
Remove Deprecated shared_ptr Atomic Access APIs From C++26
Document #: P2869R2
Date: 2023-09-15
Project: Programming Language C++
Audience: LEWG
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision history 1
R2: 2023 September (midterm) . 1
R1: 2023 August (midterm) . 2
R0: 2023 May (pre-Varna) . 2

3 Introduction 2

4 History 2
4.1 Origin . 2
4.2 Deprecation . 2

5 Proposal 3
5.1 Impact of Removal . 3
5.2 Addressing the Header Dependency . 4

6 Review 5
6.1 SG1 Review : Varna 2023 . 5

7 Wording 5
7.1 Add declarations to the synopsis for the header <memory> . 5
7.2 Update Annex C . 7
7.3 Strike wording from Annex D . 7
7.4 Update cross-reference for stable labels for C++23 . 9

8 Acknowledgements 9

9 References 10

1 Abstract
Annex D of the C++ Standard, deprecated features, maintains an easily misused API for atomic access to
shared_ptr objects. This paper proposes removing that API from the C++ Standard Library.

2 Revision history
R2: 2023 September (midterm)

— Removed revision history’s redundant subsection numbering

1

mailto:ameredith1@bloomberg.net

— Applied numerous editorial corrections
— Add a new option to resolve header issue with new function overloads
— Wording updates

— Rebased onto latest working draft, [N4958]
— Updated stable label cross-reference to C++23

R1: 2023 August (midterm)
— Recorded review feedback from SG1, recommending removal
— Moved from SG1 to LEWG queue
— Fixed grammar and presentation of some rationale, no functional change
— Revised rationale in Annex C
— Validated wording against latest Standard working draft, N4950

R0: 2023 May (pre-Varna)
Original version of this document, extracted from the C++23 proposal [P2139R2].

Key changes since that earlier paper:

— Rebased wording onto working draft N4944
— Added examples of how to update deprecated code
— Considered proposals to minimize impact on header usage
— Added Annex C wording

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of the paper was not completed.

For the C++26 cycle, a much shorter paper, [P2863R1], will track the overall analysis, but for features that
the author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the
delays on a single feature do not hold up progress on all.

This paper takes up the deprecated C-style API for race-free access to shared_ptr objects, D.23
[depr.util.smartptr.shared.atomic].

4 History
This removal was originally suggested for C++23 as part of [P2139R2], and at the LEWG telecon of 2020/07/13
was deferred (without technical discussion) to SG1 for its initial review, after which the removal discussion would
have come back to LEWG. That initial review did not occur, so this paper has been produced for C++26 to
enable easier tracking of each deprecated topic.

4.1 Origin
The free-function API for atomic access to shared_ptr was introduced with C++11, which introduced both the
concurrency-aware memory model (including atomics) and shared_ptr.

4.2 Deprecation
The API was first deprecated by C++20, along with the introduction of its type-safe replacement,
atomic<shared_ptr<T>>.

2

https://wg21.link/depr.util.smartptr.shared.atomic

5 Proposal
It is now time to complete the cycle and remove the original fragile facility.

The legacy C-style atomic API for manipulating shared pointers, provided since C++11, is subtle and frequently
misunderstood: a shared_ptr object that is to be used with the atomic API can never be used directly and
(other than construction and destruction) may be manipulated only through the atomic API. Its failure mode
on misuse (any direct use of that shared_ptr object before, after, or concurrent with the first use of the atomic
access API) is silently undefined behavior, typically producing a data race.

C++20 provides atomic<shared_ptr<T>>, a type-safe alternative that encapsulates its shared_ptr object,
safely providing a complete replacement for the original functionality’. Additionally, C++20 also provides
support for atomic<weak_ptr<T>>.

5.1 Impact of Removal
The Standard contains no other overloads for the C style atomics interface taking pointers to T rather than
pointers to atomic<T>, so all existing usage should be easily diagnosed by recompiling (if not already diagnosed
by a deprecation warning today). The fix for old code should be as simple as replacing shared_ptr<T> with
atomic<shared_ptr<T>> in the affected places. The existing C-style atomic interface should then pick up
support for the atomic<shared_ptr<T>> type.

For example, consider migrating this legal (but deprecated) program from the original C++11 API to the type
safe C++20 form:

Deprecated Supported

#include <memory>

std::shared_ptr<int> x;

int main() {
std::shared_ptr<int> y =

std::atomic_load(&x);
y.reset(new int(42));
std::atomic_store(&x, y);

}

#include <memory>
#include < atomic>

std::atomic<std::shared_ptr<int>> x;

int main() {
std::shared_ptr<int> y =

std::atomic_load(&x);
y.reset(new int(42));
std::atomic_store(&x, y);

}

Observe that only the global variable is changed by wrapping it in a std::atomic. No further changes to the
code are necessary since the existing overloads for the C-style API expect std::atomic<T> pointers in the same
argument positions and those calls provide the correct behavior.

Note we must also #include the <atomic> header as the (never deprecated) C-style API for atomics is defined
in that header, once the deprecated overloads for shared_ptr have been removed from <memory>.

Alternatively, the user may prefer to further refactor the code to use the std::atomic member functions directly:

3

Deprecated Refactored

#include <memory>

std::shared_ptr<int> x;

int main() {
std::shared_ptr<int> y = std::atomic_load(&x);
y.reset(new int(42));
std::atomic_store(&x, y);

}

#include <memory>

std::atomic<std::shared_ptr<int>> x;

int main() {
std::shared_ptr<int> y = x.load();
y.reset(new int(42));
x.store(y);

}

While this refactored example contains more changes, one might argue that the example shows more id-
iomatic C++. Also, the header dependencies remain the same as the original code, as the full specification
for atomic<shared_ptr<T>> is in the <memory> header needed for the original use of shared_ptr.

5.2 Addressing the Header Dependency
One concern when migrating to type-safe use of atomic<shared_ptr<T>> is that the overloaded functions for
atomic types are declared only in the <atomic> header. The supposedly obvious solution would be to add the
relevant atomic overloads that correspond to the old <shared_ptr> API. Wording for this solution is provided
below, but what are the precedents and concerns? The following directions are considered, in order of increasing
visibility of declarations though the <memory> header. Note that none of these concerns apply when importing
the standard library modules.

5.2.1 Leave to user

The simplest option is to take no action in the standard specification, and leave the workaround to end users
including additional headers as required.

If we review QoI of existing implementations, we find that MSVC already implicitly provides the API from just
including <memory>; the GCC libstdc++ library strictly requires users to include <atomic> for themselves; the
LLVM libc++ library does not yet implement this C++20 library.

We recommend against this direction. While the author has an aesthetic distaste for the way the container API
has leaked across headers, in practice the wording below seems like a practical solution to simplify the process
of updating code when the deprecated API is removed.

5.2.2 Add new atomic<shared_ptr> free-functions to <memory>

The free function interface for atomic<shared_ptr is a subset of the free function interface for atomic objects
in general, due to the lack of support for volatile overloads in the shared_ptr interface.

Rather than import the generic overloads from the <atomic> header, we could add new function template
overloads to the <memory> header along side the declaration of atomic<shared_ptr<T>>, that specifically take
atomic<shared_ptr<T>> parameters rather than atomic<T>. These overloads would be defined to have the
same behavior as the corresponding overloads for atomic<T>.

5.2.3 Add minimal atomic free-functions to <memory>

The subset of atomic overloads could be added to the <memory> header along side the declaration of
atomic<shared_ptr<T>>, while the specification remains untouched in the atomics part of the library.

The obvious precedent for declaring a set of functions in multiple headers is the set of container overloads in the
<iterator> header, such as begin, end, and data. The same overloads are present in each container header

4

so that clients of that container can easily use these functions; however, the specification for these functions
remains in the iterators part of the Standard.

5.2.4 Add all atomic free-functions to <memory>

The chief concern with adding just the minimal set of overloads is that, while containing all the overloads
necessary to support the shared_ptr API, that set is just a subset of the complete set of overloaded declarations
in the <atomic> header, notably missing all pointer-to-volatile overloads, and those functions that would be ill-
formed for shared_ptr, so constrained to not exist for such instantiations.

If we are worried about that partial overload set, another option would be to add all the free-function interface of
the <atomic> header to <memory>. The author believes that to be an excessive creep of unnecessary functionality
into another header.

Given that the primary template atomic<T> cannot be instantiated for types other than instantiations of
shared_ptr and weak_ptr without also including the <atomic> header, it abusing this partial overload set
seems tricky in practice.

5.2.5 Include <atomic> from <memory>

A simpler and more practical approach might be to simply mandate that the <memory> header directly includes
<atomic>, just as it already includes <compare>. While this solution seems to be a bigger leak of excessive
functionality through an unrelated header, in practice the implementation of shared_ptr requires the use of
atomic integers to handle the strong and weak reference counts. Nevertheless, this approach does seem to be a
more impactful change than necessary with potential to impact compile times.

6 Review
6.1 SG1 Review : Varna 2023
SG1 reviewed this paper at the 2023 Varna meeting, and saw no concerns.

Poll: Remove deprecated shared_ptr atomic access APIs from C++25, with any of the library options listed
in P2689.
SF F N A SA
2 4 1 1 0

The one vote against was a principled concern about any removal of deprecated features being a breaking change
— no special concerns about this specific paper.

Forward LEWG to make the final design decisions on how best to handle the header compatibility issue.

7 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4958], the latest draft at
the time of writing. This wording takes the minimal overloads approach to adding declarations to the <memory>
header.

7.1 Add declarations to the synopsis for the header <memory>
7.1.1 20.2.2 [memory.syn] Header <memory> synopsis

namespace std {
// ...

// 33.5.8.7[util.smartptr.atomic],atomic smart pointers

5

https://wg21.link/memory.syn
https://wg21.link/util.smartptr.atomic

template<class T> struct atomic; // freestanding
template<class T> struct atomic<shared_ptr<T>>;
template<class T> struct atomic<weak_ptr<T>>;

// 33.5.9[atomics.nonmembers],atomic non-member functions
template <class T>
bool atomic_is_lock_free(const atomic<T>*) noexcept; // freestanding

template <class T>
T atomic_load(const atomic<T>*) noexcept; // freestanding

template <class T>
T atomic_load_explicit(const atomic<T>*, memory_order) noexcept; // freestanding

template <class T>
void atomic_store(atomic<T>*, typename atomic<T>::value_type) noexcept; // freestanding

template <class T>
void atomic_store_explicit(atomic<T>*, // freestanding

typename atomic<T>::value_type,
memory_order) noexcept;

template <class T>
T atomic_exchange(atomic<T>*, typename atomic<T>::value_type) noexcept; // freestanding

template <class T>
T atomic_exchange_explicit(atomic<T>*, // freestanding

typename atomic<T>::value_type,
memory_order) noexcept;

template <class T>
bool atomic_compare_exchange_weak(atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template <class T>
bool atomic_compare_exchange_strong(atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type) noexcept;

template <class T>
bool atomic_compare_exchange_weak_explicit(atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

template <class T>
bool atomic_compare_exchange_strong_explicit(atomic<T>*, // freestanding

typename atomic<T>::value_type*,
typename atomic<T>::value_type,
memory_order, memory_order) noexcept;

// 20.3.4.1[out.ptr.t], class templateout_ptr_t
template<class Smart, class Pointer, class... Args>
class out_ptr_t;

// ...
}

6

https://wg21.link/atomics.nonmembers
https://wg21.link/out.ptr.t

7.2 Update Annex C
Annex C (informative) Compatibility [diff]

C.1.X Annex D: compatibility features [diff.cpp23.depr]

Change: Removal of atomic access API for shared_ptr objects.

Rationale: The old behavior was brittle. shared_ptr objects using the old API were not protected by the
type system, and any interaction with code not using this API would silently produce undefined behavior. A
complete type-safe replacement is provided in the form of atomic<shared_ptr<T>>.

Effect on original feature: Deletion of an old feature where a superior replacement exists within the standard.

Difficulty of converting: Violations will be diagnosed by the C++ translator, as there are no remaining
overloads that would match such calls. Violations are addressed by replacing affected shared_ptr<T> objects
with atomic<shared_ptr<T>>.

7.3 Strike wording from Annex D
D.23 [depr.util.smartptr.shared.atomic] Deprecated shared_ptr atomic access

1 The header <memory> (20.2.2 [memory.syn]) has the following additions:
namespace std {
template <class T>
bool atomic_is_lock_free(const shared_ptr<T>* p);

template <class T>
shared_ptr<T> atomic_load(const shared_ptr<T>* p);

template <class T>
shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);

template <class T>
void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);

template <class T>
void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

template <class T>
shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);

template <class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

template <class T>
bool atomic_compare_exchange_weak(
shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

template <class T>
bool atomic_compare_exchange_strong(
shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

template <class T>
bool atomic_compare_exchange_weak_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

template <class T>
bool atomic_compare_exchange_strong_explicit(

shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

}

7

https://wg21.link/depr.util.smartptr.shared.atomic
https://wg21.link/memory.syn

2 Concurrent access to a shared_ptr object from multiple threads does not introduce a data race if the access is
done exclusively via the functions in this section and the instance is passed as their first argument.

3 The meaning of the arguments of type memory_order is explained in 33.5.4 [atomics.order].
template<class T>
bool atomic_is_lock_free(const shared_ptr<T>* p);

4 Preconditions: p shall not be null.
5 Returns: true if atomic access to *p is lock-free, false otherwise.
6 Throws: Nothing.

template<class T>
shared_ptr<T> atomic_load(const shared_ptr<T>* p);

7 Preconditions: p shall not be null.
8 Returns: atomic_load_explicit(p, memory_order::seq_cst).
9 Throws: Nothing.

template<class T>
shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo);

10 Preconditions: p shall not be null.
11 Preconditions: mo shall not be memory_order::release or memory_order::acq_rel.
12 Returns: *p.
13 Throws: Nothing.

template<class T>
void atomic_store(shared_ptr<T>* p, shared_ptr<T> r);

14 Preconditions: p shall not be null.
15 Effects: As if by atomic_store_explicit(p, r, memory_order::seq_cst).
16 Throws: Nothing.

template<class T>
void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

17 Preconditions: p shall not be null.
18 Preconditions: mo shall not be memory_order::acquire or memory_order::acq_rel.
19 Effects: As if by p->swap(r).
20 Throws: Nothing.

template<class T>
shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r);

21 Preconditions: p shall not be null.
22 Returns: atomic_exchange_explicit(p, r, memory_order::seq_cst).
23 Throws: Nothing.

template<class T>
shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo);

8

https://wg21.link/atomics.order

24 Preconditions: p shall not be null.
25 Effects: As if by p->swap(r).
26 Returns: The previous value of *p.
27 Throws: Nothing.

template<class T>
bool atomic_compare_exchange_weak(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

28 Preconditions: p shall not be null.
29 Returns: atomic_compare_exchange_weak_explicit(p, v, w, memory_order::seq_cst, memory_order::seq_cst).
30 Throws: Nothing.

template<class T>
bool atomic_compare_exchange_strong(shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w);

31 Returns: atomic_compare_exchange_strong_explicit(p, v, w, memory_order::seq_cst, memory_order::seq_cst).
template <class T>
bool atomic_compare_exchange_weak_explicit(
shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

template <class T>
bool atomic_compare_exchange_strong_explicit(
shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w,
memory_order success, memory_order failure);

32 Preconditions: p shall not be null and v shall not be null. The failure argument shall not be
memory_order::release nor memory_order::acq_rel.

33 Effects: If *p is equivalent to *v, assigns w to *p and has synchronization semantics corresponding to the value of
success, otherwise assigns *p to *v and has synchronization semantics corresponding to the value of failure.

34 Returns: true if *p was equivalent to *v, false otherwise.
35 Throws: Nothing.
36 Remarks: Two shared_ptr objects are equivalent if they store the same pointer value and share ownership. The

weak form may fail spuriously. See 33.5.8.2 [atomics.types.operations].

7.4 Update cross-reference for stable labels for C++23
Cross-references from ISO C++ 2023

All clause and subclause labels from ISO C++ 2023 (ISO/IEC 14882:2023, Programming Languages — C++)
are present in this document, with the exceptions described below.

container.gen.reqmts see
container.requirements.general

depr.res.on.required removed
depr.util.smartptr.shared.atomic removed

8 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

9

https://wg21.link/atomics.types.operations

Thanks to Herb Sutter for first bringing this problem to the attention of WG21, along with the proposed solution,
a decade ago!

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

9 References
[N4958] Thomas Köppe. 2023-08-14. Working Draft, Programming Languages -- C++.

https://wg21.link/n4958

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

[P2863R1] Alisdair Meredith. 2023-08-16. Review Annex D for C++26.
https://wg21.link/p2863r1

10

https://wg21.link/n4958
https://wg21.link/p2139r2
https://wg21.link/p2863r1

	Abstract
	Revision history
	R2: 2023 September (midterm)r2-2023-september-midterm
	R1: 2023 August (midterm)r1-2023-august-midterm
	R0: 2023 May (pre-Varna)r0-2023-may-pre-varna

	Introduction
	History
	Origin
	Deprecation

	Proposal
	Impact of Removal
	Addressing the Header Dependency

	Review
	SG1 Review : Varna 2023

	Wording
	Add declarations to the synopsis for the header <memory>
	Update Annex C
	Strike wording from Annex D
	Update cross-reference for stable labels for C++23

	Acknowledgements
	References

