
Contract Build Modes, Semantics, and Implementation Strategies

Document #: P2877R0
Date: 2023-06-13
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Tom Honermann <tom@honermann.net>
Abstract

To see Contracts become a fruitful addition to the C++ ecosystem, SG21 must consider the
various use cases in which Contracts have historically been deployed and will be in the future. The
Contracts facility we include in C++ must be suitably loosely defined to enable implementation
strategies that properly consider and support these uses; otherwise, the Contracts facility will
result in nothing more than an educational toy. To allow the necessary level of experimentation
and to open possible paths for evolution, we propose significant relaxations to the semantics the
evaluation of a contract-checking annotation might have. Along with that proposal, we describe
how various implementation strategies can achieve different goals and tradeoffs once given the
freedom we envision.

Contents
1 Introduction 2

2 Use Cases 3
2.1 Package Managers 3
2.2 Packaged Software 3
2.3 Releasing Contracts 4
2.4 REPL 5
2.5 Debugging 6
2.6 Summary of Requirements 6

3 Proposal 6

4 Recommended Practices 8

5 Implementation Strategies 9
5.1 Fixed Semantics 10
5.2 Dynamic Semantics 11
5.3 User Interface 13
5.4 Preconditions and Postconditions 14

6 Conclusion 14

1

mailto:jberne4@bloomberg.net
mailto:tom@honermann.net


Revision History
Revision 0 (Prior to 2023-06 Varna Meeting)

• Original version of the paper for discussion during an SG21 face-to-face meeting

1 Introduction
The Contracts MVP1 is highly restrictive in terms of the possible semantics the evaluation of a
contract-checking annotation (CCA) may have.

• Exactly two build modes, No_eval and Eval_and_abort, are provided.

• The mixing of build modes across translation units (TUs) is conditionally supported with
implementation-defined semantics.

• In the No_eval build mode, all CCAs have the ignore semantic, i.e., the predicate of the CCA
is not evaluated, no violations will be detected, and no other program semantics are altered.

• In the Eval_and_abort build mode, all CCAs have the enforce semantic, i.e., the result of the
CCA’s predicate is determined and, if it is not true, the contract-violation handling process
occurs followed by program termination.

As specified, nonobvious limitations are put on C++ implementations. Properties of the only two
build modes provided by the Standard will be quickly assumed to be properties of Contracts in
C++, severely limiting the ability to contradict those assumptions with either platform-specific
build modes or future evolution. These properties, importantly, include that all contracts in a TU
have the same semantic and that all evaluations of a specific contract in a program will have the
same semantic.

We propose updating SG21’s MVP such that, instead of having two bespoke build modes combined
with the hope for future evolution and platform-specific extensions, we take the more flexible
approach to specification and keep implementation freedom maximized. This can be accomplished
by simply stating that, on each evaluation of a CCA, the semantic with which the CCA is evaluated
is implementation defined.

By providing this level of freedom to implementation, we can begin to see useful experimentation
with contract semantics to help solve fundamental deployment and usage needs that any C++
feature must be able to meet.

Implementations remain free to follow the current approach of permitting only two build modes
and requiring that all translation units be compiled with matched build modes. Compilers may
also, to meet the needs of different audiences, provide build options that enable link-time or even
runtime selection of contract semantics. We will explore various implementation strategies that
achieve these goals in Section 5 and will discuss how these choices might even live side by side in
the same program.

Finally, the set of possible semantics available for implementations to choose should include ignore
and enforce to match the currently proposed functionality of the MVP. In addition, the observe

1See [P2521R3].

2



semantic should be available given the long-standing industry experience with it and the range of
needed implementation and deployment choices that it enables.

2 Use Cases
Numerous situations must be considered regarding how Contracts will be integrated into the C++
ecosystem once they are an available part of the language. An overly minimal MVP that rejects the
needs of these use cases will actively inhibit the deployment and experimentation that should be
possible to see Contracts evolve into a facility that truly meets the needs of modern C++ developers
and our ever increasing safety- and correctness-conscious global environment.

2.1 Package Managers

Linux and UNIX systems have long used package managers like Red Hat’s RPM and Debian’s
dpkg to provide prebuilt software. More recently, package managers like VCPkg and Conan have
started offering similar functionality for multiple operating systems, including Windows. These
package managers generally provide a single build of each version of a project; e.g., they do not tend
to offer both debug and release builds because doing so would introduce considerable additional
build and distribution cost as well as dependency management complexity. A Contracts design that
requires build-time decisions regarding whether contracts are evaluated and what the consequences
of contract violation are creates a significant burden for package managers. They would have to
choose whether to consistently build their packages for a specific build mode or whether to evaluate
each package independently. These package providers are not typically the authors or maintainers of
the source code that they build, but their decisions could impact project authors and the adoption
of contracts within the ecosystem. If they were to choose to unilaterally enable contract evaluation
with enforce semantics, that decision could disincentivize project authors from using Contracts for
fear of performance overhead and support burden. Likewise, if package providers were to choose
to unilaterally disable contract evaluation, that could disincentivize program authors from using
Contracts since they wouldn’t be active in deployment anyway. Most likely, package managers
would defer contract enablement to the release build mode for each project with the result that
contract enablement within the ecosystem would be inconsistent, a situation that would be fatal
to mixing libraries if the platform does not support at least objects built with inconsistent build
modes linking together. None of these outcomes would bode well for the ubiquitous use and success
of the Contracts facility within the ecosystem.

2.2 Packaged Software

Providers of packaged software frequently distribute and provide support for prebuilt software.
Historically, some providers have chosen to distribute packages with assertion facilities (of some
form) enabled, and others have elected to disable their assertion facilities in packages distributed
to their users on the basis that testing (with assertions enabled) has enabled sufficient confidence
that the overhead associated with assertions is unnecessary to achieve their quality and support
goals. C++ contracts must continue to provide these choices: A design that does not allow contract
annotations to be unevaluated would not be viable; this is not controversial.

Traditional implementations of the C <assert.h> and C++ <cassert> facilities have required that

3



asserts be enabled or disabled at compile time on a per-TU basis. This creates an incentive against
distributing prebuilt software that has assertions enabled because an incorrect assertion (presumably
one that was not adequately tested or that was added without full knowledge of valid use cases)
could create a user support incident by triggering a runtime abort. When such incidents occur, the
only options available to the software provider are to provide a new build of the software that either
corrects or avoids the issue or to identify a workaround that avoids the issue without requiring
a rebuild and that is acceptable to the user (e.g., a configuration or workflow change). The first
option is often slow and expensive due to the time required to reproduce the issue, diagnose the root
cause, identify an appropriate source-code change, rebuild, validate the fix, recertify, repackage, and
redistribute the new build, all of which might occur under significant pressure from users desperate
for a solution. Such updates can also be expensive or risky for users, particularly for consumers of
safety-critical software. The second option, identification of a workaround, is almost always preferred,
assuming an acceptable solution is identified. Unfortunately, suitable workarounds are not always
possible.

Assertion facilities exist that do not require that a binary choice to enable or disable assertions
be made at compile-time. For example, Coverity implements a conditional assertion facility that
is enabled in the builds distributed to its users but that also allows each individual conditional
assertion statement to be disabled at runtime by setting an environment variable with a value that is
keyed to the source location of the statement. When a conditional assertion fails, a suitable message
is produced that includes the source location information needed to disable the conditional assertion
statement. This approach therefore provides a workaround for cases where the assertion statement
itself is the problematic code and a potential workaround for cases where defensive code follows the
assertion statement. The availability of such an option significantly reduces disincentives against
liberal use of the conditional assertion facility.

Coverity consists of a large set of short duration programs that can be aborted if an assertion fails
and a few long duration programs that, if aborted, risk losing analysis results produced over many
hours or days. Coverity can’t afford a check-pointing process for performance reasons. Since Coverity
is not itself a safety-critical application, graceful degradation of analysis results is strongly preferred
over the loss of all analysis results. For those reasons, these long-duration programs operate in a mode
in which assertion failures are logged but do not result in program termination; execution continues
following the conditional-assertion statement. The short-duration and long-duration programs share
libraries built from common source code; thus the behavior exhibited when an assertion fails must
be load-time or runtime configurable.

2.3 Releasing Contracts

One of the hardest parts of making use of Contracts in a production environment is the introduction
of new contract checks into existing code. Bloomberg has extensive experience with doing this with
the bsls_review portion of the bsls_assert contract-checking facility.

The fundamental problem is that, given an existing program that does not have contract checks
in it or that is missing a contract check that should have been there before, the cost of program
termination when contract checks are violated is too high. What is known about the program is
that it runs on production inputs fine with the existing version, and so any bugs it might have
are probably at least tolerable. Ideally, software is tested on production-like inputs sufficiently to

4



encounter such failures only in noncritical environments. Sadly, a single program termination in a
production system can quickly dissuade an entire enterprise from increasing production correctness
by enabling contract checks in production.

The semantics available for new checks in production environments strongly impact the likelihood
of actually finding and fixing bugs that might occur only in production.

• Enforced checks cause massive production outages when they are violated, and should they
occur repeatedly during the deployment of Contracts in an organization, the needed fortitude
to continue to reduce bugs by suffering crashes will quickly erode.

• Ignored checks in turn ignore contract violations, allowing potentially business-risking bugs to
persist almost indefinitely. If testing fails to find the bug today, rarely will an existing system
actively hunt down and find more production-only bugs tomorrow.

• The observe semantic, which allows a system to identify violations while continuing with the
pre-existing control flow after the violation is detected, enables an organization to quickly
reduce the number of bugs in their production environments without risking the stability of
their already-existing business interests.

The observe semantic is clearly the best choice for identifying production bugs without risking the
introduction of new production failures that will be blamed on the use of Contracts.

Whether a CCA is actually new depends on the answer to two questions.

1. Was a previous version of the same function deployed lacking the CCA completely?

2. Was a previous version of the same function deployed and the CCA not evaluated, due to
either being built with a pre-Contracts version of C++ or being deployed using the ignore
semantic?

In both cases, an organization benefits greatly from its ability to choose the observe semantic until
such a time as these questions answers are no longer “yes” and the enforce semantic can be safely
chosen.

The first case is truly identifiable only by marking up a CCA as new in the source code itself, and
such local control of contract-checking semantics has a large design space that needs to be explored
after consensus is reached on a Contracts MVP.2 On the other hand, the second case is often one
that can be readily identified at a wider scale, such as when first upgrading to a version of C++
with Contracts, when upgrading a library to a new version that has added CCAs, or when choosing
to enable Contracts in an environment where they were previously ignored.

2.4 REPL

Read-Evaluate-Print Loop (REPL) interpreters are useful for rapid prototyping or language explo-
ration. In a REPL environment, program source code is not compiled in a traditional sense; there
are no build modes. Whether contract evaluation is enabled and what the consequences are for
contract violations is, therefore, a dynamic configuration property that a user might want to change
at any time.

2The upcoming [P2755R0] will provide a robust exploration of this design space.

5



2.5 Debugging

The expressions contained in contract annotations must not cause side effects that influence the
essential behavior of the program. Absent a mechanism to formally prevent programmers from
authoring contract predicates that exhibit such side effects, it must be accepted that, occasionally,
programmers will inadvertently do so. It can be difficult to identify such mistakes; a side effect might
occur within the evaluation of a series of indirect or conditional function calls. A useful technique
for determining if such side effects are occurring is to compare the behavior of a program run with
contract evaluation disabled and the same program run with contract evaluation enabled with the
observe semantic. If any deviation in the program behavior is observed, then the program likely
contains undefined behavior or behavior contingent on the evaluation of contract predicates, which
is useful information in either case.

2.6 Summary of Requirements

All of the above use cases hinge on certain attributes of a contract-checking facility that the current
MVP proposal does not provide. In order to have a robust Contracts facility that can satisfy the
above use cases, we must enable a platform to satisfy the following requirements:

• It must be possible for a conforming Contracts implementation to allow/facilitate enabling
and disabling contract evaluation without requiring a rebuild.

Lacking this ability, the ecosystem of package managers, debugging, and deployment will need
not just a single (i.e., checked vs. unchecked) distribution of every build but an ever-increasing
number as the scope of contract checking options increases.

• It must be possible for a conforming implementation to allow users to choose, potentially on a
per-CCA basis or via violation handler behavior, to continue execution following the detection
of a violated contract.

Choosing to not enable the observe semantic results in a failure to enable the deployment of
contracts in existing systems, as well as an inability to control continuation more flexibly from
within a contract-violation handler.

Neither of these requirements are universal - platforms should be free to choose to not support these
requirements when it is not appropriate for their user base. Our intent is not to have embedded
systems, hardened compilers, or maximally optimized deployments all need to support the same
feature sets - it is to keep all such implementations as well-defined, standards-conforming, and subject
to the same training and reasoning about behavior that is applicable to other C++ platforms.

3 Proposal
To allow Contracts to meet the requirements specified above, we begin by proposing the possible
semantics a CCA may have.

6



Proposal 1: Semantics

When evaluated, a contract-checking annotation may have a semantic of ignore, observe, or
enforce.

Proposal 1.1: Ignore Semantic

A CCA evaluated with the semantic of ignore does not evaluate its predicate and does not
result in a contract violation.

The ignore semantic is the simplest (we hope) to understand and implement; an ignored semantic
is functionally equivalent to having the predicate as an unevaluated operand, such as being the
argument to the sizeof operator.

Proposal 1.2: Observe Semantic

A CCA evaluated with the observe semantic may evaluate its predicate and, if it would not
return true the contract violation handling process will be invoked.

For CCAs with the observe semantic, if control flow returns normally from the contract violation
handling process then the evaluation of the CCA will be complete and control flow will continue
normally after the point of evaluation of the CCA.

Proposal 1.3: Enforce Semantic

A CCA evaluated with the enforce semantic may evaluate its predicate and, if it would not
return true, the contract violation process will be invoked. If control returns normally from
the contract violation handling process, the program will be terminated in an implementation-
defined manner.

For CCAs evaluated with the enforce semantic, control flow will never continue normally from the
point of evaluation of the CCA if there is a violation — either the violation handling process will
not return normally or the program will be terminated.

For a contract evaluated with either the observe or enforce semantic, the evaluation of a predicate
may happen zero or more times, following the SG21 consensus to adopt the proposals in [P2751R1].
If the predicate would not evaluate to true for any of this (including throwing an exception), the
violation handling process will follow.

Should SG21 adopt a user-provided contract-violation handler as in [P2811R5], the contract_violation
object’s semantic property will reflect the semantic with which the CCA was evaluated, i.e., observe
or enforce. Other properties will similarly be populated based on how the evaluation determined
that a contract violation had occurred.

The current MVP already proposes the enforce and ignore semantics, this proposal simply adds in
the possibility of the observe semantic on top of the status quo.

7



Proposal 2: Chosen Semantic

For each evaluation of a CCA, what semantic that CCA will have is implementation defined.

This approach to the semantic a contract check may have gives implementations significant freedom
to meet many needs.

• All checks in a program might be forced to have the same semantic.

• Having different semantics upon different evaluations makes having different fixed semantics
in different inlined versions of the same function not an ODR violation.

• Implementations have the ability to allow the selection of the semantic for a CCA to happen
at compile time, link time, or run time as long as the implementation defines for its users the
mechanics of how to make that selection.

It is important to understand that this proposal makes the semantic no longer a property of the
CCA — it is a property of each individual evaluation of a CCA, and may vary from one evaluation
to the next. Because this is no longer a property of the CCA, compile-time attributes of anything
containing a CCA cannot depend on the semantic that CCA will have. Therefore, the first principle
in [P2834R1]3 follows from this proposal as well. This is a useful synergy, as the arguments in
[P2834R1] show the fundamental correctness problems that would fall out from not following its
primary principle.

The current MVP only provides two bespoke build modes where all contract semantics for a single
translation unit are either enforce or ignore. Mixing modes across TUs is conditionally-supported
with implementation-defined semantics, an approach that was also take with C++20 contracts.
This proposal effectively makes the semantics and all mixing implementation-defined, maximizing
conforming implementation flexibility.

4 Recommended Practices
The current Contracts MVP (which is most formally reprsented in [P2388R4]) requires two build
modes and, when none is specified, notes that the default mode should be Eval_and_abort. Should
SG21 desire to continue to have these requirements on top of our basic proposal, these could be
standardized as recommended practices.

Proposal 3: Default Ignore — The No_eval Build Mode

Recommended Practice: An implementation should provide to users the ability to translate
(all translation units of) a program such that all CCAs have a semantic of ignore.

3The build mode governing the semantics of a CCA must not affect the proximate compile-time semantics
surrounding that annotation.

8



Proposal 4: Default Enforce — The Eval_and_abort Build Mode

Recommended Practice: An implementation should provide to users the ability to translate
(all translation units of) a program such that all CCAs have a semantic of enforce.

These recommended practices reproduce the No_eval and Eval_and_abort build modes of the MVP.
It is entirely reasonable for a platform to provide additional options to select, for example, the
observe semantic for all contracts or to enforce preconditions and ignore postconditions, or any
number of a myriad of other possibilities. While SG21 could include these as recommended practices,
we do not see the need to overly penalize those platforms that intend to provide more limitted
choices, or to over-proscribe the available possibilities and inadvertently imply to users that those
are the only potential options that should be available to them.

Proposal 5: Default Semantic

Recommended Practice: When nothing else has been specified by a user, a CCA will have
the enforce semantic.

Many advocates of contract-checking see this recommended practice as essential to having C++ be
maximally safe when used out of the box. This is also the effective default behavior of <cassert>
when NDEBUG is not defined. It has been noted4 that this requirement to have a default semantic has
no meaningful enforcability as a normative requirement, but that does not preclude it being stated
as a recommended practice.

On the other hand, there is an incentive for compilers to respect the choices that their users
make and apply those choices intelligently to how CCAs will be evaluated. For example, a user
requesting an optimized build is choosing to prefer performance over other considerations, and
thus it would be reasonable for this to be considered “saying something” about performance and
thus how much energy should be expended on correctness checking, and therefore choose to ignore
CCAs in optimized builds (when no more specific contract configuration has been requested). The
“nothing else specified” in the above proposal is largely intended for vanilla invocations of a compiler
by a novice user — giving such users the most protection as they are learning, and making it clear
to users how to begin to make additional choices in more advanced builds in order to refine the
balance between performance and safety.

All recommended practices, being non-normative, could freely be included or dropped from the
Contracts feature proposed by SG21 with no normative effect. We recommend that SG21 discuss
these options individually and included the practices that have the most consensus - with no overt
requirements on implementations either way.

5 Implementation Strategies
We will now explore some possibilities that exist for implementation strategies that are enabled by
the MVP and our proposals.

4See [P1769R0].

9



The clearest way to explore what the implementation of evaluation of a CCA might look like is
to show how a CCA might be transformed into equivalent C++ code. To facilitate that, we will
consider how the CCA [[assert : X ]] will be transformed into equivalent code.

The evaluation of the predicate of a CCA is allowed to happen zero or more times,5 and enabling
elision would require special treatment of the predicate. Without loss of generality, we will show
implementations that evaluate the predicate exactly once using an if statement or ternary operator.

These examples will assume that the specifics of a user-provided contract violation handler match
those proposed in [P2811R5], but adaptation to changes in whatever SG21 adopts for violation
handling should be obvious.

5.1 Fixed Semantics

The first approach to implementation we will explore is translation of a CCA with fixed semantics.
Here, for each CCA evaluation, a semantic is chosen at compile time, and the CCA is transformed
into suitable instructions to implement that semantic. This strategy is the most straightforward
translation of a CCA and comes with the least flexibility.

We expect this or a similar approach to implementing CCA evaluation to be employed by systems
with the tightest resource constraints and least need for ongoing deployment flexibility, such as
embedded systems, or those that seek to minimize the runtime flexibility of their generated code.

To perform the direct invocation, let us assume a few implementation-defined functions are available
whose details should be self-evident (and which might vary significantly based on other pending
SG21 decisions).

• A consteval function to initialize an object of the implementation-defined type __contract_info
that identifies the details of the currently checked contract:

struct __contract_info;
consteval __contract_info __current_contract_info();

• A function whose purpose is to take a __contract_info object along with a semantic and a
detection_mode and then invoke the replaceable contract violation handler:

void __invoke_violation_handler(
const __contract_info&,
semantic,
detection_mode = detection_mode::predicate_false);

• A function to terminate the program in an implementation-defined manner when an enforced
contract has been violated:

[[noreturn]] void __terminate_on_enforced_violation() noexcept;

The invocation of a CCA with a fixed semantic translates differently based on the semantic.
5See [P2751R1].

10



Semantic As-If Code
Ignore sizeof( (X) ? true : false );

Observe
if (X) {} else {

static constexpr __contract_info contract_info = __current_contract_info();
__invoke_violation_handler(contract_info, semantic::observe);

}

Enforce

if (X) {} else {
static constexpr __contract_info contract_info = __current_contract_info();
__invoke_violation_handler(contract_info, semantic::enforce);
__terminate_on_enforced_violation();

}

Embedding the full contract semantics where the CCA is evaluated maximizes the number of
beneficial code transformations that a program may perform based on the chosen semantic but
requires a rebuild to choose a different semantic for a CCA.

5.2 Dynamic Semantics

Using the same interface to the contract-violation handling process, we can generate code that,
based on some determination of the appropriate semantic, will use that semantic for the evaluation
of a CCA. Consider another built-in function to obtain the semantic that should be used for the
currently evaluated CCA:

semantic __current_contract_semantic();

Based on this function, a CCA might be translated in this manner:
static constexpr __contract_info contract_info = __current_contract_info();
switch (__current_contract_semantic()) {
case semantic::ignore:

sizeof( (X) ? true : false );
break;

case semantic::observe:
if (X) {} else {

__invoke_violation_handler(contract_info, semantic::observe);
}
break;

case semantic::enforce:
if (X) {} else {

__invoke_violation_handler(contract_info, semantic::enforce);
__terminate_on_enforced_violation();

}
break;

// case semantic::assume:
// [[ assume : X ]];
// break;
}

Enabling this approach has certain significant advantages.

11



• Only a single binary needs to be produced to support all contract-checking variations that a
platform might support.

• The __current_contract_semantic() invocation may be, depending on the implementation, a
function that produces a fixed result for an entire task, is evaluated at runtime, or takes any
number of other factors into account.

• At link or load time, enough information might be preserved to find all invocations of
__current_contract_info() and replace their invocation and the immediately following branch
based on the returned semantic by a single jump to the appropriate location, removing any
potential runtime overhead associated with the contract violation.

• Support for an additional potential semantic, such as assume, is simple and nonintrusive to
add.

On first glance, this approach might seem to lose the ability to leverage optimizations that could
be possible after an enforced CCA has been evaluated. In this case, remember that a compiler has
the ability (which is often taken advantage of) to perform some truly heroic transformations on
the code it generates. Assuming our CCA is followed by a function body (BODY;), we might see the
above code transform into something equivalent:

static constexpr __contract_info contract_info = __current_contract_info();
semantic current_semantic = __current_contract_semantic();
if (semantic == semantic::ignore || semantic == semantic::observe) {

if (semantic == semantic::observe) {
observe_label:

if (X) {} else {
__invoke_violation_handler(contract_info, semantic::observe);

}
}

ignore_label:
BODY; // #1

}
else {

if (semantic == semantic::enforce) {
enforce_label:

if (X) {} else {
__invoke_violation_handler(contract_info, semantic::enforce);
__terminate_on_enforced_violation();

}
}

// assume_label:
// [[ assume(X) ]]; // redundant for enforced checks

BODY; // #2
}

6You might be alarmed to see goto, but we’re discussing the code a compiler will transform user code into, which
in practice already consists of vast numbers of moral equivalents to goto. We recommend you minimize writing goto
in your code, but feel free to benefit from all the wonders that result from your compiler’s careful and structured use
of jumps for control flow.

12



Each potential semantic value could also be used with a goto6 to jump to the labels we have
indicated in the above code.

For an observed or ignored CCA, the BODY at #1 that gets executed has been compiled with no
ability to draw conclusions about the truth or falsehood of the CCA’s predicate. This is exactly
what we want: Neither of these semantics introduce any situations in which the code that follows
them will be unreachable.

For an enforced CCA, however, the BODY at #2 is compiled with the assumption that the contract
predicate has not been violated. That __terminate_on_enforced_violation is [[noreturn]] guaran-
tees that control flow never reaches BODY (#2) when X is false. Should we introduce the assume
contract semantic in some future evolution, dynamic contract semantics could still take advantage
of the resulting forward-looking optimization opportunities by jumping to the assume_label above
and using the portable assumption attribute, [[assume]].7 Note that, along the branches taken for
the enforce semantic, this use of [[assume]] is redundant; control-flow analysis already tells the
compiler that X is a usable fact at this point in the code.

5.3 User Interface

The natural question comes up as to how a user might interact with a library built with dynamic
contract semantics.

A possible approach for dynamically linked programs on Linux would be to allow a link-time
selection of the default semantic that can then be overridden at load-time via an environment
variable recognized by ld.so; see the ld.so man page for examples of environment variables that
are currently recognized. For example, an LD_CONTRACT_SEMANTIC environment variable could be
recognized. An end user wishing to override the default behavior would then set the environment
variable appropriately when running the program.

There are several existing mechanisms that could be leveraged for Windows programs. An environ-
ment variable could be recognized of course, but that isn’t how this kind of configuration is typically
managed on Windows. one mechanism typically employed involves program image specific registry
settings managed by the gflags.exe utility. Thus, an end user wishing to override the default
behavior might be expected to change a registry setting or run gflags.exe. Windows application
manifests could be another mechanism used to override the default contract semantic.

In REPL scenarios, the end user would presumably issue a REPL specific command.

Perhaps debuggers would override the default semantic (e.g., to select observe) and automatically
react to contract violations (e.g., by automatically setting a break point on the violation handler).

Our expectation is that changing the default semantic at link-time, load-time, or run-time would be
rare and generally done to either workaround a problem (e.g., to select ignore or observe to override
a default of enforce in order to suppress program termination following a contract violation) or to
enable debugging (e.g., to select enforce to override a default of ignore or observe in order to force
the program to detect and abort on contract violation; perhaps while running in a debugger). We
don’t think the user experience has to be particularly nice as long as it can be reasonably automated.

7See [P1774R8].

13



5.4 Preconditions and Postconditions

Transforming a precondition or postcondition entails performing the appropriate transformation at
the right point of evaluation and that the transformation exactly matches the one performed for an
assertion (and we elaborated on this above).

The primary distinction is that, for preconditions, we might wish to move the evaluation point (in
a manner that is unobservable to the abstract machine) from within the function invocation to
immediately prior to it, to thus facilitate providing the call-site source location to the violation-
handling process. This approach is often known as call-side checking. Should an implementation
choose to do this, documenting well what will control the semantic that checks will have — i.e.,
will such control be based on compiler flags of the caller, the callee, or some mix of both? — would
be important. These are implementation choices that must be made and would all be within the
allowed behaviors of our specification.

6 Conclusion
SG21 members arrive with a wide variety of experiences using real-world contract-checking facilities
for a broad range of purposes. Many of these use cases require significant flexibility from a contract-
checking facility. Providing sufficient flexibility to allow platforms to explore satisfying these use
cases enables the community to take advantage of contract checking immediately while gaining the
experience needed to reach consensus on the additional features that will layer on top of the initial
Contracts facility that we provide in C++.

In particular, moving away from the concept of singular monolithic build modes enables platforms
to meet the realistic needs that will be immediately apparent when an attempt is made to use and
deploy contracts in any modern C++ ecosystem. Allowing the known range of correctness-oriented
contract-checking semantics — ignore, enforce, and observe — will enable developers as well as
organizations of all sizes and from a variety of industries to deploy robust contract-checking systems
in real-world environments as soon as a Standard ships with Contracts included and compilers make
Contracts available to their users.

Acknowledgements
Thanks to Gašper Ažman, John Lakos, and Ville Voutilainen for actively participating in the initial
discussion that led to the formalization of this paper, as well as all of those who participated in the
reflector and telecon discussions that led up to it. Thanks to Andrzej Krzemieński, Timur Doumler,
and others for futher feedback on this paper.

Lori Hughes made great contributions to the linguistic quality of this paper, as always. Any lingering
failures to properly use the English language are the fault of the authors.

Bibliography
[P1769R0] Ville Voutilainen, “The "default" contract build-level and continuation-mode should

be implementation-defined”, 2019

14



http://wg21.link/P1769R0

[P1774R8] Timur Doumler, “Portable assumptions”, 2022
http://wg21.link/P1774R8

[P2388R4] Andrzej Krzemieński and Gašper Ažman, “Minimum Contract Support: either No_-
eval or Eval_and_abort”, 2021
http://wg21.link/P2388R4

[P2521R3] Andrzej Krzemieński, Gašper Ažman, Joshua Berne, Bronek Kozicki, Ryan McDougall,
and Caleb Sunstrum, “Contract support – Record of SG21 consensus”, 2023
http://wg21.link/P2521R3

[P2751R1] Joshua Berne, “Evaluation of Checked Contracts”, 2023
http://wg21.link/P2751R1

[P2755R0] Joshua Berne and Jake Fevold and John Lakos, “A Bold Plan for a Complete Contracts
Facility (forthcoming)”, 2023

[P2811R5] Joshua Berne, “Contract Violation Handlers”, 2023
http://wg21.link/P2811R5

[P2834R1] Joshua Berne and John Lakos, “Semantic Stability Across Contract-Checking Build
Modes”, 2023
http://wg21.link/P2834R1

15

http://wg21.link/P1769R0
http://wg21.link/P1774R8
http://wg21.link/P2388R4
http://wg21.link/P2521R3
http://wg21.link/P2751R1
http://wg21.link/P2811R5
http://wg21.link/P2834R1

	1 Introduction
	2 Use Cases
	2.1 Package Managers
	2.2 Packaged Software
	2.3 Releasing Contracts
	2.4 REPL
	2.5 Debugging
	2.6 Summary of Requirements

	3 Proposal
	4 Recommended Practices
	5 Implementation Strategies
	5.1 Fixed Semantics
	5.2 Dynamic Semantics
	5.3 User Interface
	5.4 Preconditions and Postconditions

	6 Conclusion

