
Trivial Relocatability — Comparing P1144 with P2786
Document #: P2814R0
Date: 2023-05-09
Project: Programming Language C++
Audience: Evolution Incubator

Library Evolution Incubator
Reply-to: Mungo Gill

<mgill83@bloomberg.net>
Alisdair Meredith
<ameredith1@bloomberg.net>
Arthur O’Dwyer
<arthur.j.odwyer@gmail.com>

Contents
1 Abstract 2

2 Revision history 2
2.1 R0: May 2023 . 2

3 Introduction 2

4 Motivating use cases common to both proposals 2
4.1 Stated in both papers: Contiguous reallocation and efficient vector growth 2
4.2 Stated in [P1144R7]: Moving in-place/SBO type-erased types like any and function 3
4.3 Stated in [P1144R7]: Moving fixed-capacity containers like static_vector and small_vector . 3
4.4 Stated in [P2786R0]: Moving types with sentinel nodes . 3

5 Detailed comparison of proposed changes 3
5.1 New terms and definitions . 3
5.2 New type category . 4
5.3 Implicit trivial relocatability . 4
5.4 Explicit trivial relocatability and its safety . 5
5.5 New traits . 6
5.6 New relocation functions . 7
5.7 Moved object lifetime . 10

6 General observations regarding the two proposals 11
6.1 Scope and Standard Library changes . 11
6.2 Difference in level of implementation . 11
6.3 Interface vs. semantics . 11
6.4 Predictable specification without deference to QoI . 11
6.5 Revocation of trivial relocatability . 12
6.6 Respecting encapsulation of bases and members . 12
6.7 Immovable but relocatable types . 13
6.8 Assignment operators . 13

6.8.1 pmr types . 14
6.8.2 std::swap . 14

7 Summary of key differences 14

1

mailto:mgill83@bloomberg.net
mailto:ameredith1@bloomberg.net
mailto:arthur.j.odwyer@gmail.com

8 Acknowledgements 16

9 References 16

1 Abstract
At Issaquah in 2023, papers [P1144R7] and [P2786R0] were presented and examined approaches to support trivial
relocatability. After discussion, the EWGI decided that, given the considerable overlap between the two papers,
the best approach would be to create a single paper highlighting the commonalities and differences between the
two papers, so that EWG and EWGI would be better able to determine the preferred route forward. Thus, this
paper seeks to identify the common aspects of [P1144R7] and [P2786R0], showing areas of commonality and
areas of difference.

2 Revision history
2.1 R0: May 2023
Initial draft of the paper.

3 Introduction
For our purposes, a trivial relocation operation is a bitwise copy that ends the lifetime of its source object,
as-if its storage were used by another object (6.7.3 [basic.life]p5). Importantly, nothing else is done to the source
object; in particular its destructor is not run. This operation will in many cases be semantically equivalent
to a move construction immediately followed by a destruction of the source object.

Any trivially copyable type is trivially relocatable by default. Many other types, even those which have
non-trivial move constructors and destructors, can also be safely trivially relocated; the bookkeeping up-
dates skipped by not running the target object’s move constructor exactly cancel out the bookkeeping up-
dates skipped by not running the source object’s destructor. This includes many resource-owning types, such
as std::vector<int>, std::unique_ptr<int>, std::string (on libc++), std::list<int> (on MSVC), and
std::shared_ptr<T>.

Both proposals allow the library programmer to warrant to the compiler that a type is trivially relocatable.
Explicit warrants are rarely needed because the compiler can infer trivial relocatability for many types.

Note that simply doing a bitwise copy of non-trivially copyable objects will, as of C++23, result in undefined
behavior (when the copied bytes are treated by later code as an object of the original type). Making this
operation well defined for those types that opt into this behavior is one of the goals of both proposals. Another
common goal is to implicitly support a wider range of trivially relocatable types.

4 Motivating use cases common to both proposals
4.1 Stated in both papers: Contiguous reallocation and efficient vector growth
Suppose one has a move-only type, class MoveOnlyType (for example, a unique ownership smart pointer), and
one wishes to hold a vector of these types, std::vector<MoveOnlyType>. Simply emplacing five of these objects
would require that MoveOnlyType’s move constructor and destructor be called seven additional times due to
the vector expansion required as more elements are inserted than the capacity (using the libc++ and libstdc++
implementations of std::vector).

If MoveOnlyType were trivially relocatable, and if std::vector were to take that into account as an optimiza-
tion, then the vector expansion caused by these five emplacements would require only three memmove operations,
with no additional calls to MoveOnlyType’s move constructor and destructor.

2

https://wg21.link/basic.life

The authors of both [P1144R7] and [P2786R0] performed benchmarks, and both found that a speedup of between
2.5x and 3x could be achieved for this operation. ([P1144R7] tested vector<unique_ptr<int>>::resize, and
[P2786R0] tested vector<string>::resize.)

4.2 Stated in [P1144R7]: Moving in-place/SBO type-erased types like any and
function

Trivial relocation can be used to de-duplicate the code generated by type-erasing wrappers like any, function,
and move_only_function. For these types, a move of the wrapper object is implemented in terms of a relocation
of the contained object. (See, for example, libc++’s std::any.) In general, the relocate operation must have a
different instantiation for each different contained type C, leading to code bloat. But every trivially relocatable
C of a given size can share the same instantiation.

Note: Although stated in only one of the two papers, this particular example would apply to both.

4.3 Stated in [P1144R7]: Moving fixed-capacity containers like static_vector and
small_vector

The move constructor of fixed_capacity_vector<R,N> can be implemented naïvely as an element-by-element
move (leaving the source vector’s elements in their moved-from state) or efficiently as an element-by-element
relocate (leaving the source vector empty).

boost::container::static_vector<R,N> currently implements the naïve element-by-element-move strategy,
but after LEWG feedback, static_vector as proposed in [P0843R5] does permit the faster relocation strategy.

Note: Although stated in only one of the two papers, this particular example would apply to both.

4.4 Stated in [P2786R0]: Moving types with sentinel nodes
Some types do not have a non-allocating empty state, so they cannot have a noexcept move constructor. One
example is a known implementation strategy for std::list that always allocates at least a sentinel node (as used
by the Microsoft STL among others). Lacking a non-throwing move constructor, vectors of such lists can grow
only using copy-and-destroy, rather than move-and-destroy, with each copy requiring an additional allocation.
However, as long as the sentinel does not maintain a back-pointer into its list object, such a type can be trivially
relocatable as the old object immediately ends its life without running its destructor and thus does not have
to restore invariants; there is no window of opportunity to access the live object in a state where it has broken
invariants.

Note: Although stated in only one of the two papers, this particular example would apply to both.

5 Detailed comparison of proposed changes
5.1 New terms and definitions
Both papers introduce a number of new terms but with slightly different definitions.

— relocate
— [P1144R7]: Given an object type T and memory addresses src and dst, the phrase “relocate a T from

src to dst” means “move-construct dst from src, and then immediately destroy the object at src.”
— [P2786R0]: To relocate a type from memory address src to memory address dst means to perform

an operation or series of operations such that an object equivalent (often identical) to that which
existed at address src exists at address dst, that the lifetime of the object at address dst has begun,
and that the lifetime of the object at address src has ended.

— relocatable
— [P1144R7]: Any type that is both move-constructible and destructible is relocatable.
— [P2786R0]: To say that an object is relocatable is to say that it is possible to relocate the object

from one location to another.

3

— trivially relocatable
— [P1144R7]: A type is trivially relocatable if its relocation operation is trivial (which, just like

trivial move-construction and trivial copy-construction, means “tantamount to memmove”).
— [P2786R0]: Conceptually, a type is trivially relocatable if it can be relocated by means of copying

the bytes of the object representation and then ending the lifetime of the original object without
running its destructor.

As can be seen above, [P1144R7] is focused on the public interface of the class itself, namely the existence
and accessibility of move constructors and destructors, whereas in [P2786R0], the focus is on the fundamental
semantics of the type itself.

5.2 New type category
Both papers introduce a trivially relocatable type as a new type category. * Both papers define that cate-
gory in a way that can be implicitly deduced for many existing types, notably scalars and arrays, and can
recursively deduce trivial relocatability in classes comprising only trivially relocatable types (with some
restrictions around user-provided special member functions). * Both papers provide an explicit markup, using
the trivially_relocatable token, for users to mark their own classes with user-provided special member func-
tions as retaining this new property. * Both markups allow for a Boolean predicate for a class to conditionally
opt-in to the new property when it is not inferred. * Both papers agree that it is undefined behavior to mark up
a class whose move constructor and destructor maintain an invariant that is broken by simple bitwise movement,
such as an internal pointer.

5.3 Implicit trivial relocatability
Both proposals specify a mechanism for types to be considered implicitly trivially relocatable.

Both papers explicitly state that a trivially copyable type would be trivially relocatable by default. However,
the inverse is specifically not true; i.e., a trivially relocatable type is not necessarily trivially copyable.

However, both proposals state that a non-trivially copyable type can be implicitly trivially relocatable
based on a number of requirements.

Most of the requirements are similar between the two proposals but with subtle yet important differences.

[P1144R7] [P2786R0]
There are no virtual base classes. There are no virtual base classes.

All base classes are of trivially relocatable type. All base classes are of trivially relocatable type.

All members are either of reference type or of
trivially relocatable type.

All non-static data members are either of reference
type or of trivially relocatable type.

There are no user-provided destructors. The selected destructor is neither user-provided nor
deleted.

There are no user-provided move constructors or copy
constructors.

When an instance of the type is direct-initialized from
an rvalue of the same type, the selected constructor is
neither user-provided nor deleted.

There are no user-provided move assignment
operators or move assignment operators.

There are no virtual member functions.

4

The following are noteworthy points when comparing the two sets of conditions.

— [P1144R7] requires that the copy constructor not be user-provided, whereas [P2786R0] does not care about
the copy constructor unless it also serves as the move constructor.

— [P1144R7] requires that there be no user-provided move or copy assignment operators, whereas [P2786R0]
does not care about assignment operators. This turns out to be more significant than the authors of both
[P1144R7] and [P2786R0] first thought; see std::swap below.

— In [P1144R7], deleted special member functions do not affect implicit trivial relocatability, whereas
[P2786R0] requires a user to explicitly declare their type as trivially relocatable if the relevant members
are deleted. This difference comes from [P2786R0] trying to follow the users’ intent declared by their
syntax: if the user intends their type to be non-relocatable, then we should not bypass that intent by
means of trivial relocation without their express permission to do so. [P1144R7], on the other hand,
sees trivial relocation as merely an optimization opportunity, which means it matters only for types
that are movable to begin with: as long as the compiler respects the user’s intent to make their type
non-relocatable, it does not matter whether we consider the impossible operation ‘trivial’ or not.

— [P1144R7] specifies that trivially_relocatable attributes are ignored if the compiler infers that type
is trivially relocatable; i.e., the attribute is only opt-in and never opt-out. [P2786R0] requires the
compiler to respect a trivially_relocatable(false) specification, regardless of any compiler-inferred
implicit trivial relocatability; i.e., the user specification takes priority over the default semantics.

— In particular, [P1144R7] lets the user wrap a type not known to be trivially relocatable
(e.g. boost::shared_ptr) in a Rule-of-Zero wrapper marked trivially_relocatable(true);
[P2786R0] would consider such a marking to be a diagnosable error. Vice versa, [P2786R0] lets the
user wrap a type which the compiler incorrectly believes to be trivially relocatable in a wrapper
marked trivially_relocatable(false); [P1144R7] ignores such a marking.

— This explains why [P1144R7] is less willing to infer trivial relocatability on certain types (e.g. poly-
morphic types, types with user-provided assignment operators): [P1144R7] provides no escape hatch,
when the compiler infers that a type is trivially relocatable, to undo that inference.

5.4 Explicit trivial relocatability and its safety
Both proposals provide a mechanism to explicitly declare that a type is trivially relocatable.

[P1144R7] [P2786R0]

struct [[trivially_relocatable(true)]] C
{

C(C&&);
~C();

};

struct C trivially_relocatable(true)
{

C(C&&);
~C();

};

Although we consider the keyword-vs.-attribute issue to be essentially cosmetic, two other differences are ex-
tremely important.

— In [P1144R7], trivial relocatability is only opt-in, never opt-out. Only [P2786R0] provides a
means to mark an implicitly trivially copyable type as not trivially relocatable by means of
trivially_relocatable(false).

— [P2786R0] explicitly states that it would be a diagnosable error to explicitly declare a type to be trivially
relocatable where any non-static data members or base classes are not trivially relocatable. This
approach is intended to avoid silently introducing undefined behavior where the compiler cannot see that
all moving parts are trivially relocatable types. On the other hand, [P1144R7] allows users to mark any
class as trivially relocatable, as long as it supports public move semantics, even if it comprises bases

5

or data members that are not themselves trivially relocatable. This approach is intended to support
integration with third-party libraries, where the user believes that moving the bytes of all the relevant
third-party data types would be safe. P1144R8 section 3 will include further details.

5.5 New traits
Both proposals include an is_trivially_relocatable trait, defined almost identically. (Note that P1144R8
will update the precondition, so the definitions will be identical, although they both depend on trivially re-
locatable, and [P1144R7]’s definition of trivially relocatable differs from [P2786R0]’s definition of trivially
relocatable.)

Paper [P1144R7] [P2786R0]
Template template<class T> struct template<class T> struct

is_trivially_relocatable; is_trivially_relocatable;

Condition T is a trivially relocatable type T is a trivially relocatable type

Preconditions T shall be a complete type, cv void, remove_all_extents_t<T> shall
or an array of unknown bound be a complete type or cv-void

[P1144R7] also defines two more traits, is_relocatable and is_nothrow_relocatable but these will be re-
moved in P1144R8.

Paper [P1144R7] [P2786R0]
Template template<class T> struct

is_relocatable;

Condition is_move_constructible_v<T> is true and
is_destructible_v<T> is true

Preconditions T shall be a complete type, cv void,
or an array of unknown bound

Paper [P1144R7] [P2786R0]
Template template<class T> struct

is_nothrow_relocatable;

Condition is_relocatable_v<T> is true and both
the indicated move-constructor and the
destructor are known not to throw any
exceptions

Preconditions T shall be a complete type, cv void,
or an array of unknown bound

[P1144R7] also defines a concept relocatable.

6

[P1144R7] [P2786R0]
template<class T>
concept relocatable = move_constructible<T>;

If T is an object type, then let rv be an rvalue of type T, lv an lvalue of type T equal to
rv, and u2 a distinct object of type T equal to rv. T models relocatable only if

* After the definition T u = rv;, u is equal to u2.

* T(rv) is equal to u2.

* If the expression u2 = rv is well-formed, then the expression has the same semantics as
u2.~T(); ::new ((void*)std::addressof(u2)) T(rv);

* If the definition T u = lv; is well-formed, then after the definition u is equal to u2.

* If the expression T(lv) is well-formed, then the expression’s result is equal to u2.

* If the expression u2 = lv is well-formed, then the expression has the same semantics as
u2.~T(); ::new ((void*)std::addressof(u2)) T(lv);

5.6 New relocation functions
The proposed interface is very different between the [P1144R7] and [P2786R0] proposals.

— [P1144R7] proposes two key functions, relocate_at and relocate, which can, internally, make
use of trivial relocatability for optimization. It also proposes convenience wrapper functions
uninitialized_relocate, uninitialized_relocate_n, and uninitialized_relocate_backward.

— [P2786R0] proposes a key function, trivially_relocate, suitable only for trivially relocatable objects,
suitable for the common use case of relocating a contiguous range of objects. and a convenience wrapper
function, relocate, also suitable for nothrow-move-constructible objects.

7

[P1144R7] [P2786R0]

template<class T>
T *relocate_at(T* source, T* dest);

Which is equivalent to

struct guard {
T *t;
~guard() {

destroy_at(t);
}

} g(source);

return ::new (voidify(*dest))
T(std::move(*source));

// except that if T is trivially relocatable
// [basic.types], side effects associated
// with the relocation of the value of
// *source might not happen

template <class T>
requires is_trivially_relocatable_v<T>

constexpr
T* trivially_relocate(

T* begin, T* end, T* new_location)
noexcept;

Which is equivalent to

memmove(new_location,
begin,
sizeof(T) * (end - begin));

// except the object lifetimes are
// managed correctly; see D2786

template<class T>
T relocate(T* source);
// not to be confused with P2786 `relocate`
// function, which is the same only in name

Which is equivalent to

T t = std::move(source);
destroy_at(source);
return t;

// except that if T is trivially relocatable
// [basic.types], side effects associated
// with the relocation of the object’s value
// might not happen

The following usage examples illustrate the use of these functions.

8

[P1144R7] [P2786R0]

{
TriviallyRelocatable *tr =

new TriviallyRelocatable;
NonTriviallyRelocatable *ntr =

new NonTriviallyRelocatable;

TriviallyRelocatable *trd =
malloc(sizeof TriviallyRelocatable);

NonTriviallyRelocatable *ntrd =
malloc(sizeof NonTriviallyRelocatable);

// The following is valid and MAY OR
// MAY NOT use memmove "under the hood":
static_assert(

std::is_trivially_relocatable_v<
TriviallyRelocatable>);

std::relocate_at(tr, trd);

// The following is valid and will
// use move+destroy:
static_assert(

! std::is_trivially_relocatable_v<
NotTriviallyRelocatable>);

std::relocate_at(ntr, ntrd);
}

{
TriviallyRelocatable *tr =

new TriviallyRelocatable;
NonTriviallyRelocatable *ntr =

new NonTriviallyRelocatable;

TriviallyRelocatable *trd =
malloc(sizeof TriviallyRelocatable);

NonTriviallyRelocatable *ntrd =
malloc(sizeof NonTriviallyRelocatable);

// The following is valid and WILL ALWAYS
// use memmove:
static_assert(

std::is_trivially_relocatable_v<
TriviallyRelocatable>);

std::trivially_relocate(tr, tr+1, trd);

// The following assert will pass;
// the function call is ill formed:
static_assert(

! std::is_trivially_relocatable_v<
NotTriviallyRelocatable>);

std::trivially_relocate(ntr, ntr+1, ntrd);
}

In addition, both proposals suggest a number of utility functions.

— [P1144R7] proposes a family of generic algorithms to relocate a range which can be forward or bidirectional
(even though the memcpy optimization will be practically useful only when the range is contiguous). This
genericity is consistent with the existing memory algorithms such as std::uninitialized_move.

— [P2786R0] also proposes a wrapper function, relocate, implemented using trivially_relocate for the
convenience of users wanting a single function to cater for both trivially relocatable and non-trivially
relocatable types, and to support simple and practical implementations of vector-like types that wish
to optimize on the availability of trivial relocation

9

[P1144R7] [P2786R0]

template<class InputIterator,
class NoThrowForwardIterator>

NoThrowForwardIterator
uninitialized_relocate(

InputIterator first,
InputIterator last,
NoThrowForwardIterator result);

template<class InputIterator,
class Size,
class NoThrowForwardIterator>

pair<InputIterator, NoThrowForwardIterator>
uninitialized_relocate_n(

InputIterator first,
Size n,
NoThrowForwardIterator result);

template<class BidirectionalIterator,
class NoThrowBidirectionalIterator>

NoThrowBidirectionalIterator
uninitialized_relocate_backward(

BidirectionalIterator first,
BidirectionalIterator last,
NoThrowBidirectionalIterator result);

template<class T>
requires ((is_trivially_relocatable_v<T> &&

!is_const_v<T>) ||
is_nothrow_move_constructible_v<T>)

T* relocate(T* begin,
T* end,
T* new_location)

// not to be confused with P1144 `relocate`
// function which is the same only in name

5.7 Moved object lifetime
Both papers agree that memmove alone is insufficient for performing an in-memory relocation, as the C++
abstract machine tracks object lifetimes independently of the object representation in memory. Both papers
propose Standard Library APIs to perform a bitwise relocation in a way that is exposed to the abstract machine,
and both papers expect that function to be implemented simply as a bitwise copy at run time.

[P1144R7] describes its proposed relocate functions as “equivalent to a move and a destroy”, with permission
to elide any side effect of move construction and the destructor. Object lifetimes are not explicitly addressed by
[P1144R7], but it uses the phrase “equivalent to a move and destroy” to perform the heavy lifting for unspecified
compiler magic to manage the object lifetimes.

[P2786R0] proposes explicit changes to the lifetime model.

— The Standard Library trivially_relocate function is explicitly stated to copy the bytes of the object
representation.

— Use of the trivially_relocate function is mandated, not optional.

— The lifetime of an object ends once it is trivially relocated from.

— The compiler magic to imbue life into the relocated objects is limited to the single function
trivially_relocate.

— The user can explicitly request a trivial relocation as the “magic” function is specified and publicly
available.

— No claim is made as to any equivalence between trivial relocation and “move and destroy”.

— It is the responsibility of the user to ensure that the destructor is not called on the trivially relocated-
from object; to do so would result in undefined behaviour.

10

6 General observations regarding the two proposals
6.1 Scope and Standard Library changes
Although both proposals have considered how the respective changes can enable further optimization by library
implementation, neither proposal requires or relies upon any changes to the existing Standard Library containers
and algorithms.

6.2 Difference in level of implementation
[P1144R7] has a focus on delivering a high-level library interface to users of the language and proceeds with
the minimal level of detail with regard to core specification to make those library APIs implementable. This is
evidenced by language talking about (1) the absence of side effects to infer that certain code transformations
are possible, spread across a number of functions, and (2) a library API that works with iterator ranges as the
most useful approach that fits within the standard library design.

[P2786R0] starts from the principle that a change in the abstract machine is necessary; thus it begins with a core
specification that explicitly handles changes to the rules of object lifetimes and then puts all of that abstract
machine magic in exactly one function that is available to library implementers and users of the library alike.
The broader library support is then built on top of this function, which may be reflected in the design of the
library APIs themselves. [P2786R0] aims to provide a lower-level facility, which can be used as a foundation for
further work.

6.3 Interface vs. semantics
Originally, [P1144R6] was based upon relocatability semantics, which it defined to be equivalent to a move
followed by destruction. That design led to the deduced relocatable property being framed in terms of the public
interface of its bases and non-static data members, namely a publicly accessible move constructor and destructor,
and the trivially relocatable requirements are based on those same syntactic requirements.

However, as can be seen in the more recent version, [P1144R7], that design is moving toward the idea that a
type can be trivially relocatable without being move constructible and destructible (just as it can by
trivially copyable without being copy assignable), although the relocation operation itself is still defined
in terms of move-and-destroy.

Although in [P1144R6] explicitly marking a type as trivially relocatable if it does not have a public interface
that supports regular move semantics was an error (albeit one for which no diagnostic is required), that restriction
has been removed in the latest draft, (P1144R8).

[P2786R0] leads with the idea that triviality is key and that all other trivial semantics in the language are based
upon the trivial semantics of bases and non-static data members, not syntax. This is a similar approach to
trivial copyability. Hence, public access to move functions does not matter, as relocation of such types uses
the trivial semantic instead for such types.

[P2786R0] explicitly allows the user to specify that a type is trivial relocatable, overriding the default, as long
as all of its bases and members are trivially relocatable in turn.

An alternative way to present this is that [P1144R7] provides trivial relocation as an optimization enabled
only for movable types, and [P2786R0] proposes a low-level language primitive to relocate objects in memory,
regardless of their movability.

6.4 Predictable specification without deference to QoI
[P1144R7] permits the library to use bitwise copies to perform relocation operations but does not mandate it.
That optimization is left as a QoI feature of the relocating library functions. Misuse by annotating types that
are not suitable for relocation often leads to UB or to programs that are ill-formed, no diagnostic required.

[P2786R0] leaves no room for QoI, fully specifying observable behavior and requiring (diagnosable) ill-formed
programs when the facility is misused.

11

An alternative way to consider this is that, in [P1144R7], relocate_at will use either move-and-destroy or
memmove. (Although memmove will not be used for types that are not trivially relocatable, it is not guaranteed
to be used for types that are.)

Conversely, in [P2786R0], trivially relocate can only be used for trivially relocatable types and is guar-
anteed to use memmove. (Attempting to use trivially_relocate for a non-trivially relocatable type is a
diagnosable error.)

6.5 Revocation of trivial relocatability
Both proposals provide two ways to observe trivial relocatability: directly via is_trivially_relocatable, and
indirectly via the library functions that do relocation operations.

[P1144R7] doesn’t permit compiler-inferred implicit trivial relocatability to be revoked. A type annotated
[[trivially_relocatable(false)]] will still be visibly is_trivially_relocatable. The compiler’s decision
does not affect whether std::relocate_at is well-formed or not, although it may affect the runtime performance
of std::relocate_at (which is affected by QoI anyway).

[P2786R0] does permit compiler-inferred implicit trivial relocatability to be revoked. A type anno-
tated trivially_relocatable(false) will not be is_trivially_relocatable (even if it remains
is_trivially_copyable!). Since it will not is_trivially_relocatable, it will not a valid argument for
std::trivial_relocate.

6.6 Respecting encapsulation of bases and members
[P1144R7] adopts a “trust the user” approach, even when that leads to undefined behavior. [P1144R7] allows a
type to break the encapsulation of its members and trivially relocate them even when they do not have that
property (thus allowing a type that is neither T nor a friend of T to skip user-defined special member functions
of T when T is not trivially relocatable).

[P2786R0] considers that marking as trivially relocatable a type whose bases and non-static data members
are not, themselves, trivially relocatable should be a diagnosable error.

This is perhaps best illustrated via an example. Suppose a user has examined the code of thirdparty::shared_ptr
and concluded that trivially relocating thirdparty::shared_ptr would be safe, but the providers of that
library have not annotated it as such.

12

[P1144R7] [P2786R0]

// in <thirdparty.h>
namespace thirdparty {

class shared_ptr {
...

};
}

// The following assert will pass:
static_assert(

! std::is_trivially_relocatable_v<
thirdparty::shared_ptr<OtherClass>>);

// P1144 would consider the following valid
// even though thirdparty::shared_ptr is not
// marked as trivially relocatable.
class [[trivially_relocatable]] MyClass {
private:
thirdparty::shared_ptr<OtherClass> data_p;

public:
...

};

// in <thirdparty.h>
namespace thirdparty {

class shared_ptr {
...

};
}

// The following assert will pass:
static_assert(

! std::is_trivially_relocatable_v<
thirdparty::shared_ptr<OtherClass>>);

// P2786 would consider the following
// ill formed because thirdparty::shared_ptr
// is not marked as trivially relocatable.
class MyClass trivially_relocatable {
private:
thirdparty::shared_ptr<OtherClass> data_p;

public:
...

};

See also P1144R8 section 3 example 4.

6.7 Immovable but relocatable types
[P1144R7] treats relocation as “move plus destroy,” and trivial relocation as an optimization of relo-
cation; so it does not admit the possibility of a type that is relocatable without being movable. In-
deed, [P1144R7]’s concept relocatable is syntactically equivalent to concept move_constructible, and
[P1144R7]’s relocate_at is defined as “Equivalent to” a move-construction followed by a destruction. It is
ill-formed to call relocate_at on a non-movable type (e.g. one whose move constructor is private).

[P2786R0] treats trivial relocation as a separate primitive operation, and permits calling trivially_relocate
on any trivially relocatable type, regardless of whether that type is movable (e.g. even if its move constructor
is private). This allows creating a type which is relocatable only by trivially_relocate and not by any other
means.

6.8 Assignment operators
Although both proposals agree that trivial relocation can be used in place of move construction followed
by destruction, a fundamental area of disagreement is the relationship between move assignment and reloca-
tion/trivial relocation.

[P1144R7] proposes that relocation can be used in place of an appropriately structured series of move assign-
ments. This widens the scope of what can be optimized by means of trivial relocation (e.g., std::swap) but
narrows the set of types for which trivial relocation can be used as ending an object’s lifetime and creating a
new object with a new value in its place is, for many types with non-salient properties such as the pmr types,
not equivalent to assigning a value to the original object.

[P2786R0] proposes that trivial relocation cannot be used in place of move assignment plus destruction. This
significantly widens the scope in terms of allowing pmr types to be trivially relocatable but does restrict the
places where such trivial relocation can be used.

13

Note for context that the bsl::vector implementation of Bloomberg’s open-source BDE library has an opti-
mization that goes beyond [P2786R0] and will, only when moving objects around within its own internal storage,
use memmove for trivially relocatable types in places where assignment would otherwise be used, such as in the
implementations of insert and erase. However, BDE will never, for allocator-aware objects, use memmove in
place of any assignment operation moving an object into, out of, between, or outside containers, as guaranteeing
that the source and destination objects will have the same allocator is not possible.

6.8.1 pmr types

A notable area of disagreement between the authors of both [P1144R7] and [P2786R0] arises with pmr types.
The scoped allocator model, typified by std::pmr types, is a strong motivator behind [P2786R0], notably for
examples like std::pmr::vector<std::pmr::string>. As such, the authors are careful to specify the feature
to support their primary use case.

Under [P2786R0], pmr types can be considered trivially relocatable, as the assignment operator
will still be used for all move assignments; thus propagate_on_container_move_assignment and
propagate_on_container_swap will be respected.

On the other hand, [P1144R7] explicitly requires certain behavior out of relocatable types’ assignment opera-
tors, which means either that pmr types cannot be considered trivially relocatable or that pmr types can be
considered trivially relocatable only under certain runtime conditions. This is difficult to square with the fact
that is_trivially_relocatable_v<pmr::string> needs to be a compile-time constant. It is unsatisfactory
to have pmr::string never advertise itself as trivially relocatable, but it is also unsatisfactory for it to al-
ways appear trivially relocatable but sometimes violate the type’s semantic requirements (note in particular
propagate_on_container_move_assignment).

6.8.2 std::swap

Part of the motivation for [P1144R7] including move assignment within the umbrella of trivial relocation is to
enable support for making std::swap more efficient. [P2786R0] does not permit std::swap to use memmove.
The most significant difference between [P1144R7] and [P2786R0] is whether trivial swappability implies trivial
relocatability or whether trivial relocatability implies trivial swappability.

[P1144R7] reports significant benefits optimizing std::swap as three relocate operations, which is why it re-
quires trivially relocatable types to have appropriate assignment operators as well. The underlying assumption
is that destroy-then-move-construct has the same behavior as move-assign for supported types. This restriction
immediately excludes a set of types very important to the authors of [P2786R0], namely types using scoped
allocators (or any other allocator that does not propagate on swap). Prominent examples of types that do not
satisfy this second constraint include class types with reference data members, all polymorphic types, and types
with non-propagating allocators (such as all of pmr).

[P2786R0] asserts that all trivially swappable types are trivially relocatable, as one can effectively perform
a trivial swap and then end the lifetime of the original object without running its destructor, per the trivial
relocate semantics where destructors do not run. The converse is not true though, with a variety of types that
would satisfy a primitive trivial relocation specification but not a primitive trivially swappable specification.

The focus of [P2786R0] is purely on whether moving a sequence of bytes (once) produces a valid object repre-
sentation, modelling move-then-destroy for movable types but also allowing relocation of immovable types with
the right properties. One of the underlying assumptions of [P2786R0] is that trivial relocation is a funda-
mental operation in the abstract machine, and trivial swap would be a similar fundamental primitive, much as
the library continually runs into the design constraint that swap is essentially a primitive operation, which the
Standard Library expresses as a compound operation through multiple moves.

7 Summary of key differences

14

[P1144R7] [P2786R0]
Considers relocation as equivalent to move + destroy. Considers trivial relocation separate from move +

destroy.

• Defines relocation as equivalent to move + destroy,
and trivial relocation as an optimization of that.

• Defines only trivial relocation, and does not
consider the non-trivial case.

• Relocatability is considered a feature of a type’s
public interface.

• Trivial relocatability is based on the semantics
of bases and members.

• The “equivalence” wording is used to address
lifetime issues.

• Enhancements are required to the lifetime model
wording.

• It is ill-formed to mark a non-movable type as
trivially relocatable (removed in R8).

• Non-movable non-copyable types can be made
trivially relocatable.
• This is similar approach to trivial copyability.

Considers move assignment to be in scope. Considers move assignment to be out of scope.

• Relocation (trivial or not) can replace certain
move assignments.

• Trivial relocation cannot be used in place of
move assignment.

• pmr and allocator aware types will behave in
surprising ways when used in containers and
algorithms.

• pmr and allocator aware types work as-is.

• Fewer types can be considered trivially
relocatable and trivial relocation can be used in
more places.

• More types can be considered trivially
relocatable and trivial relocation can be used in
fewer places.

Adopts a “trust the user” approach. Makes many potential misuses into compilation errors.

• There is greater opportunity for mis-annotation
resulting in Undefined Behaviour.

• Many potential mis-annotations are strictly
ill-formed.

• The user has greater flexibility. • The user has less flexibility.

Provides a suite of user-focused generic algorithms. Is focused purely on the core language changes
required.

• Two “core” functions, relocate and relocate_at,
are provided to support relocation.

• A single “core” function trivially_relocate
constrained for trivially relocatable types is
provided.

• Library functions may perform either trivial
relocation or move+destroy depending on type and
QoI.

• The trivially_relocate function will only ever
perform trivial relocation.

• A family of utility functions to support
iterator-based relocations is provided.

• No support for iterator-based relocation is
provided.

Provides no opt-out. Provides an opt-out.

• Compiler-inferred trivial relocatability cannot
be removed from a type.

• trivially_relocatability(false) will remove
trivial relocatability from a type (even if that type
is trivially copyable).

15

8 Acknowledgements
This document is written in markdown and depends on the extensions in Pandoc and mpark/wg21.

The author of [P1144R7] has also created three blog posts with additional background of the motivations behind
some of the design decisions in that paper:

[trivial_swap_x_prize] [relocate_algorithm_design] [sharp_knife_dull_knife]

9 References
[P0843R5] Gonzalo Brito Gadeschi. 2022-08-14. static_vector.

https://wg21.link/p0843r5

[P1144R6] Arthur O’Dwyer. 2022-06-10. Object relocation in terms of move plus destroy.
https://wg21.link/p1144r6

[P1144R7] Arthur O’Dwyer. 2023-03-10. std::is_trivially_relocatable.
https://wg21.link/p1144r7

[P2786R0] Mungo Gill, Alisdair Meredith. 2023-02-11. Trivial relocatability options.
https://wg21.link/p2786r0

[relocate_algorithm_design] Arthur O’Dwyer. 2023. STL algorithms for trivial relocation.
https://quuxplusone.github.io/blog/2023/03/03/relocate-algorithm-design/

[sharp_knife_dull_knife] Arthur O’Dwyer. 2023. Should the compiler sometimes reject a [[triv-
ially_relocatable]] warrant?
https://quuxplusone.github.io/blog/2023/03/10/sharp-knife-dull-knife/

[trivial_swap_x_prize] Arthur O’Dwyer. 2023. Trivial relocation, std::swap, and a $2000 prize.
https://quuxplusone.github.io/blog/2023/02/24/trivial-swap-x-prize/

16

https://pandoc.org/MANUAL.html#pandocs-markdown
https://github.com/mpark/wg21
https://wg21.link/p0843r5
https://wg21.link/p1144r6
https://wg21.link/p1144r7
https://wg21.link/p2786r0
https://quuxplusone.github.io/blog/2023/03/03/relocate-algorithm-design/
https://quuxplusone.github.io/blog/2023/03/10/sharp-knife-dull-knife/
https://quuxplusone.github.io/blog/2023/02/24/trivial-swap-x-prize/

	Abstract
	Revision history
	R0: May 2023

	Introduction
	Motivating use cases common to both proposals
	Stated in both papers: Contiguous reallocation and efficient vector growth
	Stated in [P1144R7]: Moving in-place/SBO type-erased types like any and function
	Stated in [P1144R7]: Moving fixed-capacity containers like static_vector and small_vector
	Stated in [P2786R0]: Moving types with sentinel nodes

	Detailed comparison of proposed changes
	New terms and definitions
	New type category
	Implicit trivial relocatability
	Explicit trivial relocatability and its safety
	New traits
	New relocation functions
	Moved object lifetime

	General observations regarding the two proposals
	Scope and Standard Library changes
	Difference in level of implementation
	Interface vs. semantics
	Predictable specification without deference to QoI
	Revocation of trivial relocatability
	Respecting encapsulation of bases and members
	Immovable but relocatable types
	Assignment operators
	pmr types
	std::swap

	Summary of key differences
	Acknowledgements
	References

