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1 Abstract
This paper examines an approach to support trivial relocatability, building upon ideas in previous papers
[P1029R3] and [P1144R6], and leveraging the experience of supporting bitwise movability in the BDE library. It
embraces the motivation for such a feature given in those papers, while providing what we believe to be a more
rigorous design and specification.

2 Revision history.
2.1 R2: June 2023 (Varna meeting)

— Updated most references to P1144 to the May mailing [P1144R8]
— Attempted to clarify the new Terms and definitions
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— Added missing example for New syntax
— Moved all non-essential functionality to Library Extensions

2.2 R1: May 2023 (pre-Varna mailing)
Mid-term mailing following feedback from Issaquah.

The most significant change is that we moved analysis and comparisons with [P1144R6] to a separate co-authored
paper, [P2814R0]. More specific changes are detailed below:

— Added constexpr to relocate functions, and to the design decisions.
— Added // freestanding comments on every library function.
— Renamed move_and_destroy as uninitialized_move_and_destroy.

— Documented adding the algorithm as a design decision
— Fixed precondition
— Require forward iterators for input range, as we expect to modify/destroy elements
— Add full family of overloads, consistent with uninitialized_* standard algorithms

— Reviewed use of voidify as consistent with library text with Issaquah papers applied
— Provide a complete specification for relocate that handles overlapping ranges.
— Revise concerns with application to swap, deferring any further work to a separate paper.
— Struck redundant inline from definition of is_trivially_relocatable_v

2.3 R0: Issaquah 2023
Initial draft of this paper.

3 Introduction
For our purposes, a trivial relocation operation is a bitwise copy that ends the lifetime of its source object, as-if its
storage were used by another object (6.7.3 [basic.life]p5). Importantly, nothing else is done to the source object,
in particular its destructor is not run. This operation will typically (though exceptions are not forbidden)
be semantically equivalent to a move construction immediately followed by a destruction of the source object.

Any trivially copyable type is trivially relocatable by default. Many other types, even those which have non-trivial
move constructors and destructors, can maintain their correct behavior when trivially relocated — skipping the
source object’s destructor allows for skipping all bookkeeping updates that might need to be done by the
target object’s move constructor. This includes many resource-owning types, such as vector, unique_ptr, and
shared_ptr.

Note that simply doing a bitwise copy of these non-trivially-copyable objects will, as of C++23, result in
undefined behavior (when the copied bytes are treated by later code as an object of the original type). Making
this operation well-defined for those types which opt into this behavior is the primary goal of proposing this
feature as a language extension. The secondary goal is to implicitly support a wider range of trivially relocatable
types. The tertiary goal is to provide better diagnostics when trivial relocation semantics are misused.

4 Motivating use cases
We believe [P1144R8] has done a good job a motivating proposals in this area. Here, we highlight the specific
use cases that drive our proposal, just as a reinforcement of the earlier paper.

4.1 Efficient vector growth
Suppose we have a move-only type, class MoveOnlyType (for example, a unique ownership smart pointer),
and we wish to hold a vector of these types std::vector<MoveOnlyType>. Simply emplacing 5 of these objects
would require that MoveOnlyType’s move constructor and destructor be called 7 additional times due to the vector
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expansion required as more elements are inserted than the capacity (at least in one current implementation of
std::vector).

If MoveOnlyType were trivially relocatable, and if std::vector were to take that into account as an optimization,
then the vector expansion caused by these 5 emplacements would require only 3 memmove operations, with no
additional calls to MoveOnlyType’s move constructor and destructor.

For this example we are assuming an initially empty vector with no reserve capacity, and that the implemen-
tation has a growth strategy of doubling the reserved space when more is required, from 0 to 1 to 2 to 4 to
8.

4.2 Moving types without empty states
Some types do not have a non-allocating empty state, so cannot have a noexcept move constructor. One example
is a known implementation strategy for std::list that always allocates at least a sentinel node. Lacking a non-
throwing move constructor, vectors of such list have a painful growth strategy. However, as long as the sentinel
does not maintain a back-pointer into its list object, such a type can be trivially relocated as the old object
immediately ends its life without running its destructor, so does not have to restore invariants — there is no
window of opportunity to access the live object in a state where it has broken invariants.

4.3 pmr types are often trivially relocatable
The original motivation for this feature in the BDE library was to ensure efficient movement of allocator aware
types, using the allocator model that became standardized in namespace std::pmr. As the allocator is simply
a pointer to a memory resource, and allocated memory does not reside within the owning object itself, many
non-trivial allocator-aware types can be trivially relocatable if an appropriate markup is available.

4.4 Future proposal for language support for allocators
The authors are also working on a separate proposal for direct language support for allocators, based upon the
std::pmr design ([P2685R0]). That proposal anticipates support for trivial relocatability.

5 Experience at Bloomberg
Bloomberg has relied heavily on low level optimizations enabled by assuming the trivially relocatable model
holds. This implementation experience is built on the, so far valid, assumption that no current compilers
are optimizing to transform programs based on the specific undefined behaviors we exploit. The emulation is
achieved through a type trait, bslmf::IsBitwiseMovable. More recently, in an experimental branch to explore
language extensions, pbastd::is_trivially_relocatable is used to demonstrate relocation of types using
std::pmr::polymorphic_allocator. This experimental model is a pure library extension, and has no impact
unless libraries are written to test this trait before choosing an optimized implementation. In particular, types
that are not trivially copyable must opt into the trait with a special traits markup, or by specializing the trait
for their relocatable type. Note that user specialization would not be permitted for a standardized type trait,
per 21.3.2 [meta.rqmts]p4.

The initial language support we propose is that the new trait will detect trivially copyable types as also being
trivially relocatable by default, while other types will default to non-trivially-relocatable. This part can be
covered by a library emulation, implementing the new trait in terms of std::is_trivially_copyable.

6 New Terms and Definitions
We introduce and specify the following new terms to better communicate our intent. These terms can be found
in numerous other proposals, and the definitions proposed here are very similar.
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First, we will address the notion of what relocation should mean in the context of C++. We believe the topic
deserves a higher level treatment, such as described in [P2839R0], but for our purposes it is sufficient to define
the operation we wish to optimize.

— relocate: To relocate a type from memory address src to memory address dst means to perform an
operation or series of operations such that an object equivalent (often identical) to that which existed at
address src exists at address dst, that the lifetime of the object at address dst has begun, and that the
lifetime of the object at address src has ended.

— relocatable: To say that an object is relocatable is to say that it is possible to relocate the object from
one location to another.

Next, we define terms specific to the optimization we are proposing in this paper, which will build on a new type
category in the core language specification, trivially relocatable types.

— trivially relocatable: Conceptually, a type is trivially relocatable if it can be relocated by means of
copying the bytes of the object representation and then ending the lifetime of the original object without
running its destructor.

— trivially relocatable type: A trivially relocatable type is a type that is implicitly trivially relo-
catable, and/or is explicitly trivially relocatable, and/or is an array of trivially relocatable types;
otherwise the type is not trivially relocatable. Any otherwise trivially relocatable type can be declared
non-trivially relocatable by means of the trivially_relocatable keyword with value false.

— implicitly trivially relocatable: A type is implicitly trivially relocatable if it has no user-provided
or deleted destructors, no virtual base classes, all its base classes (if any) are trivially-relocatable, all its
non-static data members (if any) are trivially-relocatable, and the constructor selected for initialization
from a single rvalue of the same type is neither user-provided nor deleted.

— If a class has an appropriate (move or copy) constructor, then its access level (public/protected/private)
has no bearing on whether that class is implicitly trivially relocatable. This non-requirement
for accessibility follows the same model as the standard specification for trivially copyable class
types. Similarly, there are no requirements that the destructor be accessible, merely that it is neither
deleted nor user-provided.

— The copy constructor is not relevant unless it inhibits the declaration of move constructors; then a
class is not implicitly trivially relocatable unless the copy constructor is implicitly defined.

— Examples of types that are implicitly trivially relocatable are trivially copyable types (such
as scalar types), aggregates of trivially relocatable types, including arrays of such types, and such
aggregates with const and/or reference data members. Empty types can satisfy the requirements for
an implicitly trivially relocatable type.

— explicitly trivially relocatable: A type is explicitly trivially relocatable if it is a user defined
(class) type that is defined with the contextual keyword trivially_relocatable and value true, with
the following proviso:

— An explicitly trivially relocatable class type may not contain any non-static data members that
are not trivially relocatable, nor any base classes that are not trivially relocatable, nor have any
virtual base classes. I.e., it is a diagnosable error to add the keyword with value true to a class that
does not qualify.

It is important to note that we are proposing to permit, by means of the trivially_relocatable keyword,
types that would otherwise be non-copyable and non-movable to be (trivially) relocatable. For this reason
we cannot define relocate and relocatable in terms of a move construction followed by a destruction (the
definition used by [P1144R8]). The ability to explicitly make a type trivially relocatable enables providing a
customized (and thus non-trivial) move constructor and destructor while declaring that the compound operation
is trivial.
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7 Proposed Language Changes
Our proposal changes and extends C++23 as follows.

7.1 New type category
To better integrate language support, we further recommend that the language can detect types as trivially
relocatable where all their bases and non-static data members are, in turn, trivially relocatable; the con-
structor selected for construction from a single rvalue of the same type is neither user-provided nor deleted;
and their destructor is neither user provided nor deleted. This definition follows the same principle used in the
standard to define trivially copyable.

7.2 New semantics
In order to ensure that libraries taking advantage of the trivially relocatable semantic do not introduce undefined
behaviour, the model of lifetimes for objects must be extended to allow for relocation of trivially relocatable
types. As the compiler cannot know if a specific memcpy or memmove call is intended to duplicate or to move
an object, we propose introducing the trivially_relocate function template to call memmove on our behalf,
which signifies to the compiler and other source analysis tools that the lifetime of the new object(s) has begun
and the lifetime of the original object(s) has ended:
template <class T>

requires is_trivially_relocatable_v<T>
constexpr
T* trivially_relocate(T* begin, T* end, T* new_location) noexcept;

Note that this function is designed to move a range of objects, rather than a single object, as that is expected to
be the common use case. Further note that, consistent with its low level purpose often tied to move semantics,
this function is denoted with noexcept despite having a narrow contract regarding valid and reachable pointers.

This design deliberately puts all “compiler magic” and core-language interaction dealing with the object lifetimes
into a single place, rather than into a number of different relocate-related overloads. Note that there is no
permission for a user to copy the bytes to perform a relocation themselves, unlike with trivial copyability,
although that would still work for trivially copyable types.

trivially_relocate can be thought of as ending the lifetime of the moved-from objects, followed by a memmove
, followed by start_lifetime_as (or maybe start_lifetime_as_array) on the moved-to objects. Unlike
memmove on its own, it is restricted to trivially relocatable types rather than to implicit lifetime types.

Note that start_lifetime_as is constrained to work only for implicit lifetime types whereas this proposal is
intended to support all trivially relocatable types, which are often not implicit lifetime types. The different
constraints are appropriate in each case. For the currently specified start_lifetime_as function, the idea is
that we point the compiler to a region of memory, and say “take these bytes of unknown provenance and turn
them into objects”. In particular, we might be copying bytes into memory from a stream, and those bytes did
not originate as objects in this abstract machine. Conversely, trivially_relocate takes existing valid objects
in memory, copies their bytes to a new location, and asks the compiler to imbue life into specifically those
bytes copied from known valid objects. It is important that the copying and imbuing life occur within the same
transaction, as that gives the compiler its necessary guarantees. Hence, all the new functionality is bundled into
a single trivially_relocate function, rather than decomposing into smaller parts that would allow the users
to perform the memmove themselves.

Finally, observe that this function is constexpr. The intent is to support just the relocation of objects in
transient dynamic storage, in order to implement the C++20 constexpr vector semantics without further
if consteval magic in the implementation. We have not considered the impact on objects other than those
having such dynamic storage duration, and it might merit some more core wording to restrict the constexpr
applicability in such cases, or to more carefully consider general purpose constexpr relocations.
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7.3 New type trait
In order to expose the relocatability property of a type to library functions seeking to provide appropriate
optimizations, we propose a new trait std::is_trivially_relocatable<T> which enables the detection of
trivial relocatability.
template< class T >
struct is_trivially_relocatable;

template< class T >
constexpr bool is_trivially_relocatable_v = is_trivially_relocatable<T>::value;

having a base characteristic of std::true_type if T is trivially relocatable and std::false_type otherwise.

Note that it is expected that the std::is_trivially_relocatable trait shall be implemented through a com-
piler intrinsic, much like std::is_trivially_copyable, so the compiler can use that intrinsic when the language
semantics require trivial relocatability, rather than requiring actual instantiation (and knowledge) of the stan-
dard library trait. The trait must always agree with the intrinsic as users do not have permission to specialize
standard type traits (unless explicitly granted permission for a specific trait).

7.4 New syntax
In order to enable trivial relocatability to be useful for more complicated (i.e., non-trivially copyable)
types, it must be possible to explicitly mark non-trivially copyable types as trivially relocatable. As this
should be an issue only for class types (including unions), we recommend adding a new contextual keyword
trivially_relocatable as part of the class definition, similar to how final applies to classes. E.g.,
struct X; // Forward declaration does not admit `final`
struct X final {}; // Class definition admits `final`
struct Y trivially_relocatable {}; // New contextual keyword placed like `final`

We propose one new contextual keyword that can be placed in a class-head to attach a trivially relocatable
predicate to a class:

— trivially_relocatable(bool-expression) which is used:
— With value true to explicitly make a class trivially relocatable, and
— With value false to explicitly remove trivial relocatability from a class.

The boolean predicate is optional, with a plain trivally_relocatable defaulting to true.

It is possible, by means of the trivially_relocatable(bool-expression) specification, to declare a class as
trivially relocatable even if that class has a user-defined copy constructor and/or move constructor and/or
destructor. This differs from [P1144R8] in the following notable ways:

— Where trivially_relocatable is specified with value true, we do not require that the move constructor,
copy constructor, and/or destructor be public or unambiguous. The trivially_relocatable specification
takes precedence.

— It is possible to render, by means of the keyword and value false, any type, even a trivially copyable
type, non-trivially relocatable.

Our motivation for the explicit specification always supplanting the implicit specification, rather than just the
case of true supplanting false, is the confusion we encountered when considering other semantics in alternative
designs below. It became clear that it was much simpler to reason about our examples when the trivial relocation
specification could be trusted to mean literally what it said.

While we do not have use cases for making trivially relocatable types to be non trivially relocatable, we do not
have use cases to disallow it either, and must choose a meaning for the syntax. Our experience with language
design in general has been that users will find corners where even the most obscure feature is useful, so prefer
to not remove a potentially useful feature that is intuitive from the syntax.
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It may be argued that this is a case where [P1144R8] leans on the semantics of the feature where this proposal
leans on the syntax.

7.5 Diagnosable errors
In a non-dependant context, it would be a diagnosable error to mark a type as trivially relocatable if it
comprises any bases or non-static members that are not trivially relocatable. Types with virtual base classes
are automatically not trivially relocatable, as their implementation on some platforms involves an internal
pointer. We prefer that this low level behavior is consistent across platforms, rather than left as an unspecified
QoI concern, as our current experience has not yet turned up a usage of virtual base classes that would also
benefit from this feature.

Note that there are no issues with virtual functions, as virtual function table implementations do not take a
pointer back into the class, so the vtable pointer can be safely relocated.

7.5.1 Simple examples without a predicate

The common form is expected to be the simple case, without a predicate.
struct MyType trivially_relocatable : BaseType {

// class definition details

MyType(MyType&&); // user supplied
// Having a user-provided move constructor, `MyType` would not be
// trivially relocatable by default. The `trivially_relocatable`
// annotation trusts the user that this type can indeed be trivially
// relocated.

};

struct NotRelocatable : BaseType {
// class definition details

NotRelocatable(NotRelocatable&&); // user supplied
// Having a user-provided move constructor, `NotRelocatable` is not
// trivially relocatable.

};

struct Error trivially_relocatable : BaseType {
NotRelocatable member;

// This class is ill-formed, as it requests to be trivially relocatable,
// but the compiler can see a non-relocatable data member that cannot be
// worked around.

Error(Error&&); // user supplied
// There is nothing this move constructor can do to repair the trivial
// relocatability property, as it is not invoked during trivial
// relocation.

};

7.5.2 Examples using the predicate

The boolean predicate form, trivially_relocatable(false), can be used to opt out of the behavior for a
type that might otherwise be trivially relocatable by default. However, the main purpose of the predicate is
to allow class templates to indicate their trivial relocatability where their opt-in might depend on the supplied
template arguments.
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For example purposes, let us consider the following two classes:
struct Relocatable trivially_relocatable(true ) {}; // trivially relocatable
struct Alternative trivially_relocatable(false) {}; // not trivially relocatable

static_assert( is_trivially_relocatable_v<Relocatable>);
static_assert(!is_trivially_relocatable_v<Alternative>);

Clearly, Relocatable is a trivially relocatable class type, and Alternative is a non-trivially relocatable class
type. We will use these classes to illustrate how similar, but subtly different, class templates behave.

As an initial example, we write a simple aggregate that demonstrates we get the expected behavior that correctly
deduces trivial relocatability when we have no user-supplied special members:
template<class TYPE>
struct Example {
TYPE value_a;
TYPE value_b;

};

static_assert( is_trivially_relocatable_v<Example<Relocatable>>);
static_assert(!is_trivially_relocatable_v<Example<Alternative>>);

However, for most of our remaining examples we are concerned with the case of a class template that provides
its own special members, so needs to supply a trivial relocation specification. The examples look simple, and
may lead to thinking “why am I messing with all this template syntax when the simple Example works?” but
remember, these are deliberately simplified examples to highlight just the relevant code, and the underlying
lesson is intended for larger code in practice, where Example would clearly not suffice.

As our first example, we write a class template that uses the trivially relocatable specification to forward the
trivial relocatability of its dependent members:
template<class TYPE>
class Duo trivially_relocatable(is_trivially_relocatable_v<TYPE>)
{
private:
TYPE value_a;
TYPE value_b;

public:
~Duo() {} // User provided destructor so not implicitly relocatable

};

static_assert( is_trivially_relocatable_v<Duo<Relocatable>>);
static_assert(!is_trivially_relocatable_v<Duo<Alternative>>);

Next, we use type constraints in a requires clause instead, so see how the behavior differs:
template<class TYPE>

requires is_trivially_relocatable_v<TYPE>
class RelocatableDuo trivially_relocatable
{
private:
TYPE value_a;
TYPE value_b;

public:
~RelocatableDuo() {} // User provided destructor so not implicitly relocatable

};
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static_assert( is_trivially_relocatable_v<RelocatableDuo<Relocatable>>);
static_assert(!is_trivially_relocatable_v<RelocatableDuo<Alternative>>); // ill-formed

Observe that the static assertion for RelocatableDuo<Alternative> is ill-formed not because that
static_assert fails, but rather, that the RelocatableDuo template cannot be instantiated for Alternative
at all, i.e., RelocatableDuo is a template that wraps only trivially relocatable types, and so can guarantee to
always be trivially relocatable.

For another example, we can try to make a class template unconditionally trivially relocatable:
template<class TYPE>
class TryRelocatable trivially_relocatable
{
private:
TYPE value_a;
TYPE value_b;

public:
~TryRelocatable() {} // User provided destructor so not implicitly relocatable

};

static_assert( is_trivially_relocatable_v<TryRelocatable<Relocatable>>);
static_assert(!is_trivially_relocatable_v<TryRelocatable<Alternative>>); // ill-formed

The Alternative instantiation fails again, but this time it fails because the trivially_relocatable specifica-
tion is violated, which is a diagnosable error. The error message is likely to refer to the value_a and value_b
members, where the error message for the RelocatableDuo example would be related to violating the type
constraints of the requires clause.

Note that as an unadorned trivially_relocatable specification is equivalent to trivially_relocatable(true),
we can also consider the opposite case, trivially_relocatable(false):
template<class TYPE>
class NotRelocatable trivially_relocatable(false)
{
private:
TYPE value_a;
TYPE value_b;

public:
~NotRelocatable() {} // User provided destructor so not implicitly relocatable

};

static_assert(!is_trivially_relocatable_v<NotRelocatable<Relocatable>>);
static_assert(!is_trivially_relocatable_v<NotRelocatable<Alternative>>);

Here we see both instantiations are again valid, and the trivial relocation specification forces both instantiations
to be not trivially relocatable.

As a final example of Duo-like types, we consider what happens if one of the members is not type-dependent,
and not relocatable:
template<class TYPE>
struct Erroneous trivially_relocatable
{
Alternative value_a; // ill-formed
TYPE value_b;

};

This case is ill-formed in all cases, and can be diagnosed in the template definition without waiting for an
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instantiation.

Another example where the trivial relocation specification might be useful is for trivial relocatability to be
contingent on avoiding some small object optimization, such as:
template<class T>
class Container trivially_relocatable(sizeof(T) > SHORT_OPTIMIZATION_LIMIT)
{

// Store small objects with an in-object representation, and dynamically
// allocate storage for larger objects.

// ...
};

Here we are concerned purely with whether a type is small enough to fit the small object optimization, and make
no effect to further constrain on type. This might be how we approach retrofitting trivial relocatability into an
existing library without raising ABI concerns.

7.6 Relocation functions
We propose one additional library function to trivially relocate ranges of objects. Note that this initial proposal
does not provide a single-object relocation function as our primary motivation is to optimize relocating objects
in bulk. It would be easy to add single-object trivially_relocate functions, but the effect can be achieved by
calling the proposed function with a range of a single object, so we wait to hear that the evolution groups feel
sufficiently motivated to request such convenience functions.

7.6.1 trivially_relocate

We propose the following function template to relocate trivially relocatable objects by means of a memmove. This
function is the unique entry point into the core magic that tracks and manages object lifetimes in the abstract
machine:
template <class T>

requires (is_trivially_relocatable_v<T> && !is_const_v<T>)
constexpr
T* trivially_relocate(T* begin, T* end, T* new_location) noexcept;

This function template is equivalent to:
memmove(new_location, begin, sizeof(T) * (end - begin));

with the precondition that end is reachable from begin. It further has the following two very important effects,
that matter to the abstract machine but do not have any apparent physical effect (i.e., these effects do not
change bits in memory), much like std::launder:

— it begins the lifetime of the objects *new_location, *(new_location+1), …, through to *(new_location+end-begin-1).
If any of the objects or their subobjects are unions, they have the same active elements as the corresponding
objects in the range [begin, end).

— it ends the lifetime of the objects *begin, *(begin+1), …, through to *(end-1). This means it will be
Undefined Behavior to access these objects or to attempt to destruct any of them.

Note: the first bullet (beginning the new lifetime(s) of the new object(s)) could be achieved by saying that this
is equivalent to:
memmove(new_location, begin, sizeof(T) * (end - begin));
std::start_lifetime_as_array_without_preconditions(new_location, sizeof(T) * (end - begin))

but there is not currently a mechanism to end the lifetime(s) of the source object(s).
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8 Follow-up Library Extensions
Our primary proposal is essentially a Core language facility, with the minimal library interface, one type trait
and one function template with a special meaning to the translator. However, in practice we are likely to want
to build user facing library facilities on top of this minimal feature set, to deliver our goal of using relocation in
std::vector.

Here, we look at some possible library extensions that would be proposed as a follow-up paper for LEWG, to
illustrate how we might resolve some library concerns.

8.1 relocate
We also propose a new “convenience” function template:
template <class T>

requires (is_trivially_relocatable_v<T> || is_nothrow_move_constructible_v)
&& !is_const_v<T>

constexpr
T* relocate(T* begin, T* end, T* new_location);

Which is equivalent to:
if constexpr (is_trivially_relocatable_v<T>) {

trivially_relocate(begin, end, new_location);
}
else if (ranges-do-not-overlap) {

std::uninitialized_move(begin, end, new_location);
std::destroy(begin, end);

}
else {

// move-and-destroy each member in the appropriate order
}

Note that this function supports overlapping ranges, just like memmove.

This function is similar to uninitialized_relocate in [P1144R8], except that our proposal requires pointers
rather than input iterators for the source, and mandates we always trivially relocate types that support trivial
relocation. The always-trivially-relocate-where-possible requires the input range be contiguous, but in principle
we could relax this to using iterators that model the contiguous_iterator concept.

This function is also constrained to require no-throw move constructible types, as that better reflects its use
case as an efficient relocation with minimal overhead. If an exception were thrown, the user would lack the
information to put the program back into a good state, and the following uninitialized_move_and_destroy
function is intended to support such use cases.

We do not have uninitialized in the name, as relocation already implies that we target range will be overwritten
— but note that we do support overlapping ranges where some of the relocating objects are already initialized
(and being overwritten) in the target range, which would therefore not be fully uninitialized.

8.2 uninitialized_move_and_destroy
We further propose a second “convenience” function template, that takes iterator ranges, supports potentially-
throwing move constructors, but does not support overlapping input and output ranges:
template<class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move_and_destroy(ForwardIterator first,

ForwardIterator last,
NoThrowForwardIterator result);
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Design note: the input sequence should probably require no-throw iterators, in order to guarantee
the postcondition that all elements are destroyed, even when an exception is thrown.

This function is directly inspired by uninitialized_relocate in [P1144R8]. However, as per its name in this
proposal, it is mandated to always perform a move-construct followed by destruction and is not given permission
to switch to a trivially relocating implementation for certain types. Implementations may still find ways to
as-if such an implementation if they stare carefully at all the requirements, but we do not explicitly ban such
implementations, we do not anticipate that as a worthwhile optimization.

Note that this function does not accept types that are not move constructible, even if they are trivially relocatable.

We do not support overlapping ranges in this function as, in general, it is undefined behavior to compare iterators
into different sequences when trying to determine if there is an overlap, never mind the cost for non-random
access iterators, and unsupportability of input iterators. Pointers are a special case as arbitrary (valid) pointers
can be compared using std::less<>.

We provide a single iterator range signature to introduce this facility, but can imagine LEWG wanting to consider
sentinels, std ranges support, and bounded output ranges rather than a single iterator to range-check the output.

Finally, we note that this function is not marked as constexpr, even though we know of no reason it could not
be so marked, with the constexprness being implicitly dependent on the supplied iterators being constexpr
iterators.

9 The Problem With Vector
The goal of our optimization, through trivial relocation, is to make moving elements around a block container,
such as vector or deque, more efficient. Bloomberg’s experience with their implementation of polymorphic
memory resources has demonstrated this value for many years. However, as we prepared this paper, Arthur
O’dwyer pointed out that we are taking liberties that the standard does not permit. In particular, when erasing
an element from the middle of a vector, or inserting an element into the middle of a vector, the existing
elements are currently relocated using operator=, and if the result of the assignment operator for an element is
not exactly the same as destroying the target element and then move constructing into it, then Bad Things can
happen. We did not run into this problem at Bloomberg, as the polymorphic memory resource model ensures that
all elements in a container use the same memory resource, and (as polymorphic allocators are equal) assignment
and move-construction will produce the same result. However, we do not have an easily testable property to
confirm that runtime condition is guaranteed by a vector itself — we are relying on implementation knowledge.

‘

[container.reqmts] Containers
typename X::value_type

2 Result: T
3 Preconditions: T is Cpp17Erasable from X (see container.alloc.reqmts, below).

66.3 No erase(), clear(), pop_back() or pop_front() function throws an exception.

24.2.4 [sequence.reqmts] Sequence containers
a.erase(q)

45 Result: iterator.
46 Preconditions: For vector and deque, T is Cpp17MoveAssignable.
47 Effects: Erases the element pointed to by q.
48 Returns: An iterator that points to the element immediately following q prior to the element being erased. If

no such element exists, a.end() is returned.
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To make the concern more visible, consider the following example where we store std::pmr::vector elements
in a std::vector, i.e, the outer vector is using the default std::allocator that knows nothing about pmr
memory resources. We will demonstrate, using a lambda, that running through the same code can produce very
different results on which elements use which memory resource, depending on whether the vector reallocates to
increase capacity.
#include <cassert>
#include <memory_resource>
#include <utility>
#include <vector>

int main() {
using Element = std::pmr::vector<int>;
using Container = std::vector<Element>;

Container v;
v.reserve(4);
assert(4 == v.capacity()); // confirm initial capacity for first run

using Alloc = std::pmr::monotonic_buffer_resource;
Alloc a0, a1, a2, a3, a4; // create 5 distinct allocators to track

// test case is a lambda to ensure both runs are executing the same source code.
auto fill = [&](bool firstTime) {

// create 5 elements, each using a different memory resource
Element e0{ {1, 2, 3}, &a0};
Element e1{ {2, 3, 4}, &a1};
Element e2{ {3, 4, 5}, &a2};
Element e3{ {4, 5, 6}, &a3};
Element e4{ {5, 6, 7}, &a4};

// move the first 4 elements into the container, retaining their resource
v.emplace_back(std::move(e0));
v.emplace_back(std::move(e1));
v.emplace_back(std::move(e2));
v.emplace_back(std::move(e3));

// verify each element has retained its memory resource
assert(&a0 == v[0].get_allocator().resource());
assert(&a1 == v[1].get_allocator().resource());
assert(&a2 == v[2].get_allocator().resource());
assert(&a3 == v[3].get_allocator().resource());

// emplace an element into the middle of the container
v.emplace(v.begin() + 2, std::move(e4));

// Verify the memory resource used by each element after insertion, which
// is different on the first run where the vector must grow its capacity,
// compared to any following runs where elements are moved without
// reallocation.

assert(&a0 == v[0].get_allocator().resource());
assert(&a1 == v[1].get_allocator().resource());
if (firstTime) {
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// for the first run, the vector expands and each element has the right resource
assert(&a4 == v[2].get_allocator().resource());
assert(&a2 == v[3].get_allocator().resource());
assert(&a3 == v[4].get_allocator().resource());

}
else {

// for later runs, the vector rotates elements giving different resources
assert(&a2 == v[2].get_allocator().resource());
assert(&a3 == v[3].get_allocator().resource());
assert(&a3 == v[4].get_allocator().resource());

}
};

fill(true); // first run to fill the vector `v`

v.clear(); // reset the vector for a second run without losing capacity

fill(false); // next run to fill the vector `v`
}

10 Design choices
10.1 No library support is mandated
It is the intention that this extension be fully backwards compatible, and no library changes are required. Library
implementers may, if they so desire, take advantage of this feature in order to improve performance, but they
are not mandated to do so. This is a conservative position until we have confirmed that there would be no ABI
concerns from explicitly applying this to the library specification (see ABI compatibility).

This extension relies on core language support, but does not change existing program behavior, even if the
trivially relocatable property is deduced. It merely enables libraries to detect this property, and apply their
own optimizations if they so desire.

Looking ahead to a follow-up paper from LEWG that performs a more detailed analysis, a library component
(such as a container) will typically be affected in one of three ways:

1. Some components will, based on the definition in the standard, automatically gain trivial relocatability
when appropriate based on the contained type. Examples are array, pair and tuple.

2. Some components could be marked as unconditionally trivially relocatable, if it is desired to do so in
the future, for example shared_ptr and filesystem::path.

3. Some components could be marked as conditionally trivially relocatable, based on the trivial relo-
catability of contained types or other conditions. Examples are optional and variant.

As library implementations vary, the category into which a particular component is placed may vary.

Note that some types that intuitively seem like they might be unconditionally trivially relocatable are often
only conditionally trivially relocatable due to forgotten template parameters with default arguments, such as
allocators or the deleter policy for unique_ptr. In other cases such as function, semantic constraints to support
small object optimizations can affect the choice. This is part of the reason to focus this proposal exclusively on
the minimal core language support, while deferring a detailed library analysis to a follow-up paper for LEWG if
this proposal is accepted.
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10.2 Contextual keyword vs. attribute
Our design mandates all behavior regarding trivial relocatability rather than leaving potential usage unspecified,
as a quality of implementation issue. In particular, several categories of misuse are expected to produce diagnostic
errors.

We expect templates to make use of the trivially_relocatable markup, and prefer to avoid putting extra
work parsing attributes through the template machinery, although there are no technical limitations here. For
example, we believe that a specification relying on existing template wording will be simpler than trying to specify
a how a pack expansion works within such an attribute (although the groundwork was laid when alignas was
an attribute).

Usage of the trivially_relocatable markup should be clear and simple, especially with its mandated seman-
tics, much as final became one of the first contextual keywords. Notably, trivially_relocatable would fall
into the grammar in exactly the same location as final on a class.

By contrast, [P1144R8] prefers to use an attribute. The most obvious benefit is that an unnamed class can unam-
biguously use the attribute. When using a contextual keyword, we must limit usage to the case disambiguated
by the opening paren of the boolean expression.

It has also been pointed out that the use of a parenthetical bool-expression in this position of the contextual
keyword grammar might cause problems if some future language extension wanted to place a parenthetical list
there, unrelated to contextual keywords:
struct Foo { };
struct Foo (Bar) { }; // always a syntax error today, but maybe we'd like to use this tomorrow
struct Foo final { };
struct Foo final (Bar) { }; // always a syntax error today, but maybe we'd like to use this tomorrow
struct Foo trivially_relocatable { };
struct Foo trivially_relocatable (Bar) { }; // uh-oh!

Note that this would not be an issue if the hypothetical extension were to place the new parenthetical before
the contextual keywords, but that is already a constraint on future design. Such concerns do not arise with the
attribute form.

We are not aware of any such hypothetical extensions at this point, but should be aware of our choices.

10.3 Type trait vs. concept
Existing library facilities in this space, such as observing trivial copyability, are rendered as type traits rather
than concepts. Such type traits can easily be used to constrain templates in requires clauses, but do not
participate in subsumption relationships.

It would be simple to specify a concept in terms of the proposed trait, but that trait is squatting on the good
name. Note that the contextual nature of the keyword means there is no actual conflict here, but overloading
an identifier this way might be confusing for users.

The C++ grammar enforces that concepts cannot be specialized, unlike templates. Specifying as a concept,
rather than a type trait, would eliminate an unusual source of potential user error, and might have been the
preferred approach for this reason, were it not for the precedent of the existing family of trivial type traits.

10.4 trivially_relocate as the single place for compiler magic
When it comes to exposing core language facilities as a library API, we prefer to keep the interaction as small
and local as possible, ideally just a single “magic” function to imbue the new behavior.

Looking at a more general purpose library interface, we see the importance of being able to relocate arbitrary
ranges of objects, using the traditional move-and-destroy semantic where trivial relocatability is not supported.
We believe there are sufficient complexity getting the details right when handling overlapping source/destination
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ranges that it merits adding to the library. Support for overlapping ranges is inspired by memmove allowing for
overlapping trivially relocatable ranges.

We offer two range APIs. relocate accepts pointers to ranges in memory, supports both movable and
trivially relocatable types, supports overlapping ranges, and mandates trivial relocation when supported.
uninitialized_move_and_destroy is directly inspired by uninitialized_relocate in [P1144R8], and
supports iterator ranges more broadly. As it is not generally possible to identify overlapping ranges where the
iterator types vary, we offer no support for overlapping ranges. Unlike [P1144R8], this specification does not
permit trivial relocation of the elements, guaranteeing the move-and-destroy semantic.

Note that we deliberately use C++20 requires clauses to constrain these functions. We believe this is important
for the tight core/library specification for trivially_relocate, but is largely cosmetic to ease review when
looking at the other two functions. LWG may prefer to specify such functions with a Constraints: function
element instead.

10.5 constexpr support for std::vector and std::string
In order to support simple and practical implementations of vector-like types that wish to optimize on the
availability of trivial relocation, we introduce the relocate function that will delegate to the trivial_relocate
function where possible. As both vector and basic_string marked as constexpr since C++20, we must
similarly make these functions constexpr unless we want to further complicate the implementation of these
types with deeper if consteval branches.

Design note: AJM is now thinking that the existing if consteval branches in these cases would suffice, and
we would simply lose the optimization at compile-time. That might be an acceptable trade-off, while retaining
constexpr support means the branches would likely look more similar.

11 Known concerns
11.1 Separately managed objects
Performing trivial relocations is generally not appropriate for an object whose lifetime is separately managed,
such as a local variable on the stack, an object of static or thread storage duration, or a non-static data member
within a class. Adding compiler support to better observe trivial relocations means we may get warnings on
such misuse. (This concern is similar to destroying and recreating an object in-place. In such cases it is essential
to recreate the object before its destructor will be called implicitly — hence a warning and not an error, as the
idiom is already valid.)

11.2 Internal pointers to members
If a user explicitly (and erroneously) marks as trivially relocatable a class with an invariant that stores a
pointer into an internal structure, then relocation will typically result in UB. For example:
class MyClass
trivially_relocatable
{
private:

int data_v[2];
int *data_p; // data_p will not be valid after a trivial relocation.

public:
MyClass(int a, int b)
{

data_v[0] = a;
data_v[1] = b;
data_p = &(data_v[1]);

}
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MyClass(MyClass &&other)
{

data_v[0] = other.data_v[0];
data_v[1] = other.data_v[1];
data_p = &(data_v[1]); // NOT copied from other.data_v !!!

}
};

After trivial relocation, data_p in the relocated object would point to the address where the member of the old
object resided, but that object’s lifetime has now ended. UB occurs for any use of that pointer now, other that
assigning a new value, or destruction.

Note that this cannot happen without the user explicitly marking the class as trivially relocatable, as the
default rules for trivial relocatability handle this use case by requiring only implicitly defined move construc-
tors.

11.3 Active element of a union
When a union is trivially relocated, the active element of the union must follow along, or it would be undefined
behavior to access the relocated active element. As compilers typically do not explicitly track the active member,
it is thought that this would have minimal impact on implementations. However, for the purpose of static analysis,
or compilers seeking undefined behavior to exploit for optimizations, it is necessary to add the guarantee to
propagate the active element through the “compiler magic” in trivial_relocate function. Note that this
guarantee must apply to non-static data members that are unions too, including anonymous unions and variant
data members.

11.4 ABI compatibility
We do not anticipate any ABI compatibility concerns, but have been surprised before. Once the incubator is
happy to forward this proposal to evolution, we will ask the ABI group for their opinion to better inform this
part of the paper.

We deliberately avoid applying the trivially_relocatable trait to the standard library, deferring that work
to a separate paper once the ABI implications are properly understood.

11.5 Relocating const-objects
The specification for a trivially relocatable type supports const-qualified types, including const-qualified class
types. However the trivially_relocate function itself is constrained to exclude ranges of const objects.

The key concern is that destroying non-const objects with automatic, static, or thread storage duration is valid,
as long as those objects are replaced before their destruction in invoked. However, it is undefined behavior to
replace a const object with such a storage duration in the same manner (6.7.2 [intro.object]p10).

In order to protect from accidentally triggering UB, the special function to trivially relocate objects accepts only
non-const qualified object. If the user knows they are dealing with objects of dynamic storage duration, they
can cast away constness before the call with a const_cast, but must do so explicitly, acknowledging their intent.

Similarly, const-qualified non-static data members satisfy the definition of trivially relocatable, so do not dis-
qualify class types with such non-static data members from also being trivially relocatable, and the complete
object can easily (and safely) be relocated without requiring a const-cast. This is the same behavior that is
supported for references as non-static members.

11.6 Trivially relocatable is not trivially swappable
One popular idea for optimization is to optimize std::swap with a sequence of bitwise relocations. Benchmarks
have demonstrated a useful performance boost in standard algorithms that make heavy use of swap when we
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try this.

Unfortunately, the semantics of swap have issues beyond the object lifetimes addressed by this paper. In
particular, replacing objects in place, as would be done by swap, relies on the principle of transparently replaceable
objects (6.7.3 [basic.life]p8). Note that the term pertains to objects, not to types.

In particular, potentially overlapping objects cannot be transparently replaced. Common examples of such
overlapping objects are non-static data members and base class subobjects of a complete object. swap works on
such subobjects today as it generally uses assignment to exchange values, not construction in place.

The transparently replaceable property sits outside the type system, so is not amenable to dispatching on type-
based traits such as is_trivially_relocatable or even a hypothetical is_trivially_swappable trait. Note
that this same concern applies to trivially relocating data members and base class subobjects in general, even
using the trivial relocation facility proposed by this paper.

As this paper is focused on introducing a very specific relocation semantic, based on decades of field experience,
we keep this paper tightly focused on that well understood domain, deferring any further discussion of optimizing
features like swap to another paper that can properly explore its particular concerns.

12 Alternative designs
There were a couple of other directions we considered before landing on the final proposal. We record them
here for reference, in case anyone else thinks of these approaches, and wonders if we considered them, or why
we rejected them.

12.1 Smarter default for dependent templates
An alternative design we considered for the trivially_relocatable specifier lacking a predicate is that, rather
than defaulting to true, the predicate would default to (std::is_trivially_relocatable_v<PACK> && ...)
where PACK would be a template parameter pack comprising the (potentially empty) set of types of any dependent
bases and non-static data members. Hence, trivially_relocatable would be a “make me trivially relocatable
if possible” request for class templates, rather than forcing an error on instantiation. It would still be an error
to mark a class template having non-depended bases or non-static data members that were, in turn, not trivially
relocatable.

We rejected this design as likely to be confusing, ascribing multiple possible meanings to the simple
trivially_relocatable specifier.

12.2 Ignoring trivially_relocatable like constexpr
To simplify working with class templates, we considered treating a trivially_relocatable specifier that evalu-
ates to true, including the default case where the predicate is implicitly true, like constexpr where it is simply
ignored at instantiation time if that class template cannot be made trivially relocatable. This would still be
expected to diagnose non-dependent reasons for failure eagerly though, like static_assert.

We rejected this direction for additional complexity, and breaking the principle of least astonishment where the
value of a trivially_relocatable specifier can be relied on as accurate.

13 FAQ
13.1 Is void trivially relocatable?
No, and it is not trivially copyable either.

13.2 Are reference types trivially relocatable?
No, and they are not trivially copyable either.
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13.3 Why not?!
It is not possible to take the address of a reference to pass it to relocate. How the compiler implements
references is entirely unspecified, and may not need physical storage if the reference never leaves a local scope.
As it is not meaningful to ask about copying/relocating a naked reference, rather than the entity it refers to,
these trivial properties are false.

13.4 Why can a class with a reference member be trivially relocatable?
For the same reason such a class can be trivially copyable. Strictly speaking, reference members are not non-
static data members, and you cannot create a pointer-to-data-member to one. They deliberately fall through the
relevant wording by not appearing in the list of disallowed entities, despite not being trivially copyable/relocatable
as a distinct type in their own right. This is subtle wording for the unwary, but has been standard practice for
many a year.

13.5 Are cv-qualified types, notably const types, trivially relocatable?
Yes, if the unqualified type is trivially relocatable.

13.6 Can const-qualified types be passed to trivially_relocate?
No, see Relocating const-objects. While const-qualified types are trivially relocatable, and so do not inhibit
the trivial relocatability of a wrapping type, they are typically not safe to relocate due to leaving behind a
dead object that cannot be replaced using well-defined behavior. Hence, the trivially_relocate function is
constrained to exclude const-qualified types. This can be worked around using const_cast if doing so would
not introduce undefined behavior

13.7 Can non-implicit-lifetime types be trivially relocatable?
Yes. See New semantics

13.8 Why are virtual base classes not trivially relocatable?
As they are not trivially copyable either. We believe it is possible to implement virtual bases such that trivial
copy and relocatability would not be a concern, as all the runtime fix-ups can be resolved in the initial object
construction. However, it is not clear that all implementations use such a layout, and forcing trivial operations
may be an ABI break.

We would love to remove this restriction, but this should be kept consistent with the corresponding restriction on
trivially copyable. If no current ABIs are affected we might consider normatively allowing, or even encouraging,
such an implementation (for both trivialities) as conditionally supported behavior on platforms that would not
incur an ABI break.

13.9 Why do deleted special members inhibit implicit trivial relocatability?
Initially we considered allowing trivial relocation of types with these special members functions deleted, based on
the notion that we are familiar with the idea since C++17, where “mandatory copy elision” started propagating
non-copy/movable return values. However, relocation is not the same as the initial construction occurring at a
different location (copy elision), so there were objections to the idea that when a user deliberately removes an
operation, we should not silently re-enable it by a back door. Note that this changes only the default, preventing
accidental relocation of non-copyable non-movable types for which relocatability was neither considered nor
intended — if trivial relocatability is desired, such classes can be made explicitly trivially relocatable by
means of the trivially_relocatable keyword.

This design also follows that of the core language for trivial copyability, which was changed to exclude types
that deleted all copying operations in C++17 ([CWG1734]).
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14 Proposed wording
All changes are relative to [N4928].

Editors’ note: Uncompleted wording tasks:

— complete specification for trivially_relocate (currently a half-specified mess)
— complete specification for uninitialized_move_and_destroy

14.1 Feature macros
In 15.11 [cpp.predefined] add the following macro:
__cpp_trivial_relocatability TBD

Amend 17.3.2 [version.syn] with the following macro to the header <version>.
#define __cpp_lib_trivially_relocatable TBD // also in <memory>, <type_traits>

14.2 Grammar for trivially_relocatable
Add trivially_relocatable to the list of Table 5: Identifiers with special meaning ([tab:lex.name.special] in
5.10 [lex.name])

Change the grammar in 11.1 [class.pre] to add class-context-seq, class-context-keyword, class-triv-reloc-
spec and class-triv-reloc-expr as follows:
class-head:
- class-key attribute-specifier-seqopt class-head-name class-virt-specifieropt base-clauseopt
- class-key attribute-specifier-seqopt base-clauseopt
+ class-key attribute-specifier-seqopt class-head-name class-context-seqopt base-clauseopt
+ class-key attribute-specifier-seqopt class-triv-reloc-expropt base-clauseopt

+ class-context-seq:
+ class-context-keyword class-context-seqopt

+ class-context-keyword:
+ class-virt-specifier
+ class-triv-reloc-spec

+ class-triv-reloc-spec:
+ trivially_relocatable
+ class-triv-reloc-expr

+ class-triv-reloc-expr:
+ trivially_relocatable ( constant-expression )

Add the following paragraph before 11.1 [class.pre]p5:

Each form of class-context-keyword shall appear at most once in a complete class-context-seq.

In a class-triv-reloc-expr, the constant-expression, shall be a contextually converted constant expression
of type bool (7.7 [expr.const]). The class-triv-reloc-specopt trivially_relocatable without a constant-
expression is equivalent to the class-triv-reloc-specopt trivially_relocatable(true).

EDITORS’ NOTE: We probably need to add something similar to p5, or revise p5 to use the new
grammar term class-context-seq instead, and extend the example.
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14.3 Specification of trivial relocatability
Append to 6.8.1 [basic.types.general]p9:

Scalar types, trivially relocatable class types, and arrays of such types, are collectively called trivially relocat-
able types.

Add the following paragraphs to 11.2 [class.prop]:

A trivially relocatable class is a class that:

— has a class-triv-reloc-spec without a constant-expression,
— has a class-triv-reloc-expr with a constant-expression that evaluates to true,
— or satisfies all of the following

— has no base classes that are not of trivially relocatable type,
— has no non-static non-reference data members whose type is not a trivially relocatable type,
— has no virtual base classes,
— has a selected destructor that is neither user-provided nor deleted,
— has no class-triv-reloc-expr with a constant-expression that evaluates to false,
— would, when an instance of the type is direct initialized from an rvalue of the same type, select a

constructor that is neither user provided nor deleted.

[Note: accessibility of the special member functions is not relevant — end note]

[Note: trivially copyable class types are implicitly trivially relocatable unless they have a trivially_relocatable
predicate that evaluates to false — end note]

[Note: a type with const-qualified or reference members can be trivially relocatable — end note]

[Note: lambdas are trivially relocatable if and only if their closure type is a trivially relocatable class type —
end note]

A class type having class-triv-reloc-spec trivially_relocatable or class-triv-reloc-expropt trivially_relocatable
with value true specifies that it shall be considered trivially relocatable per the proposed definition in 6.8.1
[basic.types.general].

The program is ill-formed if a class with a class-triv-reloc-spec whose constant-expression is absent or
evaluates to true has either

— a virtual base class,
— a base class that is not trivially relocatable, or
— a non-static data member of non-reference type that is not trivially relocatable.

Design note: It is possible, by means of the trivially_relocatable(true) specification, to declare a class as
trivially relocatable even if that class has user-provided special members (see proposal). Note that this cannot
break the encapsulation of members or bases and allow for their trivial relocation when they, themselves, are
not trivially relocatable.

14.4 New type trait
Add to the <type_traits> header synopsis in 21.3.3 [meta.type.synop]:
template< class T >
struct is_trivially_relocatable;

template< class T >
inline constexpr bool is_trivially_relocatable_v = is_trivially_relocatable<T>::value;

Add a new entry to table 47 in 21.3.5.4 [meta.unary.prop]
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Template Condition Preconditions
template<class T> struct T is a trivially relocatable type remove_all_extents_t<T> shall
is_trivially_relocatable; be a complete type or cv-void

14.5 Relocation functions
14.5.1 trivially_relocate

Add to the <memory> header synopsis in 20.2.2 [memory.syn]p3:
// 20.2.6, explicit lifetime management template<class T>
T* start_lifetime_as(void* p) noexcept; // freestanding

template<class T>
const T* start_lifetime_as(const void* p) noexcept; // freestanding

template<class T>
volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding

template<class T>
const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding

template<class T>
T* start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding

template<class T>
const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding

template<class T>
volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept; // freestanding

template<class T>
const volatile T* start_lifetime_as_array(const volatile void* p,

size_t n) noexcept; // freestanding

template <class T>
requires (is_trivially_relocatable_v<T> && !is_const_v<T>)

constexpr
T* trivially_relocate(T* begin, T* end, T* new_location) noexcept; // freestanding

template <class T>
requires (is_trivially_relocatable_v<T> || is_nothrow_move_constructible_v)

&& !is_const_v<T>
constexpr
T* relocate(T* begin, T* end, T* new_location); // freestanding

Append to 20.2.6 [obj.lifetime]:
template <class T>

requires (is_trivially_relocatable_v<T> && !is_const_v<T>)
constexpr
T* trivially_relocate(T* begin, T* end, T* new_location) noexcept;

Preconditions: end is reachable from begin.

[new_location, new_location + begin - end) denotes a region of allocated storage that is a subset of the
region of storage reachable through (6.8.4 [basic.compound]) new_location and suitably aligned for the type T.

Effects: Implicitly creates objects (6.7.2 [intro.object]) within the denoted region consisting of an object a of
type T whose address is p, and objects nested within a, as follows: The object representation of a is the contents
of the storage prior to the call to trivially_relocate. The value of each created object o of trivially-relocatable
type U is determined in the same manner as for a call to bit_cast<U>(E) (22.15.3 [bit.cast]), where E is an lvalue
of type U denoting o, except that the storage is not accessed. The value of any other created object is unspecified.
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Returns: A pointer to the a defined in the Effects paragraph.

Throws:: Nothing.

Remarks: The active member of any union objects or subobjects in the relocated range [new_location, new_location + begin - end)
is the active member of the corresponding union objects or subobjects from the original range [begin, end).

Ends the lifetime of the objects in the range [begin, end) without running their destructors, as if the storage
were reused by another object (6.7.3 [basic.life]).

[Note: A likely implementation will simply call a compiler intrinsic that calls memmove and updates its notion of
the object lifetime. —end note]

EDITOR’S NOTE: THIS IS A LIGHTLY MASSAGED COPY OF start_lifetime_as SPEC AND
NEEDS MORE WORK, IN PARTICULAR WRT USING bit_cast TO MAGICALLY IMBUE
LIFE INTO NEW OBJECTS

15 Potential Library Extensions
15.0.1 relocate

Add to the <memory> header synopsis in 20.2.2 [memory.syn]p3:
// 20.2.6, explicit lifetime management template<class T>
T* start_lifetime_as(void* p) noexcept; // freestanding

template<class T>
const T* start_lifetime_as(const void* p) noexcept; // freestanding

template<class T>
volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding

template<class T>
const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding

template<class T>
T* start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding

template<class T>
const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding

template<class T>
volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept; // freestanding

template<class T>
const volatile T* start_lifetime_as_array(const volatile void* p,

size_t n) noexcept; // freestanding

template <class T>
requires (is_trivially_relocatable_v<T> || is_nothrow_move_constructible_v)

&& !is_const_v<T>
constexpr
T* relocate(T* begin, T* end, T* new_location); // freestanding

Append to Append to 20.2.6 [obj.lifetime]:
template <class T>

requires (is_trivially_relocatable_v<T> || is_nothrow_move_constructible_v)
&& !is_const_v<T>

constexpr
T* relocate(T* begin, T* end, T* new_location);

Effects: Equivalent to:
if constexpr (is_trivially_relocatable_v<T>) {

return std::trivially_relocate(begin, end, new_location);
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}
else if (less{}(end, new_location) || less{}(new_location + begin - end, begin)) {

// No overlap
uninitialized_move(begin, end, new_location);
destroy(begin, end);
return new_location;

}
else if (less{}(begin, new_location) { // move-and-destroy each member, back to front

while (T* dest = new_location + begin - end; dest != new_location) {
::new (--dest) T(std::move(*--end));
destroy_at(end);

}
return dest;

}
else { // move-and-destroy each member, front to back

while (begin != end) {
::new (new_location++) T(std::move(*begin++));
destroy_at(begin);

}
return new_location;

}

Throws: Nothing.

15.1 uninitialized_move_and_destroy as a non-optimizing algorithm
uninitialized_move_and_destroy is directly inspired by uninitialized_relocate in [P1144R8] and the
uninitialized_move family of algorithms in the standard. This functionality is entirely separable into a pure
library proposal, as it does not rely on any of our language extension features. It is proposed purely for feature
parity with [P1144R8].

The function name, uninitialized_move_and_destroy, is chosen to provide a clear hint at what the operation
does. We might have preferred uninitialized_move_construct_and_destroy as more descriptive, but follow-
ing the naming of uninitialized_move, we take uninitialized as sufficient information that the output range
will be populated by move constructors, as there cannot be a live object as an alternative to assign to.

Compared to the proposed functions with relocate in their name, these overloads explicitly call the move
constructor, and then the destructor of the source, so element types must support those operations, just as in
[P1144R8]. They are specified as library algorithms using iterators rather than simple pointers. They also have
a precondition excluding overlapping ranges.

We note that blanket wording for clause 27.11.1 [specialized.algorithms.general] guarantees all constructed objects
will be destroyed if an exception is thrown, but we add a Remarks element to ensure that the source range honors
its guarantee to destroy all elements in such cases as well.

The uninitialized_move family inspires the full range of overloads, for parallel algorithms, std::ranges, and
[iterator, length) sequences.

Contrasting [P1144R8] and uninitialized_move, our design requires forward iterators for the input sequence,
as we are modifying the source elements by moving out, and then destroying them.

15.1.1 uninitialized_move_and_destroy [uninitialized.move.and.destroy]

Add to the <memory> header synopsis in 20.2.2 [memory.syn]p3:
// 27.11, specialized algorithms
// 27.11.2, special memory concepts
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// ...

template<class InputIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(InputIterator first, // freestanding

InputIterator last,
NoThrowForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
NoThrowForwardIterator result);

template<class InputIterator, class Size, class NoThrowForwardIterator>
pair<InputIterator, NoThrowForwardIterator>
uninitialized_move_n(InputIterator first, Size n, // freestanding

NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class Size,

class NoThrowForwardIterator>
pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, Size n, NoThrowForwardIterator result);
namespace ranges {
template<class I, class O>
using uninitialized_move_result = in_out_result<I, O>; // freestanding

template<forward_iterator I, sentinel_for<I> S1,
nothrow-forward-iterator O, nothrow-sentinel-for <O> S2>

requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_result<I, O>
uninitialized_move(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding

template<forward_range IR, nothrow-forward-range OR>
requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>
uninitialized_move_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_move(IR&& in_range, OR&& out_range); // freestanding

template<class I, class O>
using uninitialized_move_n_result = in_out_result<I, O>; // freestanding

template<forward_iterator I,
nothrow-forward-iterator O, nothrow-sentinel-for <O> S>

requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_n_result<I, O>
uninitialized_move_n(I ifirst, iter_difference_t<I> n,

O ofirst, S olast); // freestanding
}

template<class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move_and_destroy(ForwardIterator first, // freestanding

ForwardIterator last,
NoThrowForwardIterator result);

template<class ExecutionPolicy, class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move_and_destroy(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, ForwardIterator last,
NoThrowForwardIterator result);

template<class ForwardIterator, class Size, class NoThrowForwardIterator>
pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_and_destroy_n(ForwardIterator first, Size n, // freestanding
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NoThrowForwardIterator result);
template<class ExecutionPolicy, class ForwardIterator, class Size,

class NoThrowForwardIterator>
pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_and_destroy_n(ExecutionPolicy&& exec, // see 27.3.5

ForwardIterator first, Size n, NoThrowForwardIterator result);

namespace ranges {
template<class I, class O>
using uninitialized_move_and_destroy_result = in_out_result<I, O>; // freestanding

template<forward_iterator I, sentinel_for<I> S1,
nothrow-forward-iterator O, nothrow-sentinel-for <O> S2>

requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_and_destroy_result<I, O>
uninitialized_move_and_destroy(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding

template<forward_range IR, nothrow-forward-range OR>
requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>
uninitialized_move_and_destroy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_move_and_destroy(IR&& in_range, OR&& out_range); // freestanding

template<class I, class O>
using uninitialized_move_and_destroy_n_result = in_out_result<I, O>; // freestanding

template<input_iterator I,
nothrow-forward-iterator O, nothrow-sentinel-for <O> S>

requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_and_destroy_n_result<I, O>
uninitialized_move_and_destroy_n(I ifirst, iter_difference_t<I> n,

O ofirst, S olast); // freestanding
}

Add a new subclause between 27.11.6 [uninitialized.move] and 27.11.7 [uninitialized.fill]:

uninitialized_move_and_destroy [uninitialized.move.and.destroy]
template<class ForwardIterator, class NoThrowForwardIterator>
NoThrowForwardIterator uninitialized_move_and_destroy(ForwardIterator first, // freestanding

ForwardIterator last,
NoThrowForwardIterator result);

Preconditions: destination is not in the range [first, last).

Effects: Equivalent to:
for (; first != last; ++destination, (void)++first) {

::new (voidify(*destination)) iter_value_t<NoThrowForwardIterator>(*first);
destroy_at(addressof(*first));

}
return destination;

Throws: Nothing, unless an exception is thrown by a move constructor.

Remarks: If an exception is thrown, all objects in both the source and destination ranges are destroyed.
namespace ranges {
template<forward_iterator I, sentinel_for<I> S1,

nothrow-forward-iterator O, nothrow-sentinel-for <O> S2>
requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_and_destroy<I, O>
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uninitialized_move_and_destroy(I ifirst, S1 ilast, O ofirst, S2 olast); // freestanding
}

namespace ranges {
template<forward_iterator IR, nothrow-forward-range OR>

requires constructible_from<range_value_t<OR>, range_rvalue_reference_t<IR>>
uninitialized_move_and_destroy_result<borrowed_iterator_t<IR>, borrowed_iterator_t<OR>>
uninitialized_move_and_destroy(IR&& in_range, OR&& out_range); // freestanding

}

template<class ForwardIterator, class Size, class NoThrowForwardIterator>
pair<ForwardIterator, NoThrowForwardIterator>
uninitialized_move_and_destroy_n(ForwardIterator first, Size n, // freestanding

NoThrowForwardIterator result);

namespace ranges {
template<forward_iterator I,

nothrow-forward-iterator O, nothrow-sentinel-for <O> S>
requires constructible_from<iter_value_t<O>, iter_rvalue_reference_t<I>>
uninitialized_move_and_destroy_n_result<I, O>
uninitialized_move_and_destroy_n(I ifirst, iter_difference_t<I> n,

O ofirst, S olast); // freestanding
}

Editors’ note: Preconditions and throws clause implicit from Effects:, but stated for clarity while
in Evolutionary groups.
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