
Remove Deprecated std::allocator Typedef From C++26
Document #: P2868R1
Date: 2023-08-15
Project: Programming Language C++
Audience: Library Evolution
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 1

2 Revision History 1
2.1 R1: 2023 August (midterm mailing) . 1
2.2 R0: May 2023 (pre-Varna) . 2

3 Introduction 2

4 Proposal 2

5 Analysis 2

6 Concerns 2

7 Wording 3
7.1 Zombie names . 3
7.2 Proposed changes . 3

8 Acknowledgements 3

9 References 4

1 Abstract
The Standard Library allocator class contains a deprecated typedef member than can cause problems for
derived classes. This paper proposes removing that member from the C++ Standard Library.

2 Revision History
2.1 R1: 2023 August (midterm mailing)
Updates following LEWG online review, before submitting to electronic poll:

— Fix broken markup, correcting some links
— Moved from LEWGI to LEWG
— Added a new section to address concerns raised during LEWG review
— Confirmed that no changes are expected for 16.4.5.3.2 [zombie.names]
— Provided Annex C wording

1

mailto:ameredith1@bloomberg.net
https://wg21.link/zombie.names

2.2 R0: May 2023 (pre-Varna)
Initial draft of this paper.

3 Introduction
At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of the paper was not completed.

For the C++26 cycle, a much shorter paper, [P2863R1], will track the overall analysis, but for features that
the author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the
delays on a single feature do not hold up progress on all.

This paper takes up the deprecated is_always_equal member typedef in std::allocator, D.17
[depr.default.allocator].

4 Proposal
Remove the deprecated typedef std::allocator<T>::is_always_equal from C++26.

5 Analysis
The Standard Library allocator class has a typedef member that could be synthesized from the primary
allocator_traits template and was deprecated in C++20 by [LWG3170]. When std::allocator provides
this member directly, any classes that derive from it will not synthesize this type name correctly, but use the
true_type value provided directly by std::allocator. If the derived allocator type is not empty, its value
for this trait will not match the expected default behavior, forcing the allocator author (if they are aware) to
add their own typedef that should not be needed to restore the default behavior; typically, this process leads to
subtle bugs.

While this case is a small corner for misuse, the concern is embarrassing for the Committee to explain, and
the Standard Library allocator is a common example folks will follow when trying to write their first allocators.
Hence, this paper recommends the removal of this deprecated typedef for C++26.

6 Concerns
During LEWG reflector review before electronic polling, Pablo Halpern observed that our assumption for back-
ward compatibility seems to implicitly reply on std::allocator always being an empty type, which is not
guaranteed by the Standard.

However, Corentin Jabot highlighted that 20.2.10.1 [default.allocator.general]p2 places a guarantee on the trait
that it yields true_type for all instantiations of std::allocator, for both Standard Library vendors and users
specializing the std::allocator template for their own types.

If a Standard Library vendor maintains a std::allocator implementation that is not empty such that the de-
fault algorithm in allocator_traits would produce the wrong result, that vendor has the freedom to specialize
that trait as an implementation detail of the Standard Library itself. This freedom is unavailable to end users
since C++23; see [P2652R2] for more details.

An end user can achieve this guarantee for their own specializations of std::allocator only by imple-
menting as an empty type, unless the Standard Library vendor has provided the partial specialization for
std::allocator_traits<allocator<T>> to make this happen.

2

https://wg21.link/depr.default.allocator
https://wg21.link/default.allocator.general

While the current wording seems sufficient, we might benefit from exploring a mandate that std::allocator is
always an empty type or that the Standard Library provides a partial specialization for allocator_traits so
that std::allocator_traits<allocator<T>>::is_always_equal::value is always true.

We might also reasonably argue that 20.2.10.1 [default.allocator.general]p2 already places sufficient constraints
on a Standard Library vendor that it must satisfy this requirement, by either making std::allocator empty
or providing the partial specialization described above, and which technique is used is unspecified. Following
this interpretation, users’ specializations of std::allocator must always be empty types in portable code.

7 Wording
All wording is relative to [N4950], the latest working draft at the time of writing.

7.1 Zombie names
The only name being removing is a member type alias that is part of a protocol that relies on that name being
present or not; the Standard Library’s requirement for this name does not change simply by removing one use
of it. Hence, nothing need be added to 16.4.5.3.2 [zombie.names].

7.2 Proposed changes
C.1.X Annex D: compatibility features [diff.cpp23.depr]

1 Change: Remove the type alias std::allocator<T>::is_always_equal.

Rationale: The behavior that follows from defining this type is the default behavior supplied by the
allocator_traits template, so the type is not needed. However, the redundant declaration is then present in
derived classes where it will replace the deduced behavior of the allocator_traits, potentially causing wrong
behavior.

Effect on original feature: A valid C++ 2023 program that derives an allocator class from std::allocator
and does not provide its own alias named is_always_equal to override its own behavior will now get the deduced
behavior from allocator_traits, potentially aliasing false_type instead of true_type for correct behavior.

D.17 [depr.default.allocator] The default allocator
1 The following member is defined in addition to those specified in 20.2.10 [default.allocator]:

namespace std {
template<class T> class allocator {
public:

using is_always_equal = true_type;
};

}

8 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks to Pablo Halpern and Corentin Jabot for pointing out the importance of 20.2.10.1 [default.allocator.general]p2
to confirm that the behavior after removal is always guaranteed to be the same for std::allocator.

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

3

https://wg21.link/default.allocator.general
https://wg21.link/zombie.names
https://wg21.link/depr.default.allocator
https://wg21.link/default.allocator
https://wg21.link/default.allocator.general

9 References
[LWG3170] Billy O’Neal III. is_always_equal added to std::allocator makes the standard library treat derived

types as always equal.
https://wg21.link/lwg3170

[N4950] Thomas Köppe. 2023-05-10. Working Draft, Standard for Programming Language C++.
https://wg21.link/n4950

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++20 for C++23.
https://wg21.link/p2139r2

[P2652R2] Pablo Halpern. 2023-02-09. Disallow user specialization of allocator_traits.
https://wg21.link/p2652r2

[P2863R1] Alisdair Meredith. 2023-08-15. Review Annex D for C++26.
https://wg21.link/d2863r1

4

https://wg21.link/lwg3170
https://wg21.link/n4950
https://wg21.link/p2139r2
https://wg21.link/p2652r2
https://wg21.link/d2863r1

	Abstract
	Revision History
	R1: 2023 August (midterm mailing)
	R0: May 2023 (pre-Varna)

	Introduction
	Proposal
	Analysis
	Concerns
	Wording
	Zombie names
	Proposed changes

	Acknowledgements
	References

