
Undeprecate polymorphic_allocator::destroy for C++26
Document #: P2875R2
Date: 2023-09-15
Project: Programming Language C++
Audience: Library Evolution Incubator
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision History 2
R2: September 2023 (midterm mailing) . 2
R1: August 2023 (midterm mailing) . 2
R0: May 2023 (pre-Varna) . 2

3 Introduction 2

4 Issue History 2
4.1 LWG Poll, 2019 Kona meeting . 2
4.2 2020-10-11 Reflector poll . 2
4.3 November 2023 Virtual Plenary . 2

5 Analysis 3
5.1 Symmetry . 3
5.2 Nongeneric use . 3
5.3 Inability to use [[deprecated]] . 3
5.4 Removal does not serve the Standard . 3

6 Proposed Wording 3
6.1 Update the library specification . 4
6.2 Strike Annex D wording . 5
6.3 Update cross-reference for stable labels for C++23 . 5

7 Acknowledgements 6

8 References 6

1 Abstract
The member function polymorphic_allocator::destroy was deprecated by C++23 as it defines the same
semantics that would be synthesized automatically by std::allocator_traits. However, some common use
cases for std::pmr::polymorphic_allocator do not involve generic code and thus do not necessarily use
std::allocator_traits to call on the services of such allocators. This paper recommends undeprecating that
function and restoring its wording to the main Standard clause.

1

mailto:ameredith1@bloomberg.net

2 Revision History
R2: September 2023 (midterm mailing)

— Removed revision history’s redundant subsection numbering
— Added comparison with effects of removing a typedef member instead
— Wording updates

— Confirm wording against latest working draft, [N4958]
— Updated stable label cross-reference to C++23

— Applied numerous editorial corrections

R1: August 2023 (midterm mailing)
— Confirmed wording for latest working draft, N4950
— Removed syntax highlighting from standardese to avoid markup conflicts
— Removed use of allocator_traits in delete_object
— Improved rationale following initial reflector review — thanks Pablo!

R0: May 2023 (pre-Varna)
— Initial draft of this paper.

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of that paper was not completed.

For the C++26 cycle, a concise paper will track the overall review process, [P2863R1], but all changes to the
Standard will be pursued through specific papers, decoupling progress from the larger paper so that delays on
a single feature do not hold up progress on all.

This paper takes up the deprecated member function std::polymorphic_allocator::destroy, D.17
[depr.mem.poly.allocator.mem].

4 Issue History
This feature was deprecated by [LWG3036].

4.1 LWG Poll, 2019 Kona meeting
Q: Are we in favor of deprecation, pending on paper [P0339R6]?
| F | N | A |
| 5 | 3 | 2 |

4.2 2020-10-11 Reflector poll
Moved to Tentatively Ready after seven votes in favour.

4.3 November 2023 Virtual Plenary
Adopted for C++23 by omnibus issues paper [P2236R0].

2

https://wg21.link/depr.mem.poly.allocator.mem

5 Analysis
std::pmr::polymorphic_allocator is an allocator that will often be used in non-generic circumstances
unlike, for example, std::allocator. This member function that could otherwise be synthesized by
std::allocator_traits should still be part of its pubic interface for direct use.

Hence, this paper recommends undeprecating the destroy member function as the natural and expected analog
paired with construct.

5.1 Symmetry
polymorphic_allocator has construct, so logically it should also have destroy. If I see a class that overrides
new but does not override delete, I get suspicious at best and disgusted at worst. If I write code that uses
construct, I will probably also want to call destroy, even if I know that the call is a no-op or can be expressed
another way.

5.2 Nongeneric use
Code that does not use an allocator template (e.g., experimental::function from the LFTS), can use
polymorphic_allocator to avoid type erasure. Such code would not need to use the allocator_traits
indirection and would call allocate, construct, destroy, and deallocate directly. Yes, it could use
destroy_at directly, but that breaks abstraction and symmetry (see the “Symmetry” section above). Any such
existing code would need to change if destroy is removed.

5.3 Inability to use [[deprecated]]
If one of the goals is to avoid writing something that is equivalent to the code that allocator_traits would
already provide if you had not provided it, then allocator_traits needs to detect the presence or absence of
member-function destroy. That detection will invariably cause a deprecation warning if destroy is annotated
as [[deprecated]]. Therefore, when the destroy method is eventually removed, unsuspecting code breakage
will occur.

Note: Reports have since been made that the deprecation warning can be turned off in a platform-specific
way using pragmas within allocator_traits. Alternatively, allocator_traits can be specialized for
polymorphic_allocator to avoid calling the deprecated member function.

It is worth noting that the case for the destroy member function is different to the case for removing a typedef
member, such as in D.16 [depr.default.allocator] and heading towards removal in [P2868R2]. The formula
produced by allocator_traits for a missing typedef member is to compute a type based upon other typedef
names in allocator_traits; when a typedef member from a base class provides the exact same result as the
formula would produce for the base class, that typedef member will inhibit allocator_traits computing the
correct tydedef name for the derived class forcing the user to explicitly provide that member themselves, often
a bug by omission. In the case of a destroy function matching the functionality that would be provided by
allocator_traits, nothing in that functionality actually depends upon the class itself, so calling that function
instead for a derived class would still have identical behavior — there is no risk of introducing a bug by error of
omission.

5.4 Removal does not serve the Standard
The deprecation and removal of destroy has very little benefit to the Standard — certainly not enough to justify
breaking code (see the “Nongeneric Use” section above).

6 Proposed Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4958], the latest draft at
the time of writing.

3

https://wg21.link/depr.default.allocator

6.1 Update the library specification
20.4.3.1 [mem.poly.allocator.class.general] General

2 A specialization of class template pmr::polymorphic_allocator meets the allocator completeness requirements
(16.4.4.6.2 [allocator.requirements.completeness]) if its template argument is a cv-unqualified object type.
namespace std::pmr {
template<class Tp = byte> class polymorphic_allocator {
memory_resource* memory_rsrc; // exposition only

public:
using value_type = Tp;

// 20.4.3.2[mem.poly.allocator.ctor], constructors
polymorphic_allocator() noexcept;
polymorphic_allocator(memory_resource* r);

polymorphic_allocator(const polymorphic_allocator& other) = default;

template<class U>
polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

polymorphic_allocator& operator=(const polymorphic_allocator&) = delete;

// 20.4.3.3[mem.poly.allocator.mem], member functions
[[nodiscard]] Tp* allocate(size_t n);
void deallocate(Tp* p, size_t n);

[[nodiscard]] void* allocate_bytes(size_t nbytes, size_t alignment = alignof(max_align_t));
void deallocate_bytes(void* p, size_t nbytes, size_t alignment = alignof(max_align_t));
template<class T> [[nodiscard]] T* allocate_object(size_t n = 1);
template<class T> void deallocate_object(T* p, size_t n = 1);
template<class T, class... CtorArgs> [[nodiscard]] T* new_object(CtorArgs&&... ctor_args);
template<class T> void delete_object(T* p);

template<class T, class... Args>
void construct(T* p, Args&&... args);

template< class~T>
void~destroy(T*~p);

polymorphic_allocator select_on_container_copy_construction() const;

memory_resource* resource() const;

// friends
friend bool operator==(const polymorphic_allocator& a,

const polymorphic_allocator& b) noexcept {
return *a.resource() == *b.resource();

}
};

}

4

https://wg21.link/mem.poly.allocator.class.general
https://wg21.link/allocator.requirements.completeness
https://wg21.link/mem.poly.allocator.ctor
https://wg21.link/mem.poly.allocator.mem

20.4.3.3 [mem.poly.allocator.mem] Member functions

template<class T>
void delete_object(T* p);

13 Effects: Equivalent to:
allocator_traits< polymorphic_allocator>::destroy(*this,p);
deallocate_object(p);

template<class T, class... Args>
void construct(T* p, Args&&... args);

14 Mandates: Uses-allocator construction of T with allocator *this (see 20.2.8.2 [allocator.uses.construction]) and
constructor arguments std::forward<Args>(args)... is well-formed.

15 Effects: Construct a T object in the storage whose address is represented by p by uses-allocator construction
with allocator *this and constructor arguments std::forward<Args>(args)....

16 Throws: Nothing unless the constructor for T throws.
template<class T>
void destroy(T* p);

X Effects: As if by p->~T().
polymorphic_allocator select_on_container_copy_construction() const;

17 Returns: polymorphic_allocator().
18 [Note 4: The memory resource is not propagated. —end note]

6.2 Strike Annex D wording
D.17 [depr.mem.poly.allocator.mem] Deprecated polymorphic_allocator member function

1 The following member is declared in addition to those members specified in 20.4.3.3 [mem.poly.allocator.mem]:
namespace std::pmr {
template<class Tp = byte>
class polymorphic_allocator {
public:

template <class T>
void destroy(T* p);

};
}

template<class T>
void destroy(T* p);

2 Effects: As if by p->~T().

6.3 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
container.requirements.general

5

https://wg21.link/mem.poly.allocator.mem
https://wg21.link/allocator.uses.construction
https://wg21.link/depr.mem.poly.allocator.mem
https://wg21.link/mem.poly.allocator.mem

depr.mem.poly.allocator.mem removed
depr.res.on.required removed

7 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Thanks to Pablo Halpern for good reviews and helping to organize the rationale.

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

8 References
[LWG3036] Casey Carter. polymorphic_allocator::destroy is extraneous.

https://wg21.link/lwg3036

[N4958] Thomas Köppe. 2023-08-14. Working Draft, Programming Languages -- C++.
https://wg21.link/n4958

[P0339R6] Pablo Halpern, Dietmar Kühl. 2019-02-22. polymorphic_allocator<> as a vocabulary type.
https://wg21.link/p0339r6

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

[P2236R0] Jonathan Wakely. 2020-10-15. C++ Standard Library Issues to be moved in Virtual Plenary, Nov.
2020.
https://wg21.link/p2236r0

[P2863R1] Alisdair Meredith. 2023-08-16. Review Annex D for C++26.
https://wg21.link/p2863r1

[P2868R2] Alisdair Meredith. 2023-09-15. Remove Deprecated std::allocator Typedef From C++26.
https://wg21.link/p2868r2

6

https://wg21.link/lwg3036
https://wg21.link/n4958
https://wg21.link/p0339r6
https://wg21.link/p2139r2
https://wg21.link/p2236r0
https://wg21.link/p2863r1
https://wg21.link/p2868r2

	Abstract
	Revision History
	R2: September 2023 (midterm mailing)r2-september-2023-midterm-mailing
	R1: August 2023 (midterm mailing)r1-august-2023-midterm-mailing
	R0: May 2023 (pre-Varna)r0-may-2023-pre-varna

	Introduction
	Issue History
	LWG Poll, 2019 Kona meeting
	2020-10-11 Reflector poll
	November 2023 Virtual Plenary

	Analysis
	Symmetry
	Nongeneric use
	Inability to use [[deprecated]]
	Removal does not serve the Standard

	Proposed Wording
	Update the library specification
	Strike Annex D wording
	Update cross-reference for stable labels for C++23

	Acknowledgements
	References

