation remain to be
determined; see [P2894R1].

3.3.9 Evaluation summary

A single evaluation of a contract assertion involves determining the semantic with which to evaluate
the contract assertion and then executing that semantic. When the semantic is a checked semantic,
i.e. enforce or observe, the result of the contract assertion’s predicate must be determined. If this
result is not true, the contract-violation handling process will be invoked.

For expository purposes, assume that we can represent the process with some magic compiler
intrinsics:

• std::contracts::contract_semantic __current_semantic(): return the semantic with which
to evaluate the current contract assertion. This may be a compile-time value or, based on
what the platform provides, even a runtime evaluation.
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• __check_predicate(X ): Determine the result of the predicate X — by either returning true
or false if the result does not need evaluation of X , or by evaluating X (and thus potentially
also invoking longjmp, terminating execution , or letting an exception escape the invocation of
this intrinsic).

• __handle_contract_violation(contract_semantic, detection_mode): Handle a contract viola-
tion of the current contract. This will produce a contract_violation object populated with the
appropriate location and comment for the current contract, along with the specified semantic
and detection mode. The lifetime of the produced contract_violation object and all of its
properties must last through the invocation of the contract-violation handler.

• __terminate_on_enforced_violation(): The implementation-defined mechanism via which
program execution is terminated when an enforced contract is violated.

Building from these intrinsics, the evaluation of a contract assertion is morally equivalent to the
following:

contract_semantic _semantic = __current_semantic();
if (contract_semantic::ignore == _semantic) {

// do nothing
}
else if (contract_semantic::observe == _semantic

|| contract_semantic::enforce == _semantic)
{

// checked semantic

// exposition-only variables for control flow
bool _violation; // violation handler should be invoked
bool _handled = false; // violation handler has been invoked

// check the predicate and invoke the violation handler if needed
try {

_violation = __check_predicate(X);
}
catch (...) {

// Handle violation within exception handler
_violation = true;
__handle_contract_violation(_semantic,

detection_mode::evaluation_exception);
_handled = true;

}
if (_violation && !_handled) {

__handle_contract_violation(_semantic,
detection_mode::predicate_false);

}

if (_violation && contract_semantic::enforce == _semantic) {
__terminate_on_enforced_violation();

}
}
else {

// implementation-defined _semantic
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}

If the semantic is known at compile time to be ignore, the above is functionally equivalent to
sizeof( (X) ? true : false ); — i.e., the expression X is still parsed and odr-used but it is only
used on discarded branches.

The invocation of the contract-violation handler when an exception is thrown by the evaluation
of the contract assertion’s predicate must be done within the catch block for that exception. The
invocation when no exception is thrown must be done outside the try block that would catch that
exception. There are many ways which these could be accomplished, the exposition-only boolean
variables above are just one possible solution.

One important takeaway from this equivalence is that, unlike most previous proposals and macro-
based Contracts facilities, the meaning of the contract assertion does not change based on whether
contracts are enabled or disabled, or any other aspect of compile-time contract configuration —
therefore, it is not a violation of the one-definition rule (ODR) to have the same contract assertion
evaluated with different semantics at different times by a single program.

3.4 Special cases

This section describes the behavior that follows from the rules specified above in some particular
noteworthy cases.

3.4.1 Predicates with side effects

The predicate of a contract assertion is an expression that, when evaluated, follows the normal
C++ rules for expression evaluation. It is therefore allowed to have observable side effects, such
as logging. However, due to the rules for violation detection (see 3.3.4) and for consecutive and
repeated evaluations (see 3.3.5), it is unspecified whether these side effects will be observed zero,
one, or multiple times when the contract assertion is checked. The usage of predicates with side
effects is generally discouraged.

3.4.2 Recursive contract violations

There is no dispensation to disable contract checking during the evaluation of a contract assertion’s
predicate or the evaluation of the contract-violation handler; in both cases contract checks behave as
usual. Therefore, if a contract-violation handler calls a function containing a contract assertion that
is violated, and this contract assertion is evaluated with a checked semantic, the contract-violation
handler will be called recursively. It is the responsibility of the user to handle this case explicitly if
they wish to avoid overflowing the call stack.

3.4.3 Throwing violation handlers

There are no restrictions on what a user-defined contract-violation handler is allowed to do. In
particular, a user-defined contract-violation handler is allowed to exit other than by returning, for
example terminating, calling longjmp, etc. In all cases, evaluation happens as described above. The
same applies to the case when a user-defined contract-violation handler that is not noexcept throws
an exception:
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void handle_contract_violation(const std::contracts::contract_violation& v)
{

throw my_contract_violation_exception(v);
}

Such an exception will escape the contract-violation handler and unwind the stack as usual, until it
is caught or control flow reaches a noexcept boundary. Such a contract-violation handler therefore
bypasses the termination of the program that would occur when the contract-violation handler
returns from a contract assertion evaluation with the enforce semantic.

For contract violations inside function contract specifiers, the contract-violation handler is treated
as if the exception had been thrown inside the function body. Therefore, if the function in question
is noexcept, a user-defined contract-violation handler that throws an exception from a precondition
or postcondition check results in std::terminate being called, regardless of whether the semantic is
enforce or observe.

TODO: It is currently undecided what the noexcept operator should return when directly
applied to an assertion expression or an expression that contains an assertion expression as a
subexpression. It is further undecided how contract assertions should behave for special mem-
ber functions defaulted on their first declaration that have a deduced exception specification
that must be deduced from a default member initializer or function argument that includes a
contract assertion.

3.4.4 Undefined behavior

If the evaluation of a contract assertion evaluates a predicate having undefined behavior, the
evaluation of the contract assertion itself has undefined behavior. Ini other words, there is no special
protection against predicates with undefined behavior. Given that the behavior is undefined, if an
implementation is capable of detecting this case, it is allowed to treat it as a contract violation; the
detection_mode of evaluation_undefined_behavior is provided for this purpose. Note that in this
case, the program is still considered to have undefined behavior; any specification of the behavior in
this mode would be a vendor-specific extension outside of the scope of the C++ Standard.

With regards to undefined behavior occurring elsewhere after a contract assertion has been checked,
the contract assertion does not formally constitute an optimization barrier that guards against
“time travel optimization” as the C++ Standard does not specify such things. Consider:

int f(int* p) pre ( p != nullptr )
{

std::cout << *p; // UB
}

int main()
{

f(nullptr);
}

This program has defined behavior if the contract semantic chosen for the precondition is enforce
— a contract violation will be detected and control flow will not continue into the function. If the
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selected semantic is ignore this program will have undefined behavior — control flow will always
reach the null pointer dereference within f. If the semantic is observe the program will have undefined
behavior whenever the contract-violation handler returns normally. Even though observe is a checked
semantic, the implementation is theoretically allowed to optimize out the contract check whenever
it can determine that the contract-violation handler will return normally. We do not expect this to
occur in practice, as the contract-violation handler will generally be a function defined in a different
translation unit, acting as a de-facto optimization barrier.

It is hoped that, should the Standard adopt an optimization barrier such as std::observable()
from [P1494R2], that barrier will be implicitly integrated into all contract assertions evaluated with
the observe semantic.

3.5 Standard Library API

3.5.1 The <contracts> Header

A new header <contracts> is added to the C++ Standard Library. The facilities provided in this
header have a very specific intended usage audience — those writing user-defined contract-violation
handlers and, in future Standards, other functionality for customizing the behavior of the Contracts
facility in C++. As these uses are not intended to be frequent, everything in this header is declared
in namespace std::contracts rather than namespace std. In particular, the <contracts> header
does not need to be included in order to write contract assertions.

The <contracts> header provides the following types:
namespace std::contracts {

enum class detection_mode : int {
predicate_false = 1,
evaluation_exception = 2,
evaluation_undefined_behavior = 3
/* to be extended with implementation-defined values and by future Standards */
/* Implementation-defined values should have a minimum value of 1000. */

};

enum class contract_semantic : int {
enforce = 1,
observe = 2,
// ignore = 3, // not explicitly provided
// assume = 4 // expected in a future Standard
/* to be extended with implementation-defined values and by future Standards */
/* Implementation-defined values should have a minimum value of 1000. */

};

enum class contract_kind : int {
pre = 1,
post = 2,
assert = 3
/* to be extended with implementation-defined values and by future Standards */
/* Implementation-defined values should have a minimum value of 1000. */

};
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class contract_violation {
// No user-accessible constructor

public:
std::source_location location() const noexcept;
const char* comment() const noexcept;
contract_kind kind() const noexcept;
contract_semantic semantic() const noexcept;
detection_mode detection_mode() const noexcept;
bool will_continue() const noexcept;

};

void invoke_default_contract_violation_handler(const contract_violation&);

}

3.5.2 Enumerations

Each enumeration used for values of the contract_violation object’s properties is defined in the
<contracts> header. All use enum class with an underlying type of int to guarantee sufficient room
for implementation-defined values. Implementations will know the full range of potential values, so
the contract_violation object itself need not use that same data type or the full size of an int to
store the values.

Fixed values for each enumerator are standardized to allow for portability, particular for those
logging these values without the step of converting them to human-readable enumerator names.

The following enumerations are provided:

• enum class detection_mode : int: An enumeration to identify the various mechanisms via
which a contract violation might be identified and the contract-violation handling process
might be invoked.

– predicate_false : To indicate that the predicate was evaluated, or would have been
evaluated, and the resulting value was false.

– evaluation_exception : To indicate that, during the evaluation of a contract assertion
predicate, an exception was not handled. This may be extended to other kinds of contract
assertions in the future that might not actually be predicates (but might instead evaluate
a block statement of some sort).

– evaluation_undefined_behavior : To indicate that the evaluation of the predicate had
undefined behavior. There is no standard requirement to ever invoke the contract-violation
handler with this value, and such invocations are considered to be undefined behavior
and out of scope for the Standard, but this allows a platform to clearly communicate
when this does end up being the case.

• enum class contract_semantic : int: A reification of the semantic that can be chosen for the
evaluation of a contract assertion when that contract assertion is checked.
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– enforce and observe: These enumerators are provided explicitly as they can result in the
invocation of the contract-violation handler.

– ignore: This enumeration is not explicitly provided as there is currently no explicit need
for it as ignored contract assertions do not invoke the contract-violation handler.

• enum class contract_kind : int: Identifies one of the three potential kinds of contract asser-
tion, with implementation-defined alternatives a possibility for when something invokes the
contract-violation handler outside the purview of a contract assertion with one of those kinds.

– pre: A precondition specifier.

– post: A postcondition specifier.

– assert: An assertion expression.

Note that the enumerators pre and post match the contextual keyword that introduces the respective
contract assertion kind; however, assertions use assert for the enumerator but contract_assert for
the keyword as the latter needs to be a full keyword and therefore cannot be used as an enumerator
name.

3.5.3 The class std::contracts::contract_violation

The contract_violation object is provided to the handle_contract_violation function when a
contract violation has occurred. This object cannot be constructed, copied, or assigned to by the
user. It is implementation-defined whether it is polymorphic — if so, the primary purpose in being
so is to allow for the use of dynamic_cast to identify whether the provided object is an instance of
an implementation-defined subclass of std::contracts::contract_violation.

The various properties of a contract_violation object are all accessed by const, non-virtual member
functions (not as named member variables) to maximize implementation freedom.

Each contract-violation object has the following properties:

• std::source_location location() const noexcept: The value that is populated is a recom-
mended practice only — it should be conforming to (generally based on how the compiler was
invoked) provide an empty object as a return value. If the contract assertion is a precondition,
the location of the call site if possible is ideal; otherwise the location of the contract assertion
itself should be provided.

• const char* comment() const noexcept: It is recommended that this value contain the string
representation of the contract assertion’s predicate. Pretty-printing, truncating, or providing
the empty string are all conforming implementations.

• contract_kind kind() const noexcept: The kind of the contract assertion which has been
violated.

• contract_semantic semantic() const noexcept: The semantic with which the violated con-
tract assertion was being evaluated.

• detection_mode detection_mode() const noexcept: The method by which a violation of the
contract assertion was identified.
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• bool will_continue() const noexcept: true if flow of control will continue into user-provided
code should the contract-violation handler return normally, false otherwise. Generally, this
should always be false for a contract assertion evaluated with the enforce semantic. For a
contract assertion evaluated with the observe semantic this will generally be true, but it may
be false should the platform identify that user-provided code will never execute along the
branch where this contract-violation has been detected.

3.5.4 The function invoke_default_contract_violation_handler

The Standard Library provides a freestanding function, invoke_default_contract_violation_handler,
which has behavior matching that of the default contract-violation handler. This function is useful
if the user wishes to fall back to the default contract-violation handler after having performed some
custom action (such as additional logging).

invoke_default_contract_violation_handler takes a single argument of type lvalue reference to
const contract_violation. Since such an object cannot be constructed or copied by the user, and
is only provided by the implementation during contract-violation handling, this function can only
be called during the execution of a user-defined contract-violation handler.

Just like with the default contract-violation handler itself, it is implementation-defined whether
invoke_default_contract_violation_handler is noexcept.

3.5.5 Standard Library Contracts

We do not propose any changes to the specification of existing Standard Library facilities to mandate
the use of Contracts. Given that violation of a precondition when using a Standard Library function is
undefined behavior Standard Library implementations are free to choose to use Contracts themselves
as soon as they are available.

It is important to note that Standard Library implementers and compiler implementers must work
together to make use of contract assertions on Standard Library functions. Currently, compilers,
as part of the platform defined by the C++ Standard, take advantage of knowledge that certain
Standard Library invocations are undefined behavior. Such optimizations must be skipped in order
to meaningfully evaluate a contract assertion when that same contract has been violated. This
agreement between library implementers and compiler vendors is needed because — as far as the
Standard is concerned — they are the same entity and provide a single interface to users.

4 Proposed wording
Proposed wording will be added after all TODO items above have been resolved in SG21.

5 Conclusion
The idea of having a Contracts facility in the C++ Standard has been worked on actively for
nearly two decades. This proposal represents the culmination of significant efforts to produce a
consensus-driven proposal from within the Contracts study group (SG21) that provides a foundation
that can grow to meet the needs of the many constituents that have participated in achieving that
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consensus. As a side effect, this somewhat minimal product can be seen to be highly viable for many
use cases, and will enable a better, safer C++ ecosystem in the future.
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