
Doc. No.: P2829R0
Project: Programming Language - C++ (WG21)
Audience: SG21 Contracts
Date: 2023-02-27
Author: Andrew Tomazos <andrewtomazos@gmail.com>

Proposal of Contracts Supporting
Const-On-Definition Style

Summary
We propose that any (non-reference) function parameters used in MVP postconditions: (a) must
be declared explicitly const in function definitions (by the programmer); and (b) they are
implicitly declared const in other function declarations (by the implementation).

This proposes amending the first sentence of P2521R2/3.12 as follows: “If a non-reference
function parameter is named in a postcondition, that parameter shall be declared const in every
declaration definition of the function, and const is added when forming their type from every
other non-const declaration.”

Example

// declaration

void f(int x) // <-- x is implicitly const

POST(is_const_v<decltype(x)>); // true

// definition

void f(const int x) // <-- x is explicitly const

{

/*...*/

}

Motivation

We feel this both implements SG21s decision on issue P2521R1/4.3 and supports the
const-on-definition style.

mailto:andrewtomazos@gmail.com


What is the const-on-definition style?

There is a rule in C++ that reads along the lines of “After [analyzing] the list of parameter types
[of a function type], any [const] modifying a parameter type are deleted when forming the
function type.” ([dcl.fct]/5)

What this means is that the following declares and defines, respectively, the same function:

void f(int x);

void f(const int x) { /*...*/ }

So if you want to make a parameter const, you only have to do it on the definition. You can
leave it off the declaration. Whether or not parameters are const are not part of the “interface”
of a function.

We call this the const-on-definition style.

We suspect (but cannot prove empirically because it’s hard to search for) that this feature has
significant use in the field. The present-day desire to mark some parameters const comes from
const-correctness (see “const correctness” in the ISOCPP C++ FAQ:
https://isocpp.org/wiki/faq/const-correctness), and in such cases, the desire to leave const off
the non-definition declaration comes from not wanting to clutter the headers with unnecessary
and superfluous information. Notice that whether or not the callee modifies its private copy of
the argument object (the parameter object) is usually not of interest to the caller. There are
exceptions to that, but they are exceedingly rare.

With SG21s decision on issue P2521R2/4.3 of the contracts working paper, it was decided that
in order to avoid the pitfall of function parameters used in postconditions being modified during
function execution from their initial value (the argument value), such parameters would need to
be const.

We propose that contracts should support this const-on-definition style for parameters used in
postconditions.

Concretely, the way we propose doing that is as follows:

For any function parameters that are used in a postcondition of any of the functions
declarations:

- In non-definition function declarations they are implicitly declared const by the
implementation



- In function definitions they shall have been explicitly declared const by the
programmer

References

P2521R1/4.3 Contract support — Working Paper
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r1.html

P2521R2/3.12 Contract support — Working Paper
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r2.html

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2521r2.html

