
Standardized Type Ordering
Document #: P2830R1
Date: 2023-10-06
Project: Programming Language C++
Audience: EWG
Reply-to: Nate Nichols

<natenichols@cox.net>
Gašper Ažman
<gasper.azman@gmail.com>

Contents
1 Abstract 2

2 Revision History 2

3 Motivation 2
3.1 Motivating Examples . 3

3.1.1 Canonicalizing policy-based libraries . 3
3.1.2 Canonicalized variant . 3
3.1.3 Canonicalized tuple . 4
3.1.4 ABI and API stability . 4

4 Proposal 5
4.1 ORDER(x, y) . 5

4.1.1 Design Principles . 5
4.1.2 Approach . 5
4.1.3 Structure of key-tuples . 5
4.1.4 Named Scopes . 6
4.1.5 Atoms . 6
4.1.6 Kinds . 6
4.1.7 Identifiers . 7
4.1.8 Namespaces . 8
4.1.9 Types . 8
4.1.10 Ordering Scalar Types . 9
4.1.11 Ordering Array Types . 10
4.1.12 Ordering Class Types . 10

4.2 Syntax . 14
4.2.1 Option 1: constexpr bool std::type_info::before() 14
4.2.2 Option 2: constexpr std::strong_order(std::type_info, std::type_info) 14
4.2.3 Option 3: variable template std::entity_ordering . 15
4.2.4 Option 4: constexpr std::type_identity::operator<=> 15
4.2.5 Option 5: constexpr std::__lift<arg>::operator<=> 15

5 FAQ 15
5.1 Why should this be standardized? . 15
5.2 Why not wait for reflection? . 15
5.3 But couldn’t this be done faster with reflection? . 16

6 Acknowledgements 16

1

mailto:natenichols@cox.net
mailto:gasper.azman@gmail.com

7 Appendix A: building apply_canonicalized 16
7.1 Full code listing as tested and implemented . 17

8 References 19

1 Abstract
Currently, std::type_info provides a stable but implementation defined order of types. This paper explores a
standardized ordering of types in C++, and possible syntaxes for it.

Defining type_info::before would consitute an ABI break, so this paper explores various other ways of exposing
a standardized type ordering.

Therefore, we split this paper into two parts:

1. the design of the exposition-only function ORDER(x, y), which deals with how such an order should be
defined,

2. how to expose this capability to the programmer.

2 Revision History
0. New Paper
1. Revision 1

— Introduce options to prevent changing std::type_info::before
— Anonymous namespaces can’t be empty
— Add FAQ section
— Add motivating examples
— Add proposed syntax
— Add appendix

3 Motivation
There is currently no way in portable C++ to sort types at compile-time.

Various libraries exist to do this, mostly by utilizing __PRETTY_FUNCTION__, but this is non-portable and error-
prone (consider forward-declared enums). There are multiple stack-overflow questions on the topic.

Fundamentally, we need a way to canonicalize sets and multisets of types. This is necessary when building any
kind of compositional library in C++, from std::execution [P2300R7], mixin libraries, libraries of monadic
components and operators, policy-based libraries, etc. The inability to sort and unique types leads to the
instantiation of an exponential number of templates instead of just one per typeset, which leads to code-bloat
and untenable compile-times. The problem is fundamentally that we generate types with a different name but
the same behavior, and there is no way to avoid this.

The goal here is to provide a flexible language mechanism to let both Foo<A, B, C> and Foo<C, B, A> produce
the same underlying Foo_impl<A, B, C>.

The reason we start with ORDER() and not “just give me typesets” is that we need flexibility; consider

— a given library might want to deduplicate on a part and keep either last or first, or even make it ill-formed:
Foo<pair<A, X>, pair<B, Y>, pair<A, Z>> might want to be the same as Foo_impl<pair<A, X>, pair<B, Y>>
or Foo_impl<pair<A, Z>, pair<B, Y>>

— a given library might actually just want canonicalized multisets: Foo<A, B, A, A, C> should perhaps be
Foo<A, A, A, B, C>

— or treat the first one as special: Matrix<float, policy1, policy2, policy3> should only deduplicate
policies.

2

We must provide ORDER in order to sort and unique; they are required building blocks for any set primitive.
Put another way, even if we standardized a set, we’d need to somehow canonicalize the order (due to mangling
and debug info), leading us back here.

Without such canonicalization, it is also functionally impossible to enumerate the set of function templates to
instantiate in a separate compilation unit. For the same reason, it’s utterly impossible to type-erase them in a
fixed-size virtual function table.

3.1 Motivating Examples
This section introduces the kind of code we would like to write, regardless of how this feature ends up being
spelled. To not prejudice the reader in this section, please assume the existence of an exposition-only consteval
function ORDER(x, y) -> std::strong_ordering whose arguments can be anything usable as a template ar-
gument. Crucially, also consider the interactions with [P1985R3] and [P2841R1], which introduce concept and
variable-template arguments.

3.1.1 Canonicalizing policy-based libraries

Consider the needs of a library for type-erasure; we’d like the user to specify the capabilities to erase. Funda-
mentally, these capabilities are a set.

Observe:
using T1 = lib::dyn<ostreamable, json_serializable, iterable<int>, scalar_multiplicable<int>>;

Different users of the library will likely provide these capabilities in different orders; this becomes especially
problematic when writing functions:
using T2 = lib::dyn<json_serializable, ostreamable, iterable<int>, scalar_multiplicable<int>>;

~~~~~~ flipped ~~~~~~~~~~~~~~~
void f(T2 const&);

We can solve this by having type aliases, but if these sets are computed, we are left without recourse:
int sum = 0;
auto pipeline1 =

log(std::cerr) | sum_into(&sum) | imul(sum) | json_dump(std::cout);
// dyn<ostreamable, iterable<int>, scalar_multiplicable<int>, json_serializable>
auto pipeline2 =

sum_into(&sum) | imul(sum) | json_dump(std::cout) | log(std::cerr);
// dyn<iterable<int>, scalar_multiplicable<int>, json_serializable, ostreamable>

The above pipelines need the same type-erased interface for its input, and neither is either T1 or T2.

3.1.2 Canonicalized variant

The most obvious example is a canonicalized std::variant, that is, something like
template <typename... Ts>
using canonical_variant = apply_canonicalized<std::variant, Ts...>;

Building apply_canonicalized is not terribly difficult, as long as we have ORDER. Please see the appendices on
how to do it.

It would be nice if apply_canonicalized was a language built-in, but to do that, we need to first define
ORDER(x, y). After we define ORDER, putting apply_canonicalized into type_traits is a far simpler propo-
sition.

Note: apply_canonicalized is roughly mp11::mp_sort + mp11::unique with the order derived from ORDER.

3



3.1.2.1 Uses of a canonicalized variant

Uses are legion; but they all follow same the pattern as the type from std::execution needed for the result
between suspension points. We call it notification, as a nod to rxcpp.

Consider the transfer(scheduler) algorithm; it receives all set_value(PACK), set_error(PACK) and possibly
set_stopped() parameter lists, stores them in a variant<tuple<CHANNEL, PACK>...>, and resumes with the
values on a different scheduler once the compute resource becomes available.

The code using it looks like this:
some_computation | transfer(scheduler) | then([](auto&&...args){/*...*/})...

There are many transfer calls in a given program, and odds are many of them deal with similar signals, but the
order of the 4 or 5 different set_value() channels is unlikely to be the same in every pipeline. Moreover, many
of these channels exhibit incast semantics - going from many types to few - and so without canonicalization, we
are left with a variant with many more types than is necessary. We also generate far more code than required,
since we generate switch statments for every ordering of channels, instead of every set.

3.1.3 Canonicalized tuple

Similarly to a canonicalized variant, a canonicalized_tuple can be implemented as
template <typename...Ts>
using canonical_tuple = apply_canonicalized<tuple<Ts...>>;

This is far less useful on its own than the variant, since initializing that type will be quite the chore. Instead,
canonicalized tuples appear as a result of the environment monad, again, in implementations of std::execution.

std::execution mixes in an environment, which consists at least of a stoppable_token, a scheduler, and
possibly other things like a domain, and, at least in the authors’ implementation, arbitrary other things.

The environment<pair<Tags, Ts>...> is a product type that is a map from Tag to a value of type T, say
std::stop_token to never_stop_token{} and scheduler to thread_pool_scheduler.

One can push and pop things off the environment in different parts of the pipeline; if the pushes come in the
wrong order, the environment is difficult to keep canonicalized.
auto ss = std::stop_source();
auto tp = std::static_thread_pool(5);
auto env = empty_env{}

| push_env<stop_token>(ss.get_token())
| push_env<scheduler_t>(tp.get_scheduler())
| push_env<mylib::numa_domain_t>(2);

If you imagine those three calls to happen in different algorithm transformers, it’s quite likely they’ll be in a
different order, manifesting a different type, which doesn’t make much sense - the type behaves identically, this
just leads to code bloat.

3.1.4 ABI and API stability

The authors have observed a necessity to sometimes split parts of such pipeline compositions into different
compilation units due to excessive compile times and repetitive compilation.

This has proven difficult due to the brittle nature of type ordering of the names of explicit template specializations
involved. By far, the main culprit has been the lack of a sensible canonicalization of names, as the order changes
far more frequently than the set of types.

Having a defined, stable order of types proved invaluable (even if we did hack the type order manually).

4



4 Proposal
4.1 ORDER(x, y)
Notionally, this proposal concerns itself with ordering types, but one does not simply order types. This is C++.

4.1.1 Design Principles

We wish to fulfil the following principles with this design; we are open to ones we might have missed.

4.1.1.1 Self-consistency

The ordering should be self-consistent, that is, for all possible template arguments T, U, and any unary template
some_template:

ORDER(T, U) == ORDER(some_template<T>, some_template<U>).

4.1.1.2 Readability

Types that look roughly the same should sort closely together. This is an aesthetic criterion, but sorting T close
to T&, T const& and so on is probably a good idea, given that the user’s main exposure to these types will be
through typelists in error messages.

This criterion asks for sorting things in the same namespace close together, for instance.

4.1.1.3 Stability

The order should be the same across compilation units and across platforms. This is key for generating ABI-
compatible vtables, for instance.

4.1.1.4 Reflection compatibility

operator<=>(std::meta::info, std::meta::info) should be consistent with this one.

While std::meta::info [P2320R0] objects can reflect more entities than just types and values (mainly: expres-
sions), any ordering defined on them should be finer than this one, and specifically consistent with it. We should
do something that reflection can subsume.

4.1.2 Approach

1. We define a lowering to a key-tuple for every entity in the language.
2. The order is then defined on these key-tuples.

4.1.3 Structure of key-tuples

Every key-tuple is of the form (element...).

where an element is one of:

— atom (see atoms)
— key-tuple

These tuples are then ordered lexicographically (ties broken in favor of shorter tuple), atoms before tuples.

Let us name this transformation as sort_key(entity).

The rest of the paper is concerned with defining this transformation.

5



4.1.4 Named Scopes

A type is ordered by appending sort_key(...) to the named scope it is declared in. The following are named
scopes:

1. namespaces
2. classes
3. functions
4. lambdas
5. concepts

Starting with the global namespace, sort_key(global) = (). Any type T declared in the global namespace
shall have a defined sort_key operation that resolves to (sort_key(T)).

4.1.4.1 Example 1: class foo is declared in struct bar:
struct bar { class foo; }

sort_key(foo) = (sort_key(bar), sort_key(foo)) = ((type, bar), (type, foo, ))

This shall hold for any of the above named scopes.

4.1.4.2 Example:

Given
namespace foo::bar {

struct i;
}

namespace baz {
struct j;

}

Then:

— sort_key(foo::bar::i) is ((namespace, foo), (namespace, bar), (type, i, )).
— sort_key(baz::j) is ((namespace, baz), (type, j, ))

When compared, the result is that baz::j < foo::bar::i, since namespace baz precedes namespace foo.

4.1.5 Atoms

The atoms of key-tuples are ordered as follows:

1. kinds (see kinds)
2. simple names (including empty string) (see names)
3. qualifiers (see qualifiers)
4. [] (array of unknown bound)
5. [n] (array of known bound n) (ordered by n internally)
6. * (pointer)
7. ellipsis (... in f(...))
8. parameter pack (... in typename...)

4.1.6 Kinds

There are the following kind tokens that can appear in key-tuples.

1. value
2. namespace

6



3. type
4. class template
5. type alias template
6. variable template
7. concept
8. function

Note: everything but “values” is pretty simple, but we haven’t dealt with values extensively yet with the R1 of
this paper, though we should just defer to <=> and require a default strong structural ordering for values that
may be template arguments.

4.1.7 Identifiers

4.1.7.1 Simple Names

Most names are strings that are valid (atomic) identifiers. Those are just themselves:
namespace foo::bar { struct baz; }

foo, bar and baz are such atomic identifiers.

4.1.7.2 Anonymous Namespace

Anonymous namespaces shall be represented with the ! character, as it cannot be represented by the empty
string and cannot collide with any user defined names;

Example:
namespace a { namespace { struct s; } }

sort_key(a::s) = ((namespace, a), (namespace, "!"), (type, s, ))

4.1.7.3 Unnamed entities

Unnamed entities are all given a name that is not an identifier (but is, in fact, a tuple), and are then numbered
consecutively, starting with zero, based on their name-scope.

Name-scopes are namespaces, classes, unions, functions, and enumerations.

Function declarations are name-scoped to the function itself.

Consider a lambda that appears as a default argument of a function template:
template <typename T>
void f(T x = []{ return T{0}; }());
// ^^^^^^^^^^^^^^^^^^ this one

The key-tuple for f<int> is:

(function, (f, (type, int)), (type, void), ((type, int)))

The key-tuple for the lambda is:

((function, (f, (type, int)), (type, void), ((type, int))), (type, (lambda, 0), )).

Note: because of the regular structure of key-tuples, such anonymous classes will compare greater than any entity
that has a simple identifier, due to tuples comparing greater than atoms (which simple names are).

4.1.7.3.1 Lambda types

Types of lambda objects are ordered first by where they are declared, then by declaration order.

7



In effect, we assign them the name (lambda, #) where # is the count of other unnamed entities in the name
scope.
namespace Banana {
auto i = [](int) -> void {}; // 0th lambda instantiated in Banana
}

namespace Apple {
auto i = [](float) -> int {}; // 0th lambda instantiated in Apple
auto j = []() -> std::string {}; // 1st lambda instantiated in Apple
}

These would produce the following tuples:
sort_key(decltype(Banana::i)) = ((namespace, Banana), (type, (lambda, 0), ));
sort_key(decltype(Apple::i)) = ((namespace, Apple), (type, (lambda, 0), ));
sort_key(decltype(Apple::j)) = ((namespace, Apple), (type, (lambda, 1), ));

Note: the empty bit after the identifier is the empty qualifier pack.

4.1.7.3.2 Unnamed struct and union types

They are named, respectively, (class, #) and (union, #).

4.1.8 Namespaces

The sort_key(namespace-name) is (namespace, identifier).

This means that namespaces are ordered alphabetically by comparing namespace names at the same rank. A
namespace comes before any of its subnamespaces.

Example:
namespace outer1 {
struct i;

}

namespace outer2 {
namespace inner1 {
struct i;

}
namespace inner2 {
struct i;

}
}

The order of the three structs w/ type i types shall be

sort_key(outer1::i) < sort_key(outer2::inner1::i) < sort_key(outer2::inner2::i).

4.1.9 Types

The sort_key of a type is (type, <identifier>, <qualifiers>).

The <identifier> bit is a bit complicated, so let’s deal with the qualifiers first.

Note: any name-scopes the type is declared in are part of the parent key-tuple. The identifier portion is
complicated because of possible template arguments for types that are template specializations.

8



4.1.9.1 Qualifiers

Qualifiers are each assigned a score
&: 1
&&: 2
const: 3
volatile: 6

and ordering lowest-first after summing them.

Therefore, for an unqualified type T, the order of all possible qualified types would be:
0 T
1 T &
2 T &&
3 T const
4 T const &
5 T const &&
6 T volatile
7 T volatile &
8 T volatile &&
9 T const volatile
10 T const volatile &
11 T const volatile &&

The remainder of the paper concerns itself only with unqualified types.

4.1.10 Ordering Scalar Types

All scalar types are built-in types, except for enumerations, which should be ordered according to their names-
paced names.

Unfortunately, some of the built-in types do not have names, only type aliases (such as decltype(nullptr)).

The intention is for built-in scalar types to be ordered before any compound types.

Built-in types with simple names should be ordered before any types that reference other types.

In particular, scalar types shall be ordered as follows:

1. void comes first because it’s not reifiable,
2. the type of std::nullptr_t as the first monostate
3. any other monostates, if added, sorted alphabetically by their common names (to be specified explicitly if

added)
4. bool as the first bi-state
5. any other bi-states, if added, sorted alphabetically.
6. Raw-memory types (char, signed char, unsigned char) (std::byte is an enumeration in std so it falls

under different rules)
7. Integral types in order of size, signed before unsigned (short, unsigned short, int, unsigned int,

long, unsigned long, long long, unsigned long long, followed by any implementation-defined wider
integral types like __int128_t etc.). Intersperse any implementation-defined built-in integral types as
needed between the above.

8. Any remaining character types that are not type-aliases of any of the above, including unicode, according
to the following rules: smallest first, unicode-specific variants after non-unicode variants.

9. Floating-point types, in order of size. In case of ties, float, double and long double come before any
floating point types.

10. Function types (internally ordered by rules in section Function Types)
11. Pointer types (internally ordered by their pointee-type)
12. Pointer-to-member types (internally ordered by pointee-type)

9



Class types shall be ordered according to the rules below, see [Ordering Compound Types]

4.1.11 Ordering Array Types

Array types shall be ordered after scalar types but before class types.

The sort_key(T[]) = ([], sort_key(T)) and the sort_key(T[n]) = ([n], sort_key(T)).

The intention is to order arrays first internally by element type, then by rank, then by rank bounds, lowest first.
Arrays of unknown bounds come before arrays of known bounds.

So the order of the following, for a given type T:
T[]
T[10]
T[11]
T[][2]
T[10][2]
T[3][2]

shall be ordered T[] < T[10] < T[11] < T[][2] < T[3][2] < T[10][2], and

sort_key(T[0]) = (type, ([], (type, T, )))

sort_key(T[10][2]) = (type, ([2], sort_key(T[10]))) = (type, ([2], (type, ([10], (type, T, ))))

4.1.12 Ordering Class Types

4.1.12.1 Ordering Simple Class Types

Class types shall be greater than scalar types.

Since we cannot redeclare two types with the same name, class types shall be ordered alphabetically.
struct Apple {};
class Banana {};
struct Carrot {};

Would be ordered as Apple < Banana < Carrot

As such, we define sort key as:

sort_key(Apple) = (type, Apple, )

sort_key(Banana) = (type, Banana, )

sort_key(Carrot) = (type, Carrot, )

4.1.12.2 Non Type Template Parameters

NTTPs shall first be ordered by their type, then their value.

Given:
template <auto T>
struct s {

decltype(T) i = T;
};

s<1u> a;
s<1.0f> b;

10



sort_key(s<1u>) = ((type, (s, sort_key(1u))))

We can define sort_key of 1u as: sort_key(1u) = ( sort_key(decltype(1u)), 1)

s<1u> shall be ordered before s<1.0f>, as integral types come before floating point types.

NTTPs of the same type shall be lexicographically ordered by their scalar subobjects. Meaning
struct F final {
struct G final {
int h;
int i;

} g;
int j;

};

F f{{0,1}, 2};
F f2{{1,2}, 3};

sort_key(s<f>) < sort_key(s<f2>);

NTTPs of the same pointer or reference type shall be ordered by instantiation order.

4.1.12.3 Ordering Class Template Specializations

Class templates shall be ordered by:

1) Class name, alphabetically.
2) Template arguments, applied lexicographically.

For example, given:
template <typename T, typename U>
struct Apple;

struct Banana;
struct Carrot;

Apple<Banana, Carrot>;
Apple<Banana, Banana>;
Apple<Carrot, Carrot>;

Note, sort_key(<parameter>)... will be used to denote a tuple where sort_key has been applied to all
parameters.

For void f(Foo, Bar) sort_key(<parameter>)... would mean (sort_key(Foo), sort_key(Bar))

sort_key of a class template shall be defined as:

sort_key(<class template>) = (type, (<name>, (sort_key(<parameter>)...)))

So

sort_key(Apple<Banana, Carrot> = (type, (Apple, (sort_key(Banana), sort_key(Carrot)), )

sort_key(Apple<Banana, Carrot> = (type, (Apple, ((type, Banana, ), (type, Carrot, )), )

Note: the empty bit after the identifier is the empty qualifier pack.

The above would be ordered sort_key(Apple<Banana, Banana>), sort_key(Apple<Banana, Carrot>),
sort_key(Apple<Carrot, Carrot>.

11



4.1.12.4 Function Types

Function types shall be ordered by

1. Return type
2. Parameters, lexicographically.

The sort_key of a function shall be defined as:

sort_key(<function>) = (function, <name>, sort_key(<return type>), (sort_key(<parameter>)...))
void foo(int i);

This function can be represented by: (function, (foo, (type, void), ((type, int))))
void foo(int)
void foo(int, double)

sort_key(void foo(int)) = (function, foo, (type, void), ((type, int)))

sort_key(void foo(int, double)) = (function, foo, (type, void), ((type, int), (type, double)))

So, the type of void foo(int) would precede the type of void foo(int, double)

4.1.12.5 Member Function Types

Function types shall be ordered by

1. Return type
2. The type of the class it is a member of.
3. Parameters, lexicographically.

The sort key of a member function shall be defined as:

sort_key(<member function>) =

(function, (<name>, sort_key(<class>)), sort_key(<return type>), (sort_key(<parameter>)...))))
struct Foo {
void bar(int i, float j);

};

sort_key(Foo::bar) =

(type, Foo, ), (function, (bar, (type, Foo, )), (type, void), ((type, int, ), (type, float, ))))

4.1.12.6 Variadic Function Types

Variadic function shall be ordered in a similar way. In a variadic function, the last argument is a variadic
argument. A variadic argument shall be ordered immediately after its underlying type.

Given:
void foo(Foo);
void foo(Foo...);

In this case, the type of void foo(Foo...) is ordered immediately after the type of void foo(Foo).

We can represent these as:

(function (type, void) (type, Foo, ))

(function (type, void) (type, Foo, ...))

12



4.1.12.7 Parameter Packs

Parameter are ordered as class templates.

Given:
template<class... Types>
struct Tuple {};

class Foo {};
class Bar {};

Tuple<> t0;
Tuple<int> t1;
Tuple<Foo> t2;
Tuple<Bar> t3;
Tuple<Foo, Bar> t4;

would be ordered: Tuple<> < Tuple<int> < Tuple<Bar> < Tuple<Foo> < Tuple<Foo, Bar>

4.1.12.8 Ordering Class Templates

Kinds of templates are ordered first by name, then by template arguments.

Given:
template <template <template<typename> class> class Template>
struct two{};

template <template <typename> class> struct one{};

template <typename> struct zero{};

zero<int> value0;
one<zero> value1;
two<one> value2;

These are represented by tuples:

sort_key(zero<int>) = (type, (zero, (type, int)))

sort_key(one<zero>) = (type, (one, (class_template, zero))))

sort_key(two<one>) = (type, (two, (class_template, one))))

4.1.12.9 Variable Templates

Variable templates are ordered by name, then by template parameter.

sort_key(<variable_template>) = (variable_template, (<name>, (sort_key(<template_parameter>)...)))
template <typename F, typename S>
constexpr std::pair<F, S> pair_one_two = {1, 2};

the type of pair_one_two<int, double> can be represented as:

sort_key(pair_one_two<int, double>) = (variable_template, (pair_one_two, (type, int), (type, double)))

4.1.12.10 Alias Templates

Alias templates are ordered alphabetically by name.

13



sort_key(<alias_template>) = (alias_template, <name>)

Given
template< class T >
using remove_cvref_t = typename remove_cvref<T>::type;

sort_key(remove_cvref_t) = (alias_template, remove_cvref_t)

4.1.12.11 Concepts

Concepts are ordered in a similar manner to variable templates.

sort_key(<concept>) = (concept, (<name>, (sort_key(<template_parameter>)...)))
template <typename T, typename F = decltype([](T){})>
concept f = requires (T i, F f = [](T){}) {

{f(i)} -> std::convertible_to<void>;
};

In order to order the type of the lambda declared in concept f, concept f must be comparable with other
types.

Concepts shall be ordered first by name, then by template arguments.

sort_key(f<int>) = (concept, (f, (type, int), (lambda, 0)))

4.2 Syntax
The authors aren’t too hung-up on the syntax. Any syntax will do for the use-case, but some better than others.
This section explores the trade-offs in syntax choice.

Authors recommend one of the first 3 options.

4.2.1 Option 1: constexpr bool std::type_info::before()

Pros:

— doesn’t require a new token, just add constexpr in front of before
— std::type_info is discoverable
— built-in type-erasure (you can sort them in std::array<> with consteval std::sort!)

— going the other way is more difficult though, so doesn’t quite pan out

Cons:

— breaks ABI
— still requires including <typeinfo>, which many organizations ban
— doesn’t work for nontypes (contrast entity_ordering<T, U>)

4.2.2 Option 2: constexpr std::strong_order(std::type_info, std::type_info)

Pros:

— doesn’t require a new token, we just need to define the overload.
— std::type_info is discoverable, but std::strong_order() of type_info a bit less-so
— built-in type-erasure, though only helps so much.

Cons:

— requires including <typeinfo>
— doesn’t work for nontypes

14



4.2.3 Option 3: variable template std::entity_ordering

This option means to put
template <universal template T, universal template U>
inline constexpr std::strong_order entity_ordering = ORDER(T, U); /* see paper */

into either <type_traits> or <compare>, depending on what EWG/LEWG recommend.

Obviously, the name is bikesheddable.

Pros:

— completely new name, obviously available at compile-time
— no need to include <typeinfo>

Cons:

— new name
— not as discoverable (people look at <typeinfo>)

4.2.4 Option 4: constexpr std::type_identity::operator<=>

Pros:

— kinda obvious

Cons:

— adds <compare> to <type_traits>, since that’s where type_identity is
— too cute?
— doesn’t work for nontypes

4.2.5 Option 5: constexpr std::__lift<arg>::operator<=>

This option means we add template <universal template> struct __lift {}; into <type_traits> and
define operator<=> for it.

Pros:

— … we’ll need a lift sooner or later?

Cons:

— really nonobvious
— still needs a new name
— needs a tutorial to find
— yet-another-type_info, basically

5 FAQ
5.1 Why should this be standardized?
type_info::before only provides implementation defined type order. This means that two different compilation
units could order a type differently. Doing this would allow portable typesets across compilers.

5.2 Why not wait for reflection?
It’s a good question. However, reflection will do nothing for this problem by itself; the user will still have to
implement ordering using consteval functions, which have no hope of being as fast as a compiler-provided
built-in.

15



User-programmed functions also won’t adapt to language evolution; this feature will.

Finally, sorting is arbitrary; having it be consistent throughout the software ecosystem is potentially a great
enabler of interoperability.

5.3 But couldn’t this be done faster with reflection?
No; Peter Dimov shares an interesting anecdote.

I have in Mp11 the algorithm mp_unique, which takes a list of types and removes the duplicates. In the course
of writing the reflection papers, their authors occasionally took Mp11 code examples and tried to show how they
are elegantly implemented using value-based reflection metaprogramming.

So, you take a vector that contains types, and then you simply apply the existing algorithm std::unique to it, et
voila… oh wait.

std::unique wants a sorted range, and you can’t std::sort the info vector, because info objects aren’t ordered,
even when they refer to types.

6 Acknowledgements
Thanks to all of the following:

— Davis Herring for his suggestions on ordering non-type template parameters.
— Ville Voutilainen for his critique of examples, and providing a simple way of explaining the motivation
— Peter Dimov for a helpful anecdote, now in the FAQ.

7 Appendix A: building apply_canonicalized
We will need a small metaprogramming library; a filter is difficult to do otherwise.
struct undefined;
template <typename... Ts> struct list {};

// apply<F, list<Ts...>> -> F<Ts...>
template <template <typename...> typename, typename> extern undefined _apply;
template <template <typename...> typename F, template <typename...> typename L,

typename... Ts>
F<Ts...> _apply<F, L<Ts...>>;
template <template <typename...> typename F, typename List>
using apply = decltype(_apply<F, List>);

// concatenate<list<Ts...>, list<Us...>, list<Vs...>> -> list<Ts..., Us..., Vs...>
template <typename...> extern undefined _concatenate;
template <typename... Ts> list<Ts...> _concatenate<list<Ts...>>;
template <typename... Ts, typename... Us, typename... Lists>
decltype(_concatenate<list<Ts..., Us...>, Lists...>)

_concatenate<list<Ts...>, list<Us...>, Lists...>;
template <typename... Ts>
using concatenate = decltype(_concatenate<Ts...>);

// select: list<T> if true, list<> if false
template <bool v, typename T> extern list<> _select;
template <typename T> list<T> _select<true, T>;

16



template <bool v, typename T>
using select = decltype(_select<v, T>);

Canonicalization is now just a basic not-in-place quicksort-ish thing:
template <typename.../*empty*/> extern list<> _canon;
template <typename... Ts>
using canonicalized = decltype(_canon<Ts...>);

// a canonicalized T is just T
template <typename T>
list<T> _canon<T>;

template <typename T, typename... Ts>
concatenate<

// canonicalized things less than T
apply<canonicalized, concatenate<select<(ORDER(Ts, T) < 0), Ts>...>>,
list<T> /*T*/, // ~~~~~~~~~~~~~~~~
// canonicalized things greater than T
apply<canonicalized, concatenate<select<(ORDER(Ts, T) > 0), Ts>... >>
> // ~~~~~~~~~~~~~~~~

_canon<T, Ts...>;

We now have canonicalized<Ts...> - but this still leaves list as a special type which we’d rather not expose
to the user. Onto apply_canonicalized:
template <template <typename...> typename F, typename... Ts>
using apply_canonicalized = apply<F, canonicalized<Ts...>>;

7.1 Full code listing as tested and implemented
Here for completeness, feel free to skip.
#include <compare>
#include <type_traits>

struct undefined;

#define ORDER(x, y) type_order_v<x, y>

// in <type_traits>
template <typename X, typename Y>
constexpr inline std::strong_ordering type_order_v;

template <template <typename...> typename, typename>
extern undefined _apply;

template <template <typename...> typename F, template <typename...> typename L,
typename... Ts>

F<Ts...> _apply<F, L<Ts...>>;

template <template <typename...> typename F, typename List>
using apply = decltype(_apply<F, List>);

// some user-type
template <auto x>

17



struct value_t : std::integral_constant<decltype(x), x> {};
template <auto x>
inline constexpr value_t<x> value_v{};

// built-in
template <auto x, auto y>
constexpr inline std::strong_ordering type_order_v<value_t<x>, value_t<y>> =

x <=> y;

template <typename... Ts>
struct list {};

template <typename...>
extern undefined _concatenate;
template <typename... Ts>
list<Ts...> _concatenate<list<Ts...>>;
template <typename... Ts, typename... Us, typename... Lists>
decltype(_concatenate<list<Ts..., Us...>, Lists...>)

_concatenate<list<Ts...>, list<Us...>, Lists...>;

template <typename... Ts>
using concatenate = decltype(_concatenate<Ts...>);

template <bool v, typename T>
extern list<> _select;
template <typename T>
list<T> _select<true, T>;

template <bool v, typename T>
using select = decltype(_select<v, T>);

template <typename...>
extern list<> _canon;
template <typename... Ts>
using canonicalized = decltype(_canon<Ts...>);

template <typename T>
list<T> _canon<T>;

template <typename T, typename... Ts>
concatenate<

apply<canonicalized, concatenate<select<(ORDER(Ts, T) < 0), Ts>...>>,
list<T>,
apply<canonicalized, concatenate<select<(ORDER(Ts, T) > 0), Ts>... >>
>

_canon<T, Ts...>;

static_assert(std::same_as<canonicalized<value_t<0>, value_t<-1>, value_t<-1>, value_t<1>>, list<value_t<-1>, value_t<0>, value_t<1>>>);

18



8 References
[P1985R3] Gašper Ažman, Mateusz Pusz, Colin MacLean, Bengt Gustafsonn, Corentin Jabot. 2022-09-17.

Universal template parameters.
https://wg21.link/p1985r3

[P2300R7] Eric Niebler, Michał Dominiak, Georgy Evtushenko, Lewis Baker, Lucian Radu Teodorescu, Lee
Howes, Kirk Shoop, Michael Garland, Bryce Adelstein Lelbach. 2023-04-21. ‘std::execution‘.
https://wg21.link/p2300r7

[P2320R0] Andrew Sutton, Wyatt Childers, Daveed Vandevoorde. 2021-02-15. The Syntax of Static Reflection.

https://wg21.link/p2320r0

[P2841R1] Corentin Jabot, Gašper Ažman. 2023-10-14. Concept Template Parameters.
https://wg21.link/p2841r1

19

https://wg21.link/p1985r3
https://wg21.link/p2300r7
https://wg21.link/p2320r0
https://wg21.link/p2841r1

	Abstract
	Revision History
	Motivation
	Motivating Examples
	Canonicalizing policy-based libraries
	Canonicalized variant
	Canonicalized tuple
	ABI and API stability


	Proposal
	ORDER(x, y)
	Design Principles
	Approach
	Structure of key-tuples
	Named Scopes
	Atoms
	Kinds
	Identifiers
	Namespaces
	Types
	Ordering Scalar Types
	Ordering Array Types
	Ordering Class Types

	Syntax
	Option 1: constexpr bool std::type_info::before()
	Option 2: constexpr std::strong_order(std::type_info, std::type_info)
	Option 3: variable template std::entity_ordering
	Option 4: constexpr std::type_identity::operator<=>
	Option 5: constexpr std::__lift<arg>::operator<=>


	FAQ
	Why should this be standardized?
	Why not wait for reflection?
	But couldn’t this be done faster with reflection?

	Acknowledgements
	Appendix A: building apply_canonicalized
	Full code listing as tested and implemented

	References

