
Semantic Stability Across Contract-Checking Build Modes

Document #: P2834R1
Date: 2023-06-08
Project: Programming Language C++
Audience: SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

John Lakos <jlakos@bloomberg.net>
Abstract

The Contracts MVP — along with any fully featured Contracts facility into which the MVP
eventually evolves — will allow for multiple modes of program translation (a.k.a. build modes)
in which a contract-checking annotation (CCA) may have distinct semantics. If differences
across build modes are permitted to affect the semantics of other features of the language, then
the source code of a program that is built using one contract-checking mode might compile
to a substantially different program when built using another. In particular, if evaluating a
precondition check on a function that has a nonthrowing exception specification were permitted
to propagate an exception emanating from that CCA to the caller in only a checked build
mode, that distinct behavior would be readily apparent across checked and unchecked build
modes via routine use of the noexcept operator. After carefully examining and demonstrating
the implications of contract-checking semantics affecting other language features in ways that
are programmatically observable, we conclude generally that allowing such changes in program
behavior across contact-checking build modes is actively harmful to the efficacy of Contracts as
a tool for achieving correctness and improving safety.

Contents
1 Introduction 2

2 Proposals 7

3 Conclusion 11

A Related Considerations 12
A.1 Exceptions emitted directly from a CCA’s predicate 12
A.2 Trivial functions that have preconditions or postconditions 13
A.3 Implicit lambda captures from CCAs 17
A.4 Contract violations that occur at compile time 19

1

mailto:jberne4@bloomberg.net
mailto:jlakos@bloomberg.net

Revision History
Revision 1 (Prior to 2023-06 Varna Meeting)

• Each appendix now ends in a proposal clarifying exactly our recommendation regarding that
issue.

Revision 0 (Prior to 2023-05-18 SG21 telecon)

• Original version of the paper for discussion during an SG21 telecon

1 Introduction
SG21 is striving to complete an MVP for Contracts1 within a timeframe that enables the MVP to
ship with C++26.2 As part of that process, a number of choices are being considered that might
allow the evaluation of a contract-checking annotation (CCA) to emit an exception, which is not
possible with the current MVP. Any design choice that allows an exception to be emitted from a
checked CCA must also determine whether an exception arising from the evaluation of a precondition
or postcondition check on the declaration of a noexcept function may be allowed to propagate back
to the caller.

Treating a precondition check on a given function as occurring outside the purview of that function’s
exception specification is tempting in that an exception thrown as a result of evaluating such a
contract check would not subject the program to immediate forced termination. As alluring as this
design choice might at first seem, it is inherently fatally flawed.

In what follows, we consider the implications of allowing a thrown exception resulting from the
evaluation of any CCA associated with a function to bypass the guarantees afforded by the exception
specification of that function, arriving at one inevitable controlling principle.

Principle: Build-Mode Independence

independence The build mode governing the semantics of a CCA must not affect the proximate
compile-time semantics surrounding that annotation.

Note that, by proximate, we are referring code that is either textually adjacent or applied (directly
or indirectly) to the CCA, which we will further discuss shortly.

Before digging into those details, let’s take a moment to unpack what this principle is trying to
convey. Recall that we have a well-reasoned aversion to side effects in contract-checking predicates.
That is, if a side effect occurs only when contract-checking predicates are evaluated (enforce or
observe semantics), that side effect might result in program execution that is substantially different
from when they aren’t evaluated (ignore or assume semantics):

// main.cpp (bad idea)

bool b = false:

1See [P2521R2].
2See [P2695R1].

2

void f() [[pre: b = true]] { } // Precondition has a side effect.

int main() { f(); return b; } // Return value is affected by build mode.

These same concerns — namely, where changing a CCA’s semantics across build modes might
result in substantially different program behaviors due to side effects, which occur at run time
— appertain even more forcefully to unexpected changes in the intended compile-time semantics
of the noexcept operator when applied to (the invocation of) a function declared to have both a
nonthrowing exception specification and a precondition or postcondition check. This incontrovertible
essential conclusion will be demonstrated using compelling examples.

Next let’s talk a bit more about what we mean by proximate as compared to more general ones. We
can imagine build modes that might affect one-definition-rule (ODR) use or somehow alter valid
overload sets, thereby resulting in manifestly different code paths in distinct builds.3 Preventing
such abuses is neither within the remit of SG21 nor reasonably addressable by any contract-checking
facility. What a well-designed Contracts facility can ensure, however, is that function specifiers,
such as noexcept, imply the same semantics in all valid forms of use, irrespective of which particular
CCA semantic4 (e.g., enforce, ignore) is in force in the current build mode.

For the remainder of this paper, let’s assume that we have some C++ contract-checking facility
having at least one build mode in which the evaluation of a CCA may emit a thrown exception as
either (1) a consequence of the predicate evaluating to something other than true or (2) the result
of evaluating the predicate itself. Note that these assumptions might be met, respectively, through
(1) the adoption of a configurable contract-violation handler, such as that proposed by [P2811R0],
or (2) by allowing exceptions that escape the evaluation of a CCA’s predicate to propagate to
the caller, as might be considered based on some of the poll results during SG21’s discussion of
[P2751R0]. Either way, evaluating a CCA might generate an uncaught exception.5

Recall that, according to the definition of a nonthrowing exception specification for a function
(or constructor), any thrown exception that escapes from its body, function try block, or (for
constructors only) initializer list will result in a call to std::terminate. Our next step will be to
consider the interaction of precondition checks (which might throw) with the noexcept operator
when applied on a function that — per its noexcept exception specification — is prohibited by the
language from emitting an exception.

3Here we are considering, for example, that a possible distinction might exist between which templates get
instantiated by a predicate that is potentially evaluated and one that, due to it being in an unchecked build, is
effectively discarded. We lack concrete examples of such obscurity but think we cannot or should not act to prevent
such possibilities that might already exist in any other similar situation where a function template with no realized
evaluations is not instantiated.

4The current MVP mentions two build modes, each of which when chosen assigns a single semantic to all build
modes: No_eval uses the ignore semantic) and Eval_and_abort uses the enforce semantic. We are aware that this
approach will not easily scale to more contract-checking build modes nor multiple modes within a single TU, so
we have chosen to instead refer to the four known CCA semantics: ignore/assume (unchecked) and enforce/observe
(checked). This paper applies in its entirety irrespective of whether the observe and/or assume semantics are ever
adopted by the Standard.

5For simplicity and correctness, we will refer to only this checked build mode, which allows an exception to be
emitted, and the unchecked build mode, such as No_eval, which emits no exceptions. We will ignore, without loss of
generality, that additional checked build modes do not enable exceptions to be thrown or to otherwise escape the CCA
could exist.

3

For example, consider an arbitrary function, my_func, that takes a non-negative integer, i, and
returns void:

void my_func(int i) [[pre: i >= 0]];

This function has a CCA that, in some build mode(s), checks to make sure that the argument i
passed to my_func at run time is in fact non-negative, and if it is negative, the CCA might throw.

Whether the result of evaluating my_func’s precondition check is governed by the guarantees of the
exception specification makes no difference here because my_func isn’t declared to be noexcept and,
hence, doesn’t profess not to throw. (Recall that a destructor’s exception-specification is the opposite
in that it defaults to nonthrowing — even when user-defined.) Consequently, applying the noexcept
operator to any invocation of my_func in any build mode will naturally evaluate to false:

int x; // Value is not used.
static_assert(false == noexcept(my_func(x))); // always well-formed

Note that the value of x is irrelevant because the noexcept operator is concerned with only whether
any of the subexpressions of its argument can throw.

Now let’s consider another function, your_func, that is the same as my_func but is declared
noexcept:

void your_func(int i) noexcept [[pre: i >= 0]];

Whenever we apply the noexcept operator to an invocation of your_func, we would naturally expect
it to evaluate to true:

int x; // Value is not used.
static_assert(true == noexcept(your_func(x))); // unchecked build

Neither assertion above cares what runtime arguments are passed to my_func or your_func. Because
the predicate in the CCA above involves only a single scalar and thus invokes no functions that
might throw, the result of applying the noexcept operator is determined entirely at compile time by
the presence (or absence) of a noexcept specifier on your_func (or my_func).

Note that an exception emitted as the result of evaluating an argument to the function proper is not
similarly problematic because, in all build modes, that exception must necessarily be thrown prior
to invoking the function. On the other hand, all exceptions that are allowed to escape from a CCA
— whether from evaluating the predicate itself or in response to a successfully detected contract
violation — are equally problematic because all are similarly dependent on the contract-checking
build mode (see Appendix A).

Let’s now consider the conundrum that ensues in a checked build mode where (1) evaluation of
a precondition check can result in a thrown exception being emitted from that CCA and (2) its
evaluation is presumed to occur prior to invoking the function and thus is not subject to the
guarantees associated with a function having a nonthrowing exception specification.

There is no mechanism in the language to observe whether the exception originates before or after
the function begins to execute. Hence, in a checked build mode, invoking your_func will clearly be
capable of emitting an exception. Therefore, if the precondition check is not within the purview of

4

the function’s exception specification, no choice is available but for the noexcept operator to return
false6 in every checked build mode where that CCA might emit an exception:

int x; // Value is not used.
static_assert(true == noexcept(your_func(x))); // unchecked build
static_assert(false == noexcept(your_func(x))); // checked build

That is, the noexcept operator behaves differently depending on whether we are in a checked or
unchecked build mode!

To introduce this polemic against the notion of build-mode-dependent semantics for the noexcept
operator, suppose that we have some generic function, theirfunc<F>(F& function, int y), that,
based on whether the supplied function is noexcept, executes one of two distinct algorithms, one
being fast and the other slow (the slow algorithm is slow only because it does some extra cleanup):

class SystemState { /* ... */ };
const SystemState& getCurrentState(); // Retrieve current global state.
void setCurrentState(SystemState&&); // Update global state.

template <typename F>
void theirfunc(F& function, int y)

// Invoke the specified function with the specified y, guaranteeing
// that, if function throws, the global system state will be preserved.

{
if constexpr (noexcept(function(y))) // fast algorithm
{

function(y); // does not throw
}
else // slow algorithm
{

SystemState origState = getCurrentState(); // Record original state.

if (INT_MIN == y) ++y; // pathological case
y = std::abs(y); // Guarantee y is non-negative.

try
{

function(y); // might throw
}
catch (...)
{

setCurrentState(std::move(origState)); // Restore original state.
throw; // Rethrow exception from function.

}
}

}

6One might think to ask if we could, hypothetically, define some other operator, say, operator
noexcept_except_contracts, that answers the question as to whether a function can throw in cases other
than contract checking violations. If we could, that would mean that a function could throw in four, not just two,
ways: nothing, general exception, contract-violation exception, or both. The question then becomes what operator
should one use in production code? It turns out that, regardless of the reason an exception might be thrown, whether
it may be thrown is the question one needs to ask, or the code that’s asking won’t work.

5

In the example above, whenever we pass, as an argument to theirfunc, a function that has a throwing
exception specification, the slow version of the implementation for theirfunc will be instantiated —
irrespective of anything else. If the function argument type instead has a nonthrowing exception
specification and no precondition (or postcondition) checks on its declaration, the fast version
of the implementation will be instantiated. But if an argument function having a nonthrowing
exception specification has, say, a precondition, then for theirfunc to be instantiated with the fast
implementation, it must have been built in an unchecked build mode; otherwise, our decision to
evaluate the precondition check before theirfunc is invoked will force their_func to be instantiated
with the slow implementation.

At the risk of being overly repetitive, having the semantics of commonly used C++ language
constructs be dependent on the contract-checking build mode is anathema to any sensible notion of
sound software engineering practice. To drive this point home, we need go no further than to create
a couple of simple applications that illustrate the potential pitfall we’re striving to avoid.

Let’s first consider My Application, which uses the functionality presented above to invoke their_func
on my_func with the value -5:

// My Application (my_app)
int main()
{

their_func(my_func, -5); // my_func has a throwing exception spec.
}

Because my_func has a throwing exception specification, it will never have the fast path within
theirfunc applied to its invocation in any build mode. Hence, the extra adjustments made to the
inputs on the slow path will ensure that this application will never experience an out-of-contract
call to my_func.

In contrast, let’s now consider Your Application, which instead invokes theirfunc on your_func,
again with the value -5:

// Your Application (your_app)
int main()
{

their_func(your_func, -5); // your_func has a nonthrowing exception spec.
}

In this case, because it has a nonthrowing exception specification, your_func will cause the fast
algorithm to be instantiated if and only if compiled in an unchecked build mode. That is, in a
checked build mode, the invocation of your_func will be determined by the noexcept operator to be
throwing, the slow algorithm will be instantiated for the implementation of their_func, and, hence,
your_func will be safely called in contract.

Importantly, the slow algorithm adjusts the value passed to it to ensure that the value is non-
negative and will thus always satisfy the precondition checks of both my_func and your_func. The
fast algorithm, on the other hand, skips the adjustment step, and thus, in an unchecked build,
your_func will be called out of contract, resulting in (at least) library undefined behavior and, in
any event, a latent defect.

6

Catastrophically, this bug remains undetected even after switching to a checked build since the
distinct code path followed to handle exception safety inadvertently provides substantially different
— i.e., sufficiently constrained — values to the specified function, masking the defect (and resulting
undefined behavior) in such builds.

Bottom line: Our decision to evaluate an associated precondition before (or postcondition after) the
invocation of a function having a nonthrowing exception specification just to skirt the nonthrowing
exception specification in checked builds isn’t just dubious, it’s untenable; the only viable alternative
is that the exception specification observable from the declaration of a function governs the behavior
of an applied noexcept operator — or any other compile-time query (see Appendix A) — precisely
the same way in every contract-checking build mode.

2 Proposals
First, we restate with more clarity the founding principle which will guide the decisions we make in
further proposals, and for which we hope we have, by now, sufficiently described the motivation.

Principle 1: Build-Mode Independence

A function having a CCA, especially one associated with its declaration, will not result in
it having proximate compile-time semantics — e.g., with respect to the noexcept operator
(or any other compile-time query) — that vary across contract-checking build modes. In
particular, if a function having a CCA is well-formed when that annotation is compiled,
then the noexcept operator will have the same behavior in all build modes, i.e., regardless of
whether the CCA has been compile to have ignore or enforce semantics.

Recall that, by proximate, we mean the effect (e.g., of a CCA) on adjacent language constructs is a
direct and inevitable consequence (e.g., of the current build mode) and not an accidental interaction
resulting from global side effects — such as varying ODR-use leading to different overload sets —
that might arise in more rare, if not pathological, cases. This same principle applies to other similar
situations, e.g., involving traits; see Appendix A.2.

Also consider that we must allow for the possibility that some build modes might render a program
ill formed, while others might leave it well-formed. For example, consider that the compile-time
evaluation of a constexpr function that results in a contract violation might be well-formed (but
have a latent logical defect) in an unchecked build mode yet be ill formed (exposing the defect) in a
checked build. We’ll need to flesh out the subtleties of such compile-time evaluations of functions
having CCAs (see Appendix A). Nonetheless, for the subset of build modes for which a program is
well-formed, the proximate compile-time semantics of all language constructs must remain the same.

Being compelled to adopt this first proposal leads us to another well-known principle.7

7See [N3279].

7

Principle 2: The Lakos Rule

Nonthrowing exception specifications and narrow contracts are inherently incompatible and
contradictory.

Note that utility of the Lakos Rule transcends the inability for a function having a nonthrowing
exception specification to fully support a robust contract checking facility (including one that might
throw) and applies to the practical maintainability of software in general.8 When presented with
functions that violate this principle (perhaps even for sound engineering reasons), we must define
how the language will respond. Given that the behavior of the noexcept operator must be the same
across all build modes, exactly two fundamentally distinct alternatives are available from which we
may choose.

1. Codify the Lakos Rule directly into the language. Adding a precondition or postcondition
check to the declaration of a function that would otherwise have a nonthrowing exception
specification makes that function automatically not noexcept — i.e., its exception specification
silently becomes noexcept(false) — in all build modes; alternatively, we might even choose
to make the function simply ill formed.

2. Allow a noexcept function to have arbitrary CCAs. If a CCA throws, however, the result is
a call to std::terminate, just as if the exception had been thrown from an [[assert ...]]
inside the body of the function or constructor.

The first alternative is draconian, brittle, and inconsistent with other well-reasoned language decisions
at the heart of the design of C++. Having the exception specification silently change to nonthrowing
when any CCA is added to its declaration would be surprising and error prone, to say the least, and
doesn’t address what’s supposed to happen if a CCA is placed in the (perhaps nonvisible) body of
said function.

Another entirely separate reason, however, arises for not wanting the addition of CCA to affect the
proximate semantics of the noexcept specifier even if that change would apply to all build modes.

Principle 3: Zero Overhead for Ignored Predicates

When the predicate of a CCA is ignored, the generated code proximate to the CCA is as if
the CCA had been commented out, i.e., removed from the source entirely.

Violating the zero-overhead principle for CCAs above would imply that just having a contract
check in the source code — even when not built to be checked at run time — could potentially
degrade performance and thereby generally discourage widespread adoption of our burgeoning
contract-checking facility. In particular, we require that neither run time nor the layout of any
object be affected by the addition of any CCA. Note that, to ensure equivalent semantics, anything
referenced in a contract check is ODR-used in all build modes. Hence, we do acknowledge the
possibility of additional template instantiations that result from adding a contract check, even when
the entire program is built to have the ignore semantics.

The alternative — i.e., making the addition of a precondition check to a nonthrowing function ill
8See [P2861R0].

8

formed — would mean that those who want to use noexcept on a narrow function (for whatever
reason) would be denied the benefits of contract checking — not even forced termination. In
particular, Standard-Library vendors who choose to strengthen their exception specification on
narrow contracts and still want to provide attenuated support for contract checking (i.e., all but
throwing handlers) would be denied that opportunity. Why?

Consider that C++ already provides multiple instances of explicit syntax for declaring a property
that would enable prospective clients to exploit that property, regardless of whether the property
is statically provable or even strictly true but which will be true — or close enough to true — in
practice.

Let’s suppose we have a function whose contract states that it has no side effects (i.e., that it is
pure), and this property can somehow be made accessible programmatically at compile time to
generic clients.9 These clients would, of course, be free to skip calling said function if they have
no need for the result or can similarly exploit this pure property — e.g., cached result for given
arguments.

Now suppose that a developer, experimenting in a local sandbox, adds a print statement within that
function. Should that function now be considered ill formed10 because the compiler can observe
that it might have a side effect?

Such brittleness resulting from draconian compiler enforcement of user-declared properties11 has
been demonstrated repeatedly to be counterproductive as we’ll expound upon below. Designed
properly, the function will still compile and, in practice, behave correctly, the worst case being that
the function was elided since it deliberately but innocuously misrepresented the truth about having
no side effect, such as printing.

Similarly, when we put noexcept on a function, we are not necessarily claiming that there is no
possibility of anything in the body of the function ever throwing. We are allowing the client to use
this function in a context that requires knowing programmatically that no exception will ever escape
from that function. Hence, if something inside the body of the function does throw, the natural
consequence is program termination.

Developers have legitimate engineering reasons for wanting to represent a stronger exception
specification than what might hold in general. For example, imagine that we have an object for
which there is no nonthrowing move constructor, yet we know that the only way a copy operation
can throw would be due to system memory exhaustion. We want to be able to place objects of
this type in standard containers, such as std::vector, and achieve the full efficiency that we would
realize with a type sporting a move constructor having a nonthrowing exception specification.

As the owners of the application, we know that we have ample memory and therefore are unconcerned
with exceeding system-memory limits. Moreover, if our application is not safety critical and instead
does batch work where the priority is maximizing throughput, we might actively prefer that, should

9See, e.g., [N3744] and [P0078R0].
10We acknowledge that this analogy is not strictly applicable in that purity is not generally provable (decidable),

whereas whether a function having a nonthrowing exception specification has CCAs (at least on its declaration) is
trivial for the compiler to check at the call site.

11The original design of Concepts for C++0X required that all concepts declared by the user be verified by the
compiler.

9

our memory limits somehow be exceeded, the application crash loudly rather than degrade quietly.
Hence, providing a generic wrapper that exposes a noexcept move operation offers real-world
practical economic value.12

In the interest of avoiding historical mistakes, note that the initial design of C++11 specified as ill
formed an explicit exception specification that did not match the one produced when defaulting a
special member function. That brittle behavior was replaced in 2014, so that such a special member
function would be well-formed but deleted. Implementing this new behavior proved problematic,
and besides, the Standards Committee recognized that valid use cases did exist for telling a white
lie to the compiler (see above), so in 2019, the behavior changed to what it is today: An explicit
exception specification takes precedence over the defaulted one.13

Choosing to inseparably couple the existence of a nonthrowing exception specification with the
absence of precondition and postcondition checks (and vice versa) would do a grave disservice to
C++ users since a developer might reasonably want to have some of the benefits of both. That is,
although not every action of a general-purpose contract-violation handler can be supported for a
function having a nonthrowing exception specification, some can, which might be better than nothing
in some cases. Unilaterally forcing everyone always to choose between (perhaps algorithmically
faster) nonthrowing exception specifications and fully functional contract checks is not something
that even John Lakos himself would ever want to see.14

Codifying the Lakos Rule into the language such that nonthrowing exception specifications are
syntactically incompatible with preconditions or postconditions is unnecessary and would serve only
to occasionally impede effective software design. This observation leads us to the second alternative,
our second proposal, and the ultimate conclusion of this paper.

Proposal 1: noexcept Functions15

After the initialization of function arguments, any further steps in the evaluation of a
noexcept function that emits an unhandled exception will follow [except.spec]p5, resulting in
the invocation of std::terminate.

This second proposal is merely a special case of the first one; anything else would be new territory
and necessarily contradict our underlying principal requiring the same as-if behavior across all
build modes.16

Finally, this result does not preclude implementations from providing the caller’s source_location
to the violation handler when a precondition is violated, and thus some of the goals of [P2780R0]
can still be achieved.

12See [lakos21], Section 3.1.“noexcept Specifier,” “Use Cases,” “A wrapper that provides noexcept move opera-
tions,” pp. 1099–1101.

13See [lakos21], Section 3.1.“noexcept Specifier,” “Description,” “Unconditional Exception Specifications,” pp. 1085–
1089, specifically footnote 2, p. 1086.

14See [P2861R0].
15SG21 consensus at the 2023-05-19 telecon was to adopt this proposal.
16A third alternative would be to treat throwing from a handler as forced termination – even for functions having a

throwing exception specification. Although such an approach would not be satisfactory for people who want to make
use of throwing from the handler, it would nonetheless be self consistent.

10

3 Conclusion
The long-standing debate about whether a precondition check behaves as if it is evaluated before or
after a function is invoked has finally been resolved — here and now — in favor of the latter, yet this
result still allows for collecting the caller’s source location when a violation occurs. The dispositive
proof we have exhibited comes down to the absolute need to avoid dangerous pitfalls that arise
from allowing the compile-time semantics of language constructs proximate to a contract-checking
annotation (CCA) to vary, in programmatically detectable ways, from one contract-checking build
mode to another.

The efficacy of a Contracts facility as a tool for detecting software defects and improving safety
demands that any defects resulting in unintended (e.g., undefined) behavior that would manifest
in an unchecked build are not somehow inadvertently hidden or otherwise rendered harmless in a
checked build. At the same time, we must avoid design choices that — while consistent — might
affect runtime performances even when the program is built in a mode where all CCAs are ignored,
thereby presenting a strong disincentive to widespread adoption. Making the wrong choice with
respect to how CCAs interact with exception specifications can easily lead to such unfortunate
scenarios.

To demonstrate why a function having a nonthrowing exception specification must never allow an
exception to escape from any CCA in any build mode, we assumed the contrary — namely, that
an exception emitted from a CCA can bypass a nonthrowing exception specification on a function.
We then created two similar functions (my_func and your_func), each taking a non-negative integer
argument guarded by a precondition check but with only the latter declared noexcept.

Next we exhibited a generic function (their_func) that chooses a more efficient, fast path when the
noexcept operator, applied to its function parameter, indicated that invoking that function argument
would not throw an exception. We observe that, for the first function, the slow path was always
instantiated, whereas for the second function, which is noexcept, the fast path was instantiated if
and only if compiled in an unchecked build, thus exhibiting dramatically different code paths across
distinct contract-checking build modes.

We then created two applications (my_app and your_app), each invoking its respective function on
an invalid input. An abundance of caution along the slow path of the generic function resulted in
suppressing a defect (undefined behavior), while the fast path skipped this corrective step, thereby
allowing that defect to manifest. To our horror, enabling runtime checking failed to detect this
defect, while disabling runtime checking removed the correcting code and restored the catastrophic
bug.

Our hypothetical decision to allow an exception to escape from the CCA of a function having a
noxcept specifier caused the variation in the proximate semantics of the noexcept operator , which in
turn enabled the pitfall of creating and masking a latent defect (undefined behavior). We therefore
concluded that we must never allow the noexcept operator to behave differently across contract-
checking build modes and thus that we cannot allow an exception to escape from any CCA for a
function having a nonthrowing exception specification.

After completing this proof by contradiction, we were faced with exactly two alternatives: (1)
codify the Lakos Rule in the language, making a nonthrowing exception specification syntactically

11

incompatible with precondition and postcondition checks or (2) treat every CCA as being subject
to the same exception specification as the function itself.

We then proceeded to show why the former alternative is needlessly draconian, brittle, and not in
keeping with the design practices typical of modern C++. We also noted that any design choice
that achieved consistency at the expense of runtime overhead for even ignored CCAs would serve
only to stifle widespread adoption of this burgeoning Contracts facility.

Using detailed examples, we demonstrated that compiler enforcement of similar user-specified
properties, such as purity (having side effects), would — even where practicable — be woefully
counterproductive. We also observed that the original choice to prevent users from explicitly changing
default exception specifications on special member functions was notoriously ill-advised.

We therefore embraced the latter approach with the clear-eyed understanding that an exception
emitted from any CCA associated with a function having a nonthrowing exception specification
will necessarily result in forced program termination. We also concluded that the general advice
of not allowing proximate compile-time semantics to differ among well-formed programs across
various build modes was helpful in guiding us to a successful resolution of other, related issues (see
Appendix A).

In short, the evaluation of all CCAs shall be treated as if occurring after the invocation of the
function and before it returns and thus subject to the same guarantees afforded by the exception
specification of that function, irrespective of the contract-checking build mode. To do otherwise is
to forgo the significant benefits in consistency, correctness, safety, and performance that our C++
Contracts facility seeks to provide.

A Related Considerations
The primary purpose of this paper was to reiterate the absolute requirement that exceptions are
never to be emitted when invoking a function having a nonthrowing exception specification in any
contract-checking build mode. While writing this paper, we encountered several related issues, some
of which we’ve already touched on briefly. This appendix will now introduce several of these related
topics, which we’ll need to address as they become relevant.

A.1 Exceptions emitted directly from a CCA’s predicate

In the discussions so far, we’ve made no distinction as to whether an exception emitted from a CCA
results (1) directly from evaluating the CCA’s predicate or (2) indirectly as a consequence of that
predicate evaluating to false and then, as part of the process of handling a contract violation, an
exception being explicitly thrown.

Recall that, unlike the evaluation of arguments to a function proper, which are always necessarily
evaluated prior to invoking the function in every build mode, allowing an exception to emanate
directly from the evaluation of a precondition check’s predicate produces precisely the same
inconsistency in proximate compile-time behavior across checked and unchecked build modes that
would have occurred had the exception been thrown indirectly, e.g., via a configurable violation
handler.

12

In fact, allowing an exception to propagate back to the client directly from the evaluation of a
CCA’s predicate itself would pose precisely the same problem as with a throwing handler, and this
would be true even absent a build mode in which contract violations are handled via throwing an
exception. Hence, we must conclude that no exception thrown as the result of merely evaluating the
predicate of a CCA itself may ever be allowed to escape back to the caller of a function having a
nonthrowing exception specification.

One simple approach — the one employed by the current MVP17 — that avoids the creation of new
control paths when evaluating CCA’s predicate throws is to always catch it and call std::terminate,
even for functions having throwing exception specifications. Alternatively, we can restore some of the
flexibility to handle exceptions thrown directly from a CCA’s predicate — in a disciplined manner —
by treating these exceptions as contract violations as recommended by Proposal 2.3 in [P2751R0],
enabling a custom contract-violation handler to be aware of this dichotomy and thus, when desired,
to choose to rethrow the exception, as described in Section 4.3 of [P2811R1].

SG21 consensus as of the 2023-05-18 telecon was to adopt the proposal in [P2751R0] and treat
exceptiosn thrown from a CCA predicate as contract violations.

A.2 Trivial functions that have preconditions or postconditions

A trivial operation — constructor, destructor, or assignment operator — is one that is (1) generated
entirely by the compiler and (2) invokes no user-provided code. The copy and move operations,
when trivial, become bitwise copyable (and thus may be replaced by, e.g., memmove). The default
constructor and destructor, when trivial, do nothing.

Providing a body — even an empty one — for a special member function never results in the special
member function being trivial. Defaulting a user-declared special member function (via = default
on the first declaration) will result in its being trivial as long as it doesn’t need to invoke any
user-provided code for a base-class or member object.

The definition of the trivially copyable trait has evolved over the years, but the main point is that
all the default-generated copy and move constructors and copy and move assignment operators are
trivial (hence, can treat the object as pure data) as long as at least one of them is not deleted. For
a type to be trivially copyable, it must also be trivially destructible, i.e., the compiler-generated
destructor is a no-op.

Now consider that, to minimize runtime overhead and still get substantial coverage, common practice
allows for any type that happens to have one or more (programmatically verifiable) class (object)
invariants to assert them in the one place where the flow of control must pass for every constructed
object: the destructor. This defensive-checking strategy is particularly effective at catching memory
overwrites.18

Now imagine we have a trivially copyable value type, such as this heavily elided Date class:
17See [P2695R1].
18Feel free to ask the authors for war stories about the pain that comes from developers who decided to implement

types that overwrite their own members by calling memset(this,0,sizeof(this)) in their constructor bodies,
under some misguided belief that doing so improved performance and correctness. In particular, if such a class has any
member, such as std::string, that has a non-trivial default constructor that does more than just zero-initialize,
this ill-fated choice leads to painful-to-diagnose problems that such invariant checking can often readily detect.

13

class Date {
int d_year; // [1 .. 9999]
int d_month; // [1 .. 12]
int d_day; // [1 .. 31]

public:
static bool isValidYMD(int year, int month, int day);

// Return true if year/month/day represents a valid date.

Date(int year, int month, int day) [[pre: isValidYMD(year, month, day)]];
// Create a Date object having a valid date.

int year() const { return d_year; }
// ...

};

In the Date class above, the user-declared value constructor creates a valid Date object set to the
specified year, month, and day, and in a checked build, its precondition check invokes the class
member function isValid to ensure (or perhaps just observe) that the date is, in fact, valid. From
then on, the only way to change the value of this object is through the use of its compiler-generated
assignment operations.19

As previously stated, the Date class above is trivially copyable, but let’s now add a defaulted
destructor having a precondition check that validates its invariants:

~Date() = default [[pre: isValidYMD(d_year, d_month, d_day)]];
// Destroy this object.

Notice that the precondition itself applies the public class member function, isValid, to the private
data members, e.g., d_year, of the class. The Committee has long since agreed20 that all CCAs are
part of a function’s implementation; hence, when a CCA is associated with a member function, it
fairly deserves private access to the data members of the class.

In an unchecked build, the destructor does nothing, and because there is no user-supplied definition,
one might reasonably presume that this special member function remains trivial. In a checked build,
however, code provided by the user is expected to run when an object of this type is destroyed. In
some sense, this Date type is almost21 trivially destructible and thus, at least notionally, trivially
copyable.

Absent the seminal information presented earlier in this paper, we might be tempted to treat this
Date class as if it were trivially destructible and trivially copyable in an unchecked build but not in
a checked build.

19Recall that, just by declaring any non-special-member constructor, we suppress even the declaration of the default
constructor. All five of the remaining special member functions, however, are generated as usual.

20During a Standards Committee meeting (c. 2015) that involved CCAs, Bjarne Stroustrup expressed the need for a
CCA on a member function to have private access to the implementation of its class so that it could write efficient
preconditions without having to expose extra functions in a public API that were not directly relevant to clients This
discussion led to a paper, [P1289R1], which was discussed and achieved consensus in November 2018. This result has
remained the SG21 consensus, as indicated in Section 4.3 of [P2521R3].

21See [lakos21], Section 2.1.“Generalized Pods,” “Use Cases,” “Skippable destructors (notionally trivially destruc-
tible),” pp. 464–470, especially pp. 469–470.

14

Let’s now consider the problems that would manifest should the memcpy invoked by a library for a
trivially copyable type have an off-by-one error in the range it chooses to copy:

<template type T>
fastCopy(T *dst, T* src, std::size_t n)
{

if constexpr (std::is_trivially_copyable<T>::value) // fast algorithm
std::memcpy(dst, src, (n + 1) * sizeof * dst); // Oops, off by one!

else // slow algorithm
for (int i = 0; i < n; ++i) *dst == *src*; // OK

}

If we were to assume that Date were trivially copyable in only an unchecked build, then in a checked
build, we’d again get the slow but correct algorithm, whereas, in an unchecked build, we’d get the
fast and incorrect one, thus violating our first principle — i.e., that proximate compile-time semantics
(e.g., of the std::is_trivially_copyable trait) must not vary across (e.g., contract-checking) build
modes.

Moreover, if enabling contract checking skipped this problematic, fast code path entirely, then the
tools we use to diagnose such problems — e.g., debuggers, core file analysis, and even contract
checks themselves — would be analyzing a program state where the problem will not occur. The
only sound conclusion is again that proximate compile-time semantics must be invariant across all
build modes.

Once again, we are left two alternatives.

1. Specify that defaulted special member functions that have associated CCAs are never trivial in
any build mode. The implication is that just having an inactive precondition could substantially
impact performance22 even in an unchecked (e.g., ignored) build.

2. Treat contract checks on trivial functions as skippable without notice. That is, if the function
itself is considered trivial in an unchecked build mode, it will report so in every build mode.
Libraries may circumvent the execution of these special member functions, even in checked
build modes. (Note that we are skipping the check itself, not just any side effects executing
the check might have produced.) If, however, the compiler would be the one eliding invocation
of the trivial function, it might nonetheless choose to evaluate the CCAs, followed by the
trivial operation, depending on the user’s chosen build mode and optimization level.

In the case of the first alternative above, the potential loss in runtime performance from not doing
the memmove could be substantial, perhaps even dramatic, and would introduce a strong disincentive
to adding such defensive checks to otherwise trivial functions, thus violating Principle 3. Hence, we
do not consider the first alternative to be viable.

22Although a special member function that has an empty body supplied by the user will provide no code and
therefore would seem to be no different than the empty body supplied by the compiler, being trivially copyable gives
the compiler special permission to bypass calling its copy constructor. This optimization is particularly effective for
contiguous sequences of such objects (e.g., std::vector<my_trivially_copyable_type>) since repeated calls to
the copy constructor can be replaced by a single call to memmove. For an object to be considered trivially copyable,
however, it must have a trivial destructor. Note that the compiler’s ability to see that the body of a user-supplied
destructor is empty doesn’t make it trivial, nor does it give license to the library to use memmove for a type that
would otherwise be trivially copyable but for its almost trivial destructor.

15

The second alternative is much more consistent with our conclusion with respect to the noexcept
specifier in that it keeps the two language features — namely triviality and contract checking —
maximally orthogonal. This latter approach does come with the risk of perhaps omitting checks that
an uninitiated author might have intended to be run by the client in every case — i.e., including even
those cases where use of an equivalent memmove would be substantially more runtime performant.
Fortunately, the duly informed author of a CCA for a special member function can always easily
opt into this other slower but safer behavior:

~Date() [[pre: isValid(d_year, d_month, d_day)]] { } // empty body
// Destroy this object.

Just by providing an empty function body (see the example above), a function that was otherwise
trivial can easily be made non-trivial in every build mode, thus removing the permission for libraries
or the compiler to skip the invocation of this destructor and the evaluation of its associated checks.
Consider that the checks are on the destructor, so there’s nothing to skip on the copy constructor,
and the compiler could easily run the checks on destruction in a checked build even though no code
needed to run to destroy the object. If the author of the class fails to realize the triviality of the
function and, as a result, some check isn’t run, no affirmative harm is done since the check was
defensive (redundant) anyway and therefore entirely useless in every correctly written program.

Again, compiler optimizations would be treated quite differently. A compiler is permitted to initiate
an optimization only when it can prove that the resulting optimized code has the same as-if (defined)
behavior as the original code. Hence, a compiler optimization that replaced a manual for loop with,
say, a memmove in an unchecked build might — due to CCA on a trivial member function of the
type of object being copied — be unable to make that same optimization in a checked build and
still reliably provide the expected checks. In that case, the compiler would be forced to forgo that
optimization, much the same as if we had removed -O2 from the command line.

For example, suppose we wanted to add a defensive precondition check to the copy-assignment
operator of the Date class to verify redundantly that the class invariants initially hold:

Date& operator=(const Date& date) = default
[[pre: isValid(d_year, d_month, d_day)]];

// Assign to this object the value of specified date object.

If the compiler can prove at compile time that it can provide the requisite checks and still perform
the memmove optimization, it is free — but under no obligation — to do so.

Finally, we note that all contract checks are presumed to be purely defensive and thus entirely
redundant in a defect-free program. Turning off runtime contract checking on otherwise trivial
functions is, in effect, just one more way for developers to control if and to what extent their
programs are checked at run time. Hence, as long as the presence of a CCA doesn’t affect the
compile-time result of evaluating a trait on a type, we might be able to imagine giving the compiler
explicit (e.g., via a compiler switch) freedom to sometimes refrain from invoking such runtime checks
on trivial types, perhaps in collaboration with the totality of the (e.g., optimization) build modes.

Putting these suggestions together, we arrive at one proposal regarding the triviality of special
member functions with contract-checking annotations:

16

Proposal 2: CCAs can be Trivial

A special member function with preconditions or postconditions may be trivial. Note: this
may result in situations where the preconditions or postconditions are not checked due to the
invocation of the special member function being skipped or replaced by a bitwise copy.

A.3 Implicit lambda captures from CCAs

Similar to affecting the triviality of a special member function, another area in which a CCA might be
capable of having an impact on program behavior occurs when an expression in a lambda ODR-uses
a local entity. In such cases, that entity will be implicitly captured as part of the generated closure
object, thus affecting its size.

Now consider that the predicate of a CCA within a lambda will involve an expression. If that
predicate is allowed to do such implicit by-value capture, it has the potential to affect not only the
size of the closure but also the lifetime of the captured object.

First, suppose we have simple struct, S:
struct S {

int d_x;
};

Now imagine a function f that takes a shared pointer to an S, sp, by value and returns, also by
value, a lambda converted to an std::function that takes no arguments and returns an int:

std::function<int()> f(std::shared_ptr<S> sp)
{

int *x = &sp->d_x; // Raw pointer x is invalidated when *sp is destroyed.

return [=]() // lambda having by-value capture default
[[pre : sp]] // precondition that odr-uses sp
{

return *x; // lambda body that does not odr-use sp
};

}

Notice that the raw pointer x is extracted first and is captured in the body of the lambda. Also
notice that the precondition check captures the std::shared_ptr<S>, sp, by value, thus extending
the lifetime of the referenced S object.

When checking is enabled, allowing the capture of sp will keep the referenced S object alive as long
as the lambda is alive, thus making the raw pointer x remain valid even after f returns (and sp is
destroyed). If disabling checking were to remove that capture, any invocation of the lambda returned
from f will occur after the sp has been destroyed. Depending on the rest of the program, that might
mean that no remaining shared pointers are keeping the S object alive, and thus any access via that
pointer would result in (language) undefined behavior. The closure size would be different too.

By now we should all clearly understand that we simply cannot allow observably different program
behaviors across contract-checking build modes as the result of adding any CCA. To guard against

17

such defects, we yet again have just two alternatives.

1. An ODR-use of a local entity from a CCA’s predicate will capture the named local entity in
every build mode, i.e., even when contract-checking is disabled.

2. An ODR-use of a local entity from a CCA’s predicate will be ill-formed if that same entity is
not already ODR-used by the lambda from outside of a CCA predicate.

Choosing the first alternative would violate Principle 3, ensuring that there is absolutely no runtime
or object-size overhead associated with any contract checks when those contract checks are ignored.
Even the relatively small spacial overhead associated with adopting the first alternative might tend
to discourage adoption of contracts in general. Hence, we consider this first option to be nonviable.

The second alternative — i.e., making it ill-formed to ODR-use a variable that is not already
ODR-used in the body of the lambda apart from any CCA — creates zero overhead when ignored,
has no effect on object size, and yet makes abundantly clear to users when they are referencing a
value that is not directly relevant to the body of the lambda. The workaround, for those who want
to capture that dubious value anyway, is simply to add the appropriate ODR-use directly within
the body of the lambda:

std::function<int()> f(std::shared_ptr<S> sp)
{

int *x = &sp->d_x; // Raw pointer x is invalidated when *sp is destroyed.

return [=]() // lambda having by-value capture default
[[pre : sp]] // precondition that ODR-uses sp
{

(void) sp; // sp is now ODR-used in all build modes.
return *x; // lambda body that now does odr-use sp

};
}

Such explicit ODR-use of (void) sp (the void suppresses unused warnings) in the body of the
lambda will force the corresponding capture in all build modes. This workaround is analogous to
adding a user-provided empty definition to replace a trivial destructor to suppress optimizing away
a check for a notionally trivial function (see Section A.2).

Another example to consider is where an additional implicit capture that a CCA might introduce
would have significant performance impact that should only be taken on with careful consideration,
even in a checked build mode. Consider a situation where a potentially large container would be
inadvertently copied by such a capture:

std::function<int()> foo(const std::vector<S>& v)
{

int ndx = pickIndexAtRandom(v);
return [=]()

[[pre : 0 <= ndx && ndx < v.size()]] // needs to capture v
{

return ndx; // obviously we intend this to capture ndx by value
}

}

18

Should v be captured by the closure object returned by foo the fundamental behavior of foo would be
changed — it would change from something that likely has a constant-time algorithmic performance
to one with linear time requirements, it would begin to allocate memory where previously it did
not, and all of this for a property that could easily be checked once after the initialization of ndx
and not on each invocation of the function object. Making this function ill-formed removes the risk
of inferior implementations resulting from an innocuous-seeming contract check.

This all comes together in one proposal regarding lambdas:

Proposal 3: CCA ODR use does not Implicitly Capture

Within the expression of a CCA that is attached to or within a lambda, the odr-use of a local
entity does not implicitly capture that entity.

The reference to the local entity from the CCA will still continue to instead attempt to name the
member of the closure object instead of the local entity itself. Therefore, if there is no other factor
that creates that member of the closure — either an explicit capture or an odr-use that is not in a
CCA — a program will be ill-formed.

A.4 Contract violations that occur at compile time

This final section on compile-time contract violations is a somewhat more esoteric yet related topic
to what we have seen so far, and thus we have incorporated it here. We will try to apply the same
sorts of principles we’ve used previously, although the results are somewhat less elegant. Every
program that is well-formed in a checked build is also well-formed in an unchecked one but not
vice versa. In particular, some programs that are unchecked might compile and have latent defects
yet fail to compile due to those very defects. At a minimum, we must ensure that all well-formed
programs have the same behavior in all contract-checking build modes and that checked builds that
fail to compile help us weed out additional bugs.

The C++ language provides us two primary decorators to enable constant evaluation for functions
(and constructors): constexpr and consteval. Certain operations performed within the implementa-
tion of a constexpr or consteval function — such as invoking an ordinary function, e.g., h() in the
code snippet below — make the function no longer eligible to be evaluated at compile time (see
[expr.const] in the Standard):

void h() { }; // not compile-time evaluable

constexpr int ff(int x) { h(); return x; } // usable only at run time
consteval int gg(int x) { h(); return x; } // well-formed but not usable

constexpr int f(int x) { if (x) h(); return x; } // compile and run time both
consteval int g(int x) { if (x) h(); return x; } // compile time only

In the definitions above, function ff, which is declared to be constexpr, calls h() for every value of
x; hence, there is no input for which it can be evaluated at compile time. Function gg is declared to
be consteval so it cannot be evaluated at run time; hence, it’s useless. Both f and g have a branch,
so they don’t call h() unconditionally. Either one can be called with 0 at compile time. Since f is

19

declared constexpr, it can be called at either compile time (with 0) or run time (with anything else),
but because g is declared consteval, it can be called only at compile time (with 0).

Note that, as of C++23,23 only the failed use of either of these functions in a manifestly constant
evaluated expression is ill-formed; we can think of a consteval function as if it were a constexpr
function that can be invoked only in manifestly constant evaluated expressions.

Another useful decorator (for variables only) is constinit, which says that the evaluation of the
initialization of the variable must occur at compile time (i.e., the initializer is a manifestly constant
evaluated expression), but the variable itself is not const or constexpr:

constinit int v = 5; // OK, manifestly constant evaluated
const int v0 = f(v); // OK, not manifestly constant evaluated
const int v1 = f(5); // OK, not manifestly constant evaluated
constexpr int v2 = f(5); // Error, manifestly constant evaluated
constinit int v3 = f(5); // Error, manifestly constant evaluated

int v4 = g(5); // Error, always manifestly constant evaluated

In the definitions above, v is initialized at compile time to be a modifiable global variable. Both
v0 and v1 are const but are not required to be evaluated at compile time, so they are potentially
runtime evaluated, yet the compiler is allowed to optimize if it has visibility into the bodies of f and
h. The (const) v3 and (noncoonst) v4 are each required to be initialized at compile time due to the
respective constexpr and constinit but cannot be when passed 5 because h() is not compile-time
evaluable; hence, both are compile-time errors. Finally, (nonconst) v4 is initialized using g, which is
declared consteval and hence always manifestly constant evaluated; since g can be compile-time
evaluated only for an argument of 0, it too is a compile-time error.

When invoked, the compiler might try to evaluate a constexpr function, such as f on its specific
arguments at compile time; for a consteval function, such as g, it must:

int v5 = f(v); // Evaluated at run time, v is not a compile-time constant.
int v6 = f(5); // Evaluated at run time, f(5) isn't evaluable at compile time.
int v7 = f(0); // Perhaps evaluated at compile time, f is constexpr.
int v8 = g(0); // To be evaluated at compile time, g is consteval.

Adding a CCA to a function that is decorated with constexper or consteval might, depending on
its inputs, impact the potential compile-time evaluation of such a function input at compile time in
either of two ways.

1. The predicate is compile-time evaluable and fails to evaluate to true, thereby indicating that
a contract violation has occurred at compile time.

2. The predicate might itself be ineligible to be evaluated at compile time, e.g., by invoking a
non-compile-time-evaluable function or accessing global nonconstexpr state.

If a CCA is enabled, evaluated in a manifestly constant evaluated expression, and observed (at
compile time) to not evaluate to true, then the program is straight-up ill-formed for at least two
reasons, irrespective of whether the function itself is compile-time evaluable:

23See [P2448R2].

20

1. Attempting to provide some sort of alternative defined behavior for a compile-time contract
violation would risk running afoul of our first principle by allowing two distinct build modes
to produce well-formed programs having distinct internal paths and, quite possibly, observably
distinct behaviors. By making ill-formed a compile-time contract violation (i.e., the predicate
of the CCA evaluates to something other than true at compile time), the behavior of a
successfully compiled program is the same in every contract-checking build mode, and we
detect the violation in every checked build mode, thereby staying consistent with our principles.

2. How we handle a contract violation will be, at least in part, a link-time decision; hence, we
cannot in practice evaluate the contract violation at compile time. Fortunately, by the previous
item, we have no desire (and thus no need) to support making a compile-time contract violation
well formed.

As one would expect, when a CCA successfully evaluates to true at compile time, it has no semantic
effect whatsoever.

Next let’s consider a non-compile-time-evaluable predicate, b():
bool b() { return true; } // non-compile-time-evaluable function

Let’s suppose we were to add a non-compile-time-evaluable CCA to the constexpr function f from
the previous example:

constexpr int f(int x) [[pre: b();]] { if (x) h(); return x; }

Let’s now consider the implications of invoking this new f in three different contexts.

1. f is not compile-time evaluable even in an unchecked build mode:
int a = f(0); // f is evaluated at run time in all build modes.

2. f is required to be compile-time evaluable in an unchecked build mode:
constexpr int b = f(5); // f is evaluated at compile time in an

// unchecked build mode and ill-formed otherwise.

3. f is optionally compile-time evaluable in an unchecked build mode:
int c = f(5); // f is evaluated at compile time in an

// unchecked build mode and at run time otherwise.

Case 1 presents no issue since the function is always evaluated at run time, regardless of whether
the CCA happens to be evaluable at run time.

In case 2, the program is well-formed only in an unchecked build mode simply because no other
viable options are available. We can’t put off the evaluation of the function until run time because
it is explicitly needed (required to be evaluated) at compile time. Silently skipping the check would
open up its own safety pitfall, one that would be at odds with the remit of this entire feature. The
only other option would be to make using the new function in a manifestly constant evaluated
expression ill formed in every build mode but that would (1) require checking the predicate to
determine whether it was compile-time evaluable with the given arguments even in an unchecked
build and (2) block perfectly valid use in an unchecked build.

21

Choosing to make the check ill-formed in only checked builds has several (largely positive) implica-
tions.

• Doing so (at least) informs the caller that the check is not fully compatible with the self-declared
compile-time-evaluable nature of the function being provided.

• However the ill-formedness of the evaluation of a function is determined, it should be a hard
error — i.e., not one which can be detected with SFINAE or as part of a concept check —- to
attempt to evaluate the predicate of a CCA in a manifestly constant-evaluated context and
then have the predicate evaluation prevent the evaluation from being considered a constant
expression.

In other words, the following code should be ill-formed (given the f defined above):24

template<int x> concept C = requires { std::bool_constant<f(x)>(); };
constexpr bool P = C<5>; // Could be false in checked builds, but

// evaluation of f fails to be a constant
// expression because of a CCA predicate.

• We do, however, narrow the set of programs that are valid in checked builds, indicating that
the nature of this check may preclude its use in valid situations.

The general guidance would be that, for functions declared to be constexpr or consteval, the
compile-time-evaluable domain of the predicate should contain that of the function itself. In those
vanishingly rare cases where some or all of the compile-time domain simply cannot be checked in the
predicate, we offer another workaround, which enables the implementer of the predicate to opt in to
allowing the CCA to be skipped when the alternative would be to leave the program ill-formed:

template <typename F>
constexpr bool runtime_only(F&& predicate)
{

if consteval {
return true; // Skip test if during manifestly constant evaluation.

}
else {

return predicate(); // checked at run time
}

}

Now the author can write a new predicate for the CCA for f accordingly:
constexpr int f(int x) [[pre: runtime_only(b());]] { if (x) h(); return x; }

In case 3, the program is always well-formed but, in a checked build, evaluation will necessarily
degrade from compile time to run time. Again, when compile-time evaluation is an optional
optimization performed by the compiler, the choice to perform that optimization cannot affect any
observable semantics. Because compile-time evaluation is not mandated for an expression that is not
manifestly constant evaluated, under the as if rule the compiler is completely within its rights to
skip that optimization, and in most cases, no semantic difference and little extra impact on runtime

24Thanks to Ed Catmur on the SG21 reflector for bringing this up (See http://lists.isocpp.org/sg21/2023/
05/3774.php).

22

http://lists.isocpp.org/sg21/2023/05/3774.php
http://lists.isocpp.org/sg21/2023/05/3774.php

performance will occur (i.e., the function body will still evaluate to a constant that is assigned at
run time after the contract check is evaluated).

A scenario does, however, arise in which runtime evaluation might lead to undesirable race conditions
due to namespace-scope runtime static initialization across translation units (this is a bad idea).
In the unlikely event that we would need to require that a function used to initialize a modifiable
global variable be evaluated entirely at compile time, use of constinit gets that job done:

constinit int d = f(5); // f is evaluated at compile time in an
// unchecked build mode and ill-formed otherwise.

Note that this third scenario applies only to constexpr functions since consteval functions do not
have the option to degrade to runtime evaluation.

Finally we note that both constexpr and consteval imply inline and, to be usable at compile
time, require visibility into the body. Hence, a CCA in the visible body of a compile-time evaluable
function would have the same implications as one associated with the declaration, whereas such
would not be the case for the same function whose body was not visible at the call site; that function,
however, would simply not be compile-time evaluable.

Note that we have been discussing the behavior of checked and ignored CCAs. The fourth semantic,
assume, brings with it nuance that has been more thoroughly explored during the addition of
[[assume]] in C++23.25 For assumed contract checks, we do not require that the compiler ever
evaluate the CCA’s predicate; ignoring a CCA is always a valid option, though possibly not the
best available option, for a compiler to take when asked to assume it. Therefore, similar to how
[[assume]] is treated in the Standard, whether assumed CCAs are checked at compile time should
be unspecified. Like an ignored CCA, when used in a manifestly constant evaluated context, a
violation will have no effect, although it might make a program ill-formed if the compiler does
choose to (and can) evaluate the predicate at compile time. Further exploration of this particular
subject should occur alongside future proposals to reintroduce the assume semantic to the C++
Contracts facility.

Putting this all together leads to one proposal that covers the handling of checking CCas during
constant evaluation:

Proposal 4: Constant Evaluation of CCAs

If an expression or conversion is manfiestly constant-evaluated, it is ill-formed if the evaluation
of the predicate of a CCA with a runtime-checked semantic disqualifies that expression from
being a core constant expression.

Acknowledgements
Thanks to Andrzej Krzemieński, Marshall Clow, Timur Doumler, Mungo Gill, Ville Voutilainen,
and Ed Catmur for feedback on earlier drafts of this paper.

25See [P1774R8], Section 4.6, “Behaviour of assumptions during constant evaluation.”

23

Bibliography
[lakos21] John Lakos, Vittorio Romeo, Rostislav Khlebnikov, and Alisdair Meredith, Embrac-

ing Modern C++ Safely (Boston: Addison-Wesley, 2021)

[N3279] A. Meredith and J. Lakos, “Conservative use of noexcept in the Library”, 2011
http://wg21.link/N3279

[N3744] Walter E. Brown, “Proposing [[pure]]”, 2013
http://wg21.link/N3744

[P0078R0] Karl-Étienne Perron, “The [[pure]] attribute”, 2015
http://wg21.link/P0078R0

[P1289R1] J. Daniel Garcia and Ville Voutilainen, “Access control in contract conditions”, 2018
http://wg21.link/P1289R1

[P1774R8] Timur Doumler, “Portable assumptions”, 2022
http://wg21.link/P1774R8

[P2448R2] Barry Revzin, “Relaxing some constexpr restrictions”, 2022
http://wg21.link/P2448R2

[P2521R2] Andrzej Krzemieński, Gašper Ažman, Joshua Berne, Bronek Kozicki, Ryan Mc-
Dougall, and Caleb Sunstrum, “Contract Support — Working Paper”, 2022
http://wg21.link/P2521R2

[P2521R3] Andrzej Krzemieński, Gašper Ažman, Joshua Berne, Bronek Kozicki, Ryan Mc-
Dougall, and Caleb Sunstrum, “Contract support – Record of SG21 consensus”,
2023
http://wg21.link/P2521R3

[P2695R1] Timur Doumler and John Spicer, “A proposed plan for contracts in C++”, 2023
http://wg21.link/P2695R1

[P2751R0] Joshua Berne, “Evaluation of Checked Contracts”, 2023
http://wg21.link/P2751R0

[P2780R0] Ville Voutilainen, “Caller-side precondition checking, and Eval_and_throw”, 2023
http://wg21.link/P2780R0

[P2811R0] Joshua Berne, “Contract Violation Handlers”, 2023
http://wg21.link/P2811R0

[P2811R1] Joshua Berne, “Contract Violation Handlers”, 2023
http://wg21.link/P2811R1

[P2861R0] John Lakos, “The Lakos Rule: Narrow Contracts And ‘noexcept‘ Are Inherently
Incompatible”, 2023
http://wg21.link/P2861R0

24

http://wg21.link/N3279
http://wg21.link/N3744
http://wg21.link/P0078R0
http://wg21.link/P1289R1
http://wg21.link/P1774R8
http://wg21.link/P2448R2
http://wg21.link/P2521R2
http://wg21.link/P2521R3
http://wg21.link/P2695R1
http://wg21.link/P2751R0
http://wg21.link/P2780R0
http://wg21.link/P2811R0
http://wg21.link/P2811R1
http://wg21.link/P2861R0

	1 Introduction
	2 Proposals
	3 Conclusion
	A Related Considerations
	A.1 Exceptions emitted directly from a CCA's predicate
	A.2 Trivial functions that have preconditions or postconditions
	A.3 Implicit lambda captures from CCAs
	A.4 Contract violations that occur at compile time

