
Contracts on lambdas
Timur Doumler (papers@timur.audio)

Document #: P2890R0
Date: 2023-08-10
Project: Programming Language C++
Audience: SG21

Abstract

This paper proposes to allow contract-checking annotations (preconditions, postconditions, and
assertions) on lambda expressions, and explains how name lookup and lambda captures in such
annotations should work. The proposed semantics for both are straightforward and consistent
with the rest of the language.

1 Introduction
While the work on the Contracts MVP (see [P2388R4]) has so far focused on ordinary functions,
there is no a priori reason why we should not allow contract-checking annotations (CCAs) to appear
also in lambda expressions. For example, the following code should be well-formed:

constexpr bool add_overflows(int a, int b) {
return (b > 0 && a > INT_MAX - b) || (b < 0 && a < INT_MIN - b);

}

std::vector<int> vec = { /∗ ... ∗/ };

auto sum = accumulate(vec.begin(), vec.end(), 0, [](int a, int b)
[[pre: !add_overflows(a, b)]] {

return a + b;
});

Note that SG21 has not yet settled on a syntax for CCAs. In this paper, we use attribute-like
syntax [P2487R0], however the proposal is independent of the choice of syntax and would work in
the same way with lambda-based syntax [P2461R1] or condition-centric syntax [P2737R0]. For this
reason, we do not specify the exact syntactic position of a CCA on a lambda in this paper; this
should be specified in the to-be-adopted Contracts syntax proposal.

2 Name lookup
The most recent revision of the Contracts MVP paper [P2388R4] says the following about CCAs
for lambdas:

These features are deferred due to unresolved issues: [...] a way to express preconditions and
postconditions for lambdas: name lookup is already problematic in lambdas in the face of
lambda captures. This problem is pursued in [P2036R1], and until it has been solved we see
no point in delaying the minimum contract support proposal.

1

mailto:papers@timur.audio

However, since that paper was published, [P2036R3] has been adopted for C++23, which resolved
the name lookup issues cited above. We therefore no longer see a problem with allowing all three
kinds of CCAs (pre, post, and assert) in lambda expressions. We propose that name lookup for
entities inside these CCAs follow the same rules as for lambda trailing return types (see [P2036R3]):
name lookup in the CCAs in a lambda first consider that lambda’s captures before looking further
outward. Consider:

int i = 0;
double j = 42.0;
// ...
auto counter = [j=i]() mutable [[pre: j >= 0]] {

return j++;
};

In this code, the j in the CCA should refer to the j of type int introduced by the init-capture, not
the j of type double declared outside. This rule is most consistent with the rest of the language,
and least surprising to the user.

3 ODR-use and lambda captures
If we allow CCAs on lambdas, we need to consider how CCAs should interact with the rules for
ODR-use and lambda captures.

3.1 Entities in a CCA are always ODR-used

ODR-use of an entity can be observable, both at compile time and at runtime, as it can trigger
template instantiations and lambda captures. [P2834R1] proposes the principle that the semantics
of a CCA must not affect the proximate compile-time semantics surrounding that annotation.
[P2877R0], which we adopted for the Contracts MVP, goes further by removing the notion of build
modes and making the semantics of a CCA implementation-defined and in general unknowable at
compile time.
From this follows that entities in a CCA must always be ODR-used, even if the semantic of the
CCA is ignore, because whether an entity is ODR-used cannot depend on the contract semantic.
The remainder of this paper therefore assumes that entities in a CCA are always ODR-used. If this
principle does not hold, none of the discussion in this paper applies, and we would need to re-think
the design.

3.2 ODR-use in a CCA can trigger a lambda capture

ODR-use can trigger lambda captures. It follows that a CCA on a lambda can trigger a lambda
capture if it ODR-uses an entity not ODR-used anywhere else. For example, the following CCA
will unconditionally trigger a lambda capture:

auto f(int i) {
return sizeof([=] [[pre: i > 0]] {});

}

In this code, f will return sizeof(int) even if the semantic of the CCA is ignore. With the CCA
removed, f would return 1.
We believe that this behaviour is most straightforward, most consistent with the rest of the language,
and least surprising to the user: it simply falls out of the current rules in C++ for ODR-use and
lambda capture.

2

3.3 Alternative: make triggering a lambda capture from a CCA ill-formed

[P2834R1] proposes to make the above case — a CCA triggering a lambda capture of an entity not
otherwise captured — ill-formed. The paper argues that allowing this violates the “zero overhead for
ignored predicates” principle. It gives some examples where such a capture can cause an expensive
copy of a captured object, and cause a lambda to no longer fit into the small object optimisation
of std::function. It is therefore possible to construct a program where the mere presence of a
CCA, even if its semantic is ignore, can cause runtime performance degradation. [P2834R1] goes
on to say that this is sufficient justification to make this case ill-formed. Note that, since the
contract semantic is in general not observable at compile time, the code above would have to be
unconditionally ill-formed, regardless of contract semantic,
We do not agree that introducing such a restriction is reasonable. Such cases are unlikely to appear
in practice, and if they do, the user gets what they asked for. It is also easily avoidable (don’t write
the capture). Simply allowing the capture to happen is consistent with how captures work in all
other parts of the lambda (the trailing return type and the body). It is also consistent with the
rules for [[assume(expr)]], which can cause the same kind of capture — and we already discussed
this exact case at length when we standardised [[assume(expr)]] (see [P1774R8]). We should
let these language features combine naturally, rather than artificially complicating the language
rules to micromanage each special case where the user might have got it wrong — we do not do it
elsewhere in the Standard, either.
If we were to make this case ill-formed, the user would get a highly non-obvious compiler error
and would have to add an extra line ODR-using the entity in question inside the lambda body (for
example, casting it to void)). Introducing such exceptions and special cases to the basic rules of
the language hurts the ergonomics and teachability of C++.
If it turns out that this case is truly relevant, the appropriate solution is to implement a compiler
warning for it as a matter of QoI, as is usually done in similar cases. Consider:

std::map<int, Widget> map = { /∗ ... ∗/ };
for (const std::pair<int, Widget>& elem : map)

// do something with elem

In this case, the user got the element type of std::map wrong (which is std::pair<const int,
Widget> rather than std::pair<int, Widget>); this generates an unintended implicit conversion,
which in turn yields a temporary object that is lifetime-extended by the const&. This code compiles
and works, but has a silent performance degradation due to the unnecessary conversion and object
creation on every iteration of the loop. This is unfortunate; however, we do not add special cases to
basic language rules such as range-based for loops, implicit conversions, or reference semantics to
make such cases ill-formed. Instead, the user gets what they get, and a quality compiler or static
analysis tool will issue a warning.

4 Summary
We propose that the following be added to the Contracts MVP (wording to be provided after design
approval by SG21):

— Clarify that all entities in a CCA are ODR-used,

— Allow CCAs on lambdas (exact syntactic position to be specified by the to-be-adopted
Contracts syntax proposal),

— For CCAs on lambdas, follow the usual C++ rules for ODR-use and lambda captures, like
[[assume]] does; do not introduce a special exception that entities ODR-used in a CCA but
not otherwise should make the program ill-formed if this ODR-use triggers a lambda capture.

3

References

[P1774R8] Timur Doumler. Portable assumptions. https://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2022/p1774r8.pdf, 2022-06-14.

[P2036R1] Barry Revzin. Change scope of lambda trailing-return-type. https://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2021/p2036r1.html, 2021-01-13.

[P2036R3] Barry Revzin. Change scope of lambda trailing-return-type. https://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2021/p2036r3.html, 2021-09-14.

[P2388R4] Andrzej Krzemieński and Gašper Ažman. Minimum Contract Support: either No_-
eval or Eval_and_abort contracts. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2021/p2388r4.html, 2021-11-15.

[P2461R1] Gašper Ažman, Caleb Sunstrum, and Bronek Kozicki. Closure-Based Syntax for Con-
tracts. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf,
2021-11-15.

[P2487R0] Andrzej Krzemieński. Attribute-like syntax for contract annotations. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html, 2021-11-12.

[P2737R0] Andrew Tomazos. Proposal of Condition-centric Contracts Syntax. https://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf, 2021-11-15.

[P2834R1] Joshua Berne and John Lakos. Semantic Stability Across Contract-Checking Build
Modes. https://wg21.link/p2834r1, 2023-05-15.

[P2877R0] Joshua Berne and Tom Honermann. Contract Build Modes, Semantics, and Implemen-
tation Strategies. https://wg21.link/p2877r0, 2023-06-09.

4

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1774r8.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2036r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2036r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2036r3.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2036r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2388r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2388r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2461r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2487r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2737r0.pdf
https://wg21.link/p2834r1
https://wg21.link/p2877r0

	1 Introduction
	2 Name lookup
	3 ODR-use and lambda captures
	4 Summary
	References

