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Abstract

Standardizing a sufficiently full-featured C++ contract-checking facility, a.k.a. the Contracts
facility, has proven — over more than two decades and several repeated attempts by diverse
authors — to be far more challenging than a robust replacement for <cassert> would first
appear to be. Steering a committee toward a solution that meets the wide range of use cases
to which the Contracts facility can be applied is exceedingly challenging without a clear idea
of the potential shape a complete feature might have. To solve this problem, we present here a
complete feature description for the Contracts facility in C++, which is designed to be built
iteratively on the initial feature set currently being finalized by SG21.
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Revision History
Revision 0

• Initial draft of motivating use cases and overview of features

1 Introduction
When making use of defensive programming techniques, developers and their organizations pass
through phases that naturally introduce fundamental aspects of a complete Contracts facility:

• How to express checks for many aspects of the agreement that exists between a client and the
provider of a piece of software

• How to manage the deployment and software lifecycle of checks as they are introduced, tested,
analyzed, and evaluated in various running environments

The Contracts MVP being developed by SG211 addresses these needs for the simplest of contract
checks, and questions of deployment are largely left to implementation-defined possibilities and
places no finer-grained control over the effect of contract-checking annotations (CCAs) available
within those annotations themselves.

This paper is organized into a few sections that will, when it is complete, leave the reader with a
full understanding of the path a developer might take through using the full set of features we will
propose.

• Section 2 walks through the individual use cases that C++ programmers might encounter as
they find parts of our proposed features with which to satisfy those use cases. Some of these
use cases are fully satisfied by the SG21 MVP, and others require the use of the additional
features that we propose here.

• Section 3 describes, in depth, the motivation, design considerations, and proposal for each of
the features that make up the Contracts facility we are describing. Where a relationship exists
between these proposals, the features are presented in order of dependency, not in the order
in which an instructor might present them or an engineer might need them.

• Section 4 presents some large, high-level examples of what can be done with the features we
propose.

• Section 5 contains discussions of a number of other aspects of the language and of the Contracts
feature that will eventually need to be addressed and offers some possibilities for how those
issues might be addressed in the next iterative step after this plan is complete.

Note: This version of this paper includes a near-complete (but not fully complete) version of Section 2
with the goal of providing guidance to SG21 as syntax decisions are being made so that such decisions
do not preclude the features that we will need or might want in the future. Only a summary of the
remaining sections are currently ready for public consumption. The syntax presented in this paper

1See [P2182R1] for the initial outline of proposed features to include in the Contracts MVP, [P2521R3] for the
current state of the proposed MVP, and the forthcoming [P2900R0] for the consolidated state of the SG21 Contracts
facility proposal for C++.
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builds on the syntax presented in [P2935R0], which derives from the C++20 attribute-like syntax.
This paper will adapt in the future to build on any syntax and design decisions adopted by SG21.

1.1 Syntax

The syntax choices made in this paper will build on those made for the SG21 Contract’s MVP,
which will proscribe syntax for preconditions, postconditions, and assertions.

There are multiple proposals for syntax on which the new features proposed here would be built.

The attribute-like syntax proposed by [P2935R0] is evolved from the C++20 Contracts syntax:
auto f(const int x, int y) -> int

[[ pre : y > 0 ]]
[[ post : fstate() == x ]] // Parameters referenced in post must be const.
[[ post r : r > x ]] // Postcondition may optionally name return value.
[[ post (r) : r > y ]] // Return value may have parentheses.

{
[[ assert : x > 0 ]]; // Assertions form a complete statement.
return x;

}

The alternative proposal for the attribute syntax proposes to place the CCAs at the end of a
declaration instead of where an attribute would appertain to the function type:

auto f(const int x, int y) -> int // trailing return type before CCAs
[[ pre : y > 0 ]]
// ...

The natural syntax for contracts proposed in [P2961R0] is an alternative being considered:
int f(const int x, int y)

pre( y > 0 )
post( fstate() == x ) // Parameters referenced in post must be const.
post( r : r > x ) // Postcondition may optionally name return value.

{
assrt(x > 0); // Assertions form a complete statement.
return x;

}

Until a final choice is made on the syntax for Contracts, this paper will use the alternate attribute-like
syntax and will include footnotes where a significant deviation with the other syntax choices is
worth noting.

2 A How-To Tour of C++ with the Contracts Facility
The Contracts facility’s users arrive from diverse paths, at various stages of their careers, and with
vastly different needs and goals. Each user’s story is worth considering, because it presents a real
case encountered by someone who seeks to make extensive use of the C++ Contracts facility. For
each such story presented here, we will also be providing solutions that meet their needs.
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2.1 A Career Spent Writing Contract-Checking Annotations (CCAs)

From students writing their very first programs in C++ to senior managers controlling the deployment
of software at billion-dollar companies, the ability to leverage a robust Contracts facility in C++
provides ways to easily, safely, and consistently produce software having fewer defects and achieve
higher levels of success.

2.1.1 Write precondition checks

When beginning the academic study of software engineering or while simply learning C++, you
quickly see that you need to do something to check that you are using your functions correctly. Too
often, you spend time chasing down bugs that appear far from the place where the actual defect
occurred.

To express a simple precondition on a function, use a pre CCA at the end of the function declara-
tion:

double sqrt(double x)
[[ pre : x >= 0 ]];

The expression — e.g., x >= 0 — can be any C++ conditional expression and will be checked after
function parameters are initialized but before anything inside the body of the function is invoked.

On more involved function declarations, such as those making use of trailing return types, requires
clauses, or other specifiers, the CCA always comes at the end of the declaration, immediately prior
to anything that defines the function itself such as =default or a function body:

struct S {
virtual auto foo() final noexcept -> int [[ pre : true ]] = default;

};

With this simple construct, a large number of opportunities open up.

• When reading your function, you — as well as any other developers who begin to make use of
your function — will immediately better understand how to use it properly.

• Using your compiler documentation, you can determine how to configure your program so
that precondition CCAs are enforced and then run your program and find bugs. Any time
a CCA is violated, your program will terminate and a diagnostic message informing you of
where the violation happened will be printed.

• Static analyzers will begin to find opportunities to inform you when a particular invocation of
your function violates a precondition or fails to guarantee that the precondition is satisfied
and thus might have violated the precondition with certain inputs.

• You can begin to learn in which conditions writing functions having narrow contracts is best
and, more importantly, in which conditions you should be writing functions having wide
contracts.2

2See [P2053R0].
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2.1.2 Write postcondition checks

As you write more functions and begin to test them, you must keep in mind the guarantees that a
function makes to its clients after a successful invocation. Before you invest time to write thorough
tests, you want a quick way to ensure you are meeting the basic guarantees you expect at a call site
on all invocations.

To check a postcondition, add a post CCA to the function declaration. Postcondition CCAs and
precondition CCAs can mix and match and may come in any order:

void push_back(std::vector<int> &v, int value)
[[ post : v.back() == value ]];

Postconditions may also name the return value to express properties of that return value:
int square(const int x)

[[ post r : r == x * x ]];

When you name a function parameter in a postcondition, it must be const. Postconditions are
checked when a function returns normally.

Postcondition checks facilitate finding bugs in a function’s implementation. Thoroughly annotating
postconditions also greatly facilitates the ability to apply static analysis tools to detect bugs or
prove correctness without even running a program.

Thorough postconditions also aid in the thoroughness of unit testing. The postconditions declared
for a function aid meaningfully in the development of unit tests and identifying boundary conditions
that must be exercised by good unit testing. In addition, by executing all tests with contract checking
enabled, failures in postconditions then increase the likelihood of finding edge conditions missed by
the chosen testing strategy.

2.1.3 Write an assertion

As you learn the language and write more code, you find CCAs frequently helping you to achieve a
correct and usable piece of software far more effectively than you could before you began using this
new Contracts facility. While checks on function boundaries seem to be useful, often you find that
you need to validate some conditions at other points during program execution.

An assertion is a CCA that is evaluated where it is written; to express an assertion, use an assert
CCA wherever you might put a statement. For example, a more involved precondition on the
elements of a container might be easier to assert as you iterate over the container:

int sumPositiveValues(const std::vector<int>& v)
{

int output = 0;
for (auto x : v) {

[[ assert : x > 0 ]];
output += x;

}
return output;

}
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Assertions can be used in a variety of places that are not readily covered by pre and post:

• When a precondition cannot be correctly or easily checked with a single expression but is
correctly or more easily checked after a small amount of work has been done by the function,
such as during iteration or after acquiring a lock to safely access a resource

• During a complex operation as a sanity check that an intermediate step has been successfully
reached

• To verify that a separate function has itself satisfied expected postconditions that might not
be checked

• To perform partial checks on the input as an algorithm executes, e.g., see Section 2.1.6

Assertions also provide a replacement for the assert() macro from <cassert> that is, in almost all
ways, an improvement:

• The assert() macro expands to nothing at all when NDEBUG is defined. This behavior causes a
fundamental problem, sometimes called bit rot, in which organizations that generally build
with NDEBUG defined discover that the expression in their assert() macros no longer compiles
when NDEBUG is not defined. For a project in which builds with <cassert> enabled are not
regularly made, this technical debt quickly grows such that builds with <cassert> cannot be
made due to the widespread failures, and the cost of fixing the failures becomes insurmountable.
An assertion CCA, however, does not suffer from this problem since the expression must
always compile, even when choosing a build option that ignores the CCA.

• Builds can also vary behavior beyond the assert() macro based on preprocessor checks of
the NDEBUG macro. This approach can quickly lead to checked and unchecked builds being
incompatible with one another and thus being unable to link together whenever, for example,
the contents of a user-defined type depends on the state of the NDEBUG macro:

#include <cassert> // for assert()

struct S {
#ifndef NDEBUG

bool d_debugFlag = true;
#endif

void test()
{

assert(d_debugFlag);
};

};

Even when changes in the layout of an object do not happen, any use of the assert macro in
a header file will still be an ODR-violation should the same inline function be compiled in
different translation units with different states for the NDEBUG macro.

Contracts do not provide a similar facility, making such pitfalls much less likely to occur and
generally enabling mixing of checked and unchecked libraries in the same program as needed.
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2.1.4 Improve violation diagnostics

Upon joining a new project, you find yourself deploying software as part of applications with pre-
existing logging frameworks that manage to deliver those logs in a highly configurable manner. You
quickly see the need to report contract violations to the same logging framework.

When building an application, you can link to a single contract-violation handler3 and thus replace
the default provided by the platform:

void ::handle_contract_violation(
const std::contracts::contract_violation& violation)

{
MY_LOG_ERROR << "Contract violation detected at "

<< " file " << violation.location().file_name()
<< " line " << violation.location().line();

}

A wide variety of other choices can be made in an application-specific manner when implementing a
custom contract-violation handler.

• Through the use of std::stack_trace, additional contextual information about the circum-
stances where the violation occurred can be logged.

• Application-specific state, such as information about the current request being serviced, can
be captured to aid in problem diagnosis.

• For security-conscious applications that seek to avoid leaking information about the software
implementation, the contract-violation handler can choose to log nothing at all or to encrypt
the information that gets logged.4

Custom contract-violation handlers can also be used for a variety of more advanced purposes; see
[P2811R7] for a broader discussion of this subject.

2.1.5 Write and use expensive checks

As you go through your codebase, you find that many checks are trivial to both implement and
execute. Occasionally, some requirement on the caller of a function would take longer to execute
than the function itself. You still want to encode and occasionally check such conditions, but the
overwhelming cost of evaluating them means they couldn’t be deployed as part of a regular production
build.

Each CCA supports having contract labels placed on it, and in this case, you need to reach for the
audit label provided by the Standard Library:

#include <contracts> // for audit contract label

int *binarySearch(int *begin, int *end, int value)
[[ pre audit : std::is_sorted(begin,end) ]];

3See [P2811R7] for the full proposal adopted by SG21.
4See [P2947R0] for further discussion of this need.
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Without the audit label on this precondition, this binary search would certainly no longer have
logarithmic (O(log(N))) complexity but would instead be linear (O(N)). Such increases in runtime
complexity might transform other enclosing algorithms such that they are no longer able to easily
handle high workloads and are now unable to continue processing quotidian business in a timely
fashion.

The audit label’s behavior is primarily controlled by a build knob, std.contracts.cost, which can
be set to a number or named value. When the build knob is set to audit, which is generally done
by using the -Kcontracts.cost=audit command line option for your compiler, CCAs with the label
audit will pick up the general semantic assigned to all CCAs for your build configuration. When this
knob is not configured or is configured to a lower level than audit, all such CCAs will be ignored.

Independently of the value of the build knob chosen, static analysis will still see checks marked with
the label audit and attempt to provide guidance on whether they are violated, but the unacceptable
runtime cost is avoided except for builds that explicitly opt-in to these checks.

Builds with such audit-level checks enabled are often reserved for unit testing or for diagnosing
particularly challenging problems, but in some cases, a production system with extra levels of checks
enabled can also be deployed as an early-warning system to detect problems with actual production
inputs.

2.1.6 Heuristically check aspects of an expensive check

In the land of those without formal education, the person who passed computer science 101 reigns, and
in your case, that means the binarySearch algorithm you wrote when joining your current employer
has drastically improved the performance of hundreds of applications. With great power, however,
comes great responsibility, and users keep coming to you with problems that you painstakingly track
down to cases of users passing in unsorted arrays to your algorithm. You provided an expensive
audit precondition to detect this situation, but none of your clients are able to deploy that check
with real workloads where their defects become visible.

A binary search requires a sorted input to guarantee that a value will be returned whenever it is
present in the provided list of values. When the needed preconditions are met, the search guarantees
both the result and that the results have been found with O(log(N)) operations:

int *binarySearch(int* const begin, int* const end, const int value)
[[ pre audit : std::is_sorted(begin,end) ]]
[[ post r : (r == end) || (*r == value) ]]
[[ post audit r : (r == end) || r == std::find(begin,end,value) ]];

Either of the audit labeled CCAs above would find your users’ fundamental problem — the cases in
which they looked for an item in the range and failed to find it. The audit postcondition would also
identify when a search failed but would not indicate why it might be failing. Both checks, however,
would change the algorithmic complexity of the invocation of binarySearch from O(log(N)) to O(N).
For many use cases of this algorithm, however, that change in complexity will explode enclosing
operations that were previously O(N ∗ log(N)) to be O(N2) or worse, removing any chance of
running them on realistic input sizes.

When attempting a binary search on an unsorted list, you face a significant chance that a pair of
elements is encountered that are out of order. Checking only the pairs that are visited — instead of
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checking the entire list for pairs being sorted — will not alter the algorithmic complexity of your
binarySearch function but will detect many (but not all) misuses that are otherwise difficult to
diagnose. Such checks are challenging to encode as a precondition but are trivial to check during
the evaluation of the search operation:

int *binarySearch(int* const begin, int* const end, const int value)
{

int *rbegin = begin, rend = end; // Range begin/end.

while (rbegin != rend) {
int * mid = rbegin + (rend-rbegin)/2;
[[ assert : *rbegin<=*mid && *mid<=*(rend-1) ]]; // #1

if (*mid <= value) rbegin = mid ; else rend = mid;
}
return (rbegin == end || *rbegin != value) ? end : rbegin;

}

As the above binary search narrows its range, the assertion at #1 verifies that the midpoint and ends
of the range form a sorted triple (or a pair when the range becomes very small). This approach will not
discover all misuses of binarySearch but will quickly find problematic calling code when presented
with real inputs, thus diagnosing problems quickly without the need for complex reproductions or
time consuming debugging sessions.

2.1.7 Deploy contract checks for the first time in a legacy application

With your organization’s large legacy codebase, you find it questionable to enforce newly added CCAs
in production environments when the pre-existing application is clearly running in a stable state.
Having even one ill-fated release in which everything repeatedly crashes is likely to result in loss of
money for your organization, loss of reputation for both your organization and you personally, and
perhaps loss of employment for you. Such problems could lead to management mandates that no
enforced CCAs can be deployed to production or even that Contracts should not be used, and such
rules hinder efforts to improve the safety of running systems.

In the same way that your compiler allows you to specify that CCAs should be enforced (and
thus terminate the program if violated), you can specify that those same CCAs are observed in a
particular build. Thus, a contract-violation handler can be invoked without the risk of program
termination.5, 6

Deploying such a build, monitoring the results, and addressing all the detected defects will typically
lead to addressing and fixing outstanding issues without the need to first crash production systems.
Once all issues are addressed, an enforced build can be re-released to prevent highly infrequent
defects from running out of control when they do eventually occur.

Once deployed, the build with all checks enforced will catch rare and unexpected errors quickly,
preventing them from being lost in a sea of unrelated log messages or, worse, being used to subvert

5See [P2698R0] for motivation related to preferring solutions other than program termination.
6See [P2877R0] for more details on how contract semantics are chosen when evaluating a CCA and the observe

semantic in particular.
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a systemic flaw for nefarious purposes. Alternatively, a different cost-benefit analysis might lead
to ignoring or assuming checks with the knowledge that quotidian input data does not lead to
violation, removing the runtime cost of doing any checks.

2.1.8 Add a single contract check to already-checked applications

After running contract checks in production for a specified period with no violations detected, your
management reasons that failing fast now, if something unexpected happens, is better than allowing
execution after a potential vulnerability has been identified and finally decides to enforce all contract
checks in production builds. Your team agrees that failing fast is better than allowing problems to
linger undetected. As ongoing maintenance of legacy code continues, however, you discover new code
that would greatly benefit from additional contract checks.

Each individual CCA may contain a sequence of labels that guide the selection of its semantics when
evaluated. The label new will modify a CCA’s behavior, including that specified by any previous
labels, so that if the CCA would otherwise be enforced, it will instead be observed:

#include <contracts> // for new contract label

void f(int x)
[[ pre new : x > 0 ]] ; // just added

Observing this CCA and others labeled new, while continuing to enforce stable (not new) CCAs,
enables introducing these new checks without risking unexpected termination and without removing
the guard rails provided by the existing enforced checks.

2.1.9 Write an expensive, new check

As you add checks to code, you suddenly realize that a new audit-level check is needed. The decision
on cost and the newness of a CCA are clearly orthogonal. What can be done?

Multiple labels can be placed on a single CCA,7 separated by spaces:
#include <contracts> // for audit and new contract labels

int *binarySearch(int *begin, int *end, int value)
[[ pre audit new : std::is_sorted(begin,end) ]];

Now, even when other audit-level checks are enforced, new audit-level checks can instead be observed,
which is particularly helpful when running audit-level checks in a canary deployment — i.e., a small
subset of running production systems that trades performance for extensive enabled correctness
checks.

7The syntax presented here is one potential approach to specifying multiple labels on a CCA. An alternate syntax
relies more heavily on using C++ expressions to combine distinct labels:

#include <contracts> // for audit and new contract labels

int *binarySearch(int *begin, int *end, int value)
[[ pre<audit | new> : std::is_sorted(begin,end) ]];

See Appendix A.1 for further discussion of this potential alternative.
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Importantly, all labels are applied in the order in which they appear lexically. When computing
the semantics for evaluation, the label audit will be passed the compiler-chosen semantic for this
CCA, and by combining that with other configuration options, the passed-in semantic or the ignore
semantic will be chosen. After that, the label new will take the semantic computed up to that point
and choose a semantic appropriate to a newly added contract — observe instead of enforce and
ignore instead of assume.

2.1.10 Write checks that are not yet ready to release

As you add more checks, you’ll find that some are complicated and some are not yet tested, and the
pressure of getting to market means that some additional checks are intended but are not yet fully
implemented because time simply ran out. Skipping (e.g., by commenting out) or even removing
entirely such not-yet-implemented checks, however, would hide technical debt, allowing it to fall
through the cracks and remain unaddressed.

The Standard Library provides the label always_ignore, which will force the CCA to which it is
applied to always evaluate with the ignore semantic:

#include <contracts>
void f(int x)

[[ pre always_ignore : x != 0 ]; // always ignored

When the label always_ignored is applied to a CCA, the enforce, observe, and assume semantics
(i.e., all semantics other than ignore) are no longer allowed when evaluating that CCA. Because
evaluating this CCA’s predicate at run time is no longer possible, regardless of how the software is
built, the CCA’s predicate will not require, as a condition for linking, that any functions it names
have definitions; those functions will never need to be evaluated at run time:

bool is_foozible(int x);
// Unimplemented function; return true if x is foozible.
// Implementation will be provided in a future release.

void f(int x)
[[ pre always_ignore : is_foozible(x) ]];

With a declaration and check already written, readers will know that the code was written with the
expectation that this predicate should remain true when invoking f. When the time is found to
implement is_foozible, the ignore label on the associated CCAs can be removed.

2.1.11 Unit test a custom contract-violation handler

You’ve wisely designed a new logging framework to be readily unit-testable from the bottom up. As
part of your framework, you also provide a replaceable contract-violation handler for users to link
in. The argument to that handler, an object of type std::contracts::contract_violation, is not
something you can create yourself, so how do you unit test your violation handler?

The Standard Library provides the label always_observe that, when applied to a CCA, will force
that CCA to be evaluated having the observe semantic. By using this semantic, a unit test that
invokes the currently installed contract violation is simple to write:
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void testViolationHandler()
{

// Prepare logging framework for recording.

#line 17 testfile.cpp
[[ assert always_observe : false ]];

// Verify that violation handler logged line number 17 and
// a file name of "testfile.cpp".

}

Unlike a normal assertion, the labeled CCA above will always be checked, and due to a predicate of
false, it will always invoke the contract-violation handler in all build configurations.

2.1.12 Experiment with specific CCA semantics

While doing some performance analysis of a highly important inner loop, you need to discover the
exact impact each potential contract semantic has on the code generated for your function.

Firing up your preferred source of real-time code generation analysis (such as https://godbolt.org
or https://wandbox.org), you can make use of any of the Standard Library concrete semantic
labels to compare the same function with different CCA semantics:

void f_ignore(int x) [[ pre always_ignore : x != 0 ]] { /* ... */ }
void f_observe(int x) [[ pre always_observe : x != 0 ]] { /* ... */ }
void f_enforce(int x) [[ pre always_enforce : x != 0 ]] { /* ... */ }
void f_assume(int x) [[ pre always_assume : x != 0 ]] { /* ... */ }

Exploring the impact of the various semantics, you will find a few interesting results.

• Conditional checks — such as if (x = 0)! — will be removed in f_enforce and f_assume.

• Entire branches guarded by if (x == 0) will be removed completely in f_enforce and f_assume.

• At some optimization levels, code in the f_observe body might be rearranged due to the
compiler considering the x == 0 case to be unlikely.

• Code that invokes f_enforce or f_assume will also optimize statements following the function
invocation due to the knowledge that, in those blocks, x != 0 will be true.

2.1.13 Write and use unimplementable checks

Looking over the functions you support, you question how you can express conditions for which you
cannot write checks, and you hope some tool might be able to warn you about those situations if the
tool knew that you wanted to be warned.

Many aspects of a function contract refer to conditions that cannot be verified within the C++
language, such as whether an object is within its lifetime or if a pair of pointers form a valid range.
The inability to verify these conditions does not remove the benefit of expressing the requirement
that they be true; expressing such requirements might allow tools other than runtime checking to
notify you of a problem.

14

https://godbolt.org
https://wandbox.org


On the other hand, some checks are destructive8 if they are evaluated.

• One source is checks with side effects that impact essential behavior even when they return
true, such as any check that might advance a forward iterator.

template <typenmae ITER>
bool has_remaining(ITER* begin, ITER* end, int count)
{

return std::distance(begin,end) >= count;
}

For input iterators, the above function will consume all available elements, while for other
iterator categories, the expected condition will always be properly identified (although at
linear cost for forward iterators).

• Another common form is checks that accept valid situations by returning true but have
undefined behavior (UB) when a violation occurs, such as checking is_reachable for two
pointers by iterating between those pointers:

template <typename T>
[[symbolic]] bool is_reachable(T* a, T*b)
{

while (a != b) ++a; // has UB if b is not reachable from a
return true;

}

The symbolic attribute indicates that this is a function that may not be invoked and is
intended for use in unevaluated contexts only. These contexts include unevaluated operands
such as a sizeof expression as well as CCA predicates that have no allowed checked semantics.

• Other checks are destructive for both reasons. When no violation occurs, the check would
return true in a well-defined manner but would hinder further successful program execution
by severely altering program state. When a violation occurs, the check would have UB but
can make no guarantee that false will be returned. One such check would be verifying if a
pointer has been allocated using std::malloc by leveraging the corresponding precondition on
std::free:

[[symbolic]] bool is_malloced(void *p)
{

std::free(p);
return true;

}

For various reasons, obviously, these checks cannot be evaluated safely at run time, and any CCA
that makes use of them would be dangerous if it did not actively prevent such runtime evaluation.
The Standard Library label uncheckable makes such prevention simple:

int accumulate(int *first, int *last)
[[ pre uncheckable : is_reachable(first,last) ]];

8See [P2751R1].
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Labeled in this way, the precondition of accumulate shown here will never — in any build configura-
tions or with any other labels applied — be evaluated with the enforce or observe semantic. Thus,
no dangerous evaluation of the predicate at run time will ever occur. Without the uncheckable label,
this program would be ill-formed due to the [[symbolic]] attribute on is_reachable. On the other
hand, static analysis and your compiler’s optimizer might benefit from the explicit knowledge that
the iteration within is_reachable would be expected to run to completion.

2.1.14 Disable a check that is sometimes destructive

You are now beginning to work on a generic library and hope to leverage the Contracts facility as
much as is feasible. Some checks, however, are valid for certain template parameters and destructive
for others.

The uncheckable label for the Standard Library supports a boolean parameter, which, when false,
makes the label have no effect:

template <typename ITER>
void consume3(ITER first, ITER last)

[[ pre uncheckable<!std::random_access_iterator<ITER>> :
std::distance(first,last) >= 3 ]];

When the type ITER above is an input iterator, the call to std::distance would consume the input
range in the process of measuring its size, leaving iterators representing an empty range at the
start of the function body. This empty range will certainly no longer have three elements ready to
consume within that function body.

2.1.15 Mimic Standard Library preconditions

The C++ Standard makes no distinction between UB specified in the core language and violation of
preconditions on functions provided by the Standard Library. With user libraries, calling a function
out of contract might provide no guarantees to the caller — i.e., it is library UB — but is not
language UB that the optimizer is authorized to leverage to improve code generation. You would like
to enable your library functions to benefit from the same performance optimizations that a Standard
Library function would enjoy.

Any label may, when controlling the semantic that will be used when evaluated by a CCA, specify
the assume semantic for that CCA. The Standard Library always_assume label will always use that
semantic.

This label allows for assertions that are functionally equivalent to a portable assumption attribute9:
int divide_by_32(int x)
{

[[ assume( x >= 0 ) ]]; // UB if x < 0
[[ assert always_assume : x >= 0 ]]; // same thing.
return x/32;

}

9See [P1774R8].
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This same label, always_assume, can be used on preconditions to achieve the same optimizations
for a user-defined function that would be applied to a Standard Library function. Consider, for
example, the Standard Library function std::unreachable whose precondition is the unsatisfiable
“false is true”:

namespace std {
void unreachable();

}

Any invocation of this function is UB, and your compiler is well aware of that function. Similar
function can be achieved with a user-defined function that assumes its precondition:

void my_unreachable() [[ post always_assume : false ]];

A CCA used to unilaterally assume a condition, just like the [[assume]] attribute, is, of course, a
sharp-edged tool and is potentially unsafe. Used properly, Contracts allows us to do considerably
better.

2.1.16 Verify assumptions

A previous developer made heavy use of portable assumptions to improve performance. The last time
one of those assumptions proved incorrect, the organization had to make a huge effort to identify the
source of the problem. You want to use the Contracts facility to aid in identifying such issues in the
future.

The label checkable_assume in the Standard Library denotes a CCA meant to function as an
assumption for optimizations but with the option to check that assumption in certain builds. In
normal circumstances, CCAs so labeled will not evaluate their predicates but will introduce UB if
their predicate would have evaluated to false.

void f(const std::vector<int>& v)
{

[[ assert checkable_assume : v.size() % 16 == 0 ]];
for (auto it = v.begin(); it != c.end(); it += 16) {

processBlock(it,it+16);
}

}

For predicates that do not have adverse side effects if evaluated, the default behavior of the check
above is precisely the same as if the [[assume]] semantic had been used:

void f2(const std::vector<int>& v)
{

[[ assume(v.size() % 16 == 0) ]];
for (auto it = v.begin(); it != c.end(); it += 16) {

processBlock(it,it+16);
}

}

The difference, however, is that you can recompile the code so that all CCAs having the label
checkable_assume have the enforce (or observe or ignore) semantic instead of the assume semantic.
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Running that build will immediately reveal where a client of f is passing a vector that does not
have a multiple of 16 elements.

This same label can then be applied wherever you might have used always_assume to get an improved
CCA that lets you quickly identify faults when the introduced UB turns out to have been the wrong
thing to do:

void my_better_unreachable() [[ post checkable_assume : false ]];

When using the label checkable_assume, one subtle difference needs to be remembered: checkable_assume
does allow for the possibility of evaluation at run time and thus would never be appropriate for a
destructive CCA, while the [[assume]] attribute never allows such evaluation. Destructive checks
can be used with CCAs, but they should generally have the label uncheckable (see Section 2.1.13)
applied to them instead.

2.2 Expressing Wider Varieties of Contract Checks

Moving beyond the simple feature sets provided by the initial Contracts release in C++ (the SG21
Contracts MVP), you find a variety of new features that improve every developer’s ability to verify
larger portions of their software contracts clearly and robustly.

2.2.1 Render CCAs in the most appropriate locations

With so many rich features available to express a wide variety of contract checks and maximize
your software’s ability to identify defects as well as to control the details of how those checks will
take effect in the plethora of ways your software is deployed, reading a function declaration can be
overwhelming. How do you manage this ever-growing complexity?

Unlike the original MVP Contracts proposal from SG21, CCA placement is not restricted to the
first declaration of a function, offering us much more flexibility. The CCAs for a function — i.e., all
pre, post, or interface CCAs attached to that function — may be on any declaration of a function
as long as every declaration with CCAs has the same CCAs or no CCAs:

void f(int x); // no CCAs
void f(int x) [[ pre : x >= 0 ]]; // OK
void f(int x) [[ pre : x >= 0 ]] // OK, same CCAs
{

return x * x;
}

These lists of CCAs must be in the same and identical (including labels, capture lists, requires
clauses, and predicates) location except for naming changes allowed by the one-definition rule or
the renaming of function parameters, template parameters, or return value identifiers:

namespace mylib {
int global = 5;

template <typename S>
int g(const S& s, int x); // OK, no CCAs

template <typename T>
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int g(const T& t, int x)
[[ pre : x >= 0 ]]
[[ pre audit : global == sizeof(T) ]]
[[ post r : r >= 0 ]];

%
template <typename U> // renaming template parameter
int g(const U& u, int y) // renaming function parameters

[[ pre : y >= 0 ]] // OK
[[ pre audit : mylib::global == sizeof(U) ]] // OK
[[ post retval : retval >= 0 ]]; // OK

With this increased flexibility, CCAs — just like inline functions or templates — need not bloat the
initial declaration that clients are expected to read.

When the ODR-use of a function does not know that said function has CCAs, then caller-side
checking is disallowed, even on platforms that prefer it, and some implementation strategies can
have difficulty supporting this case properly.

2.2.2 Inform readers of a subset of CCAs

The first functions you wrote all had simple preconditions and postconditions — x>0, a<b, and so
on — and were very useful to present to readers of your function declarations. As work continued,
however, more labels, requires clauses, large expressions, and expansive procedural interfaces made
declarations far too large to digest, so you moved your CCAs to later declarations away from view.
How do you recover the lost ability to convey the simple things without missing out on the more
advanced possibilities?

Declaring CCAs on a function but not provide their full definitions with CCA kinds that have a *
suffix is possible:

int f(int x)
[[ pre* : x > 0]];

Later declarations may add additional metadata or CCAs:
int f(int x)

[[ pre* audit : x > 0 ]] // OK, adding label
[[ post* r : r > 0 ]]; // OK, adding additional CCA

When such declarations are seen, a full definition of the CCAs of the function that is compatible
with those declarations must be reachable from the function definition:

int f(int x)
[[ pre audit new : x > 0 ]] // OK, fits original pre
[[ pre : x < 10000 ]] // OK, adding additional CCA
[[ post audit r : r > 0 ]]

{}

Any pitfalls associated with ODR-use of a function when not knowing if that function has CCAs at
all can be avoided by informing clients of the existence of CCAs with a CCA declaration on the
function declarations those clients can reach:
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// component.h
int f(int x) [[ pre* ]]; // first declaration with empty CCA

// component.cpp
int f(int x)

[[ pre : x > 0 ]];
{

// ...
}

// client.cpp
#include <component.h>

void test()
{

f(10);
}

Here, within test, the call to f might still, on some platforms, do call-side checking even without
visibility of the specific checks that would be performed.

2.2.3 Write type-dependent CCAs

Today you begin working on a generic library and are tasked with implementing a robust set of
contract checks to take advantage of the safety and correctness improvements that modern C++
provides. Many types in your system support a concept in which they provide a checkInvariants()
member function. On many API boundaries, you would benefit from being able to recheck those
invariants by using this function in a precondition, ideally catching cases of object corruption outside
your library at the earliest possible point.

With the addition of Concepts to C++20, declarations of templated functions (e.g., a function
template or a member function of a class template) may have requires clauses that restrict their
instantiation based on a boolean expression involving their template parameters. Very similarly, a
requires clause may be added to the metadata sequence in a CCA on a templated function which,
when not satisfied, will remove the CCA from that function:

template <typename T>
concept has_check_invariants

= requires (const T& t) {
t.checkInvariants() -> bool;

};

template <typename T>
void f(const T& t)
[[ pre requires(has_check_invariants) : t.checkInvariants() ]];

Such a requires clause might also use a requires expression directly, with the extra ()s that would
not be needed using requires requires on a template elsewhere:

template <typename T, typename U>
void f(const T& t)
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[[ pre requires(requires(const T& t) { t.checkInvariants() -> bool; })
: t.checkInvariants() ]];

Unlike function overload sets, each CCA stands alone, so subsumption rules do not matter for these
requires clauses.

2.2.4 Work with structured return values

Considering an API that returns multiple values as unnamed tuples, you find that writing postcondi-
tions becomes increasingly painful in terms of the tuples without using the return value the same
way clients are expected to — i.e., initializing a structured binding to give meaningful names to the
elements of the returned tuple.

Instead of naming a return value, a list of names enclosed within ([ and ])10 may be provided that
will be used as the names for a structured binding:

#include <tuple> // for std::tuple
#include <vector> // for std::vector

template <typename T>
std::tuple<T,T> minmax(const T& lhs, const T& rhs)

[[ post ([min,max]) : (min <= lhs) && (min <= rhs)
&& (max >= lhs) && (max >= rhs) ]];

// Return an ordered pair of values such that the
// first is not larger than lhs or rhs and the second
// is not smaller than lhs or rhs.

Such a postcondition not only gives users a clear hint as to the meaning of the elements of the
returned tuple, but also uses that returned tuple similarly to a client’s use of that return value.

2.2.5 Use an original value in a postcondition

Since many postconditions are written in terms of how a state is changed before and after a function
invocation, you wonder how to write such a postcondition.

When referencing a by-value function parameter in a postcondition, the object being referenced is
the parameter at the time the postcondition is evaluated. The parameter must be const; even if the
parameter were not required to be const, the original value from prior to evaluation of the function
body is long gone.

To express postconditions that need that original value, a capture list of variables may be added to
the postcondition that will be initialized at the same time preconditions are evaluated — i.e., after
function parameter initialization and before the body:

void increment(int& input)
[[ post [orig_input = input] : input == orig_input+1 ]];

Other expressions can, of course, be used to initialize the captured value beyond just naming a
function parameter:

10We are presenting here an extra set of ()s around the structured binding identifier list in []s, making this syntax
readily distinguishable from capture lists.
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void increment(int& input)
[[ post [expected = input + 1] : input == expected ]];

The type of the captured value is computed just like that for a lambda init-capture; in this case,
the type of orig_input is int.

2.2.6 Store a generic element’s value for a postcondition

You’re writing a generic sequence container and want to capture the value of an element being passed
to push_back so that you can validate that the correct value is placed at the end of your sequence in
a postcondition.

For a copyable type, a copy of the value could be captured, using a capture list, to be used in a
postcondition:

template <typename T>
void mylib::vector<T>::push_back(T&& value)

[[ post requires(is_copyable_v<T>) [ input_value = value ]
: back() == input_value ]];

The Standard Library provides a pair of customization points, std::memoize and std::memoization_equals.
The first, std::memoize, can be used to obtain a memoization of an object that supports this opera-
tion.

template <typename T>
void f1(const T& t)
{

auto memoization = std::memoize(t);
}

The second customization point, std::memoization_equals, can be used to compare a memoization
to an object to identify if its salient state has changed since the memoization was captured:

template <typename T>
void f2(const T& t)
{

auto memoization = std::memoize(t);
[[ assert : std::memoization_equals(memoization, t) ]];
++t;
[[ assert : !std::memoization_equals(memoization, t) ]];

}

In addition, the Standard Library defines the type std::memoize_t<T> as the type returned by
std::memoize(std::declval<T>()). Finally, the Standard Library concept std::memoizable<T> is
true if both customization points can be used with T; i.e., the following two expressions are both
valid:

std::memoize(std::declval<T>());
std::memoization_equals(

std::declval<std::memoize_t<T>>(),
std::declval<T>());
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For copy-constructible and equality-comparable types T, memoize returns a copy and memoization_equals
simply compares that copy using operator==. These customization points also work with various move-
only Standard Library types. For example, std::unique_ptr<T> returns get() from std::memoize
and compares that pointer with get() when memoization_equals is invoked. Users may provide their
own, similar customizations for noncopyable types as well.

Using memoize, we can now extend our precondition to apply not just to copyable types, but to
anything that is memoizable:

template <typename T>
void mylib::vector<T>::push_back(T&& value)

[[ post requires(std::is_memoizable<T>)
[ input_value = std::memoize(value) ]
: std::memoization_equals(back(),input_value) ]];

Unlike the earlier postcondition on push_back, this version will properly identify defects when T is a
move-only type such as std::unique_ptr<U>.

A postcondition on std::swap for memoizable types can be similarly written with a capture list:
template <typename T>
void swap(T& lhs, T& rhs)

[[ post requires(is_memoizable<T>)
[ input_lhs = std::memoize(lhs), input_rhs = std::memoize(rhs) ]
: std::memoization_equals(rhs, input_lhs)
&& std::memoization_equals(lhs, input_rhs) ]];

2.2.7 Write a check for "Throws: Nothing"

Your quest for correctness spreads, and you now seek to implement checks for many aspects of plain
language contracts on your functions. Each new category of checks that becomes expressible rewards
you with measurable decreases in related defects in your software.

Many function contracts guarantee that, when invoked in contract (i.e., violating no preconditions),
they do not throw an exception. The noexcept specifier fails to fully capture this intent because it
covers behavior even when the preconditions of a function have been violated.

In addition to separate pre and post CCAs, a combined, more powerful kind of CCA known as a
procedural function interface11 may be used. These interfaces provide a more complete mechanism
to check contracts along the entire boundary of a function invocation.

When using an interface, assertions may be placed in a code block that will be executed around the
implementation of a function when the interface itself is evaluated:12

void f()
// throws nothing
[[ interface :

try {

11See [P0465R0].
12This particular interface could even have a shorthand provided by the Standard itself in the form of a new contract

kind, throws_nothing. See [P2946R0].
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implementation; // Invoke function.
} catch (...) {

[[ assert : false ]]; // should never happen
}
]];

Any code could be placed before or after the call to the function itself indicated by the use of the
special identifier implementation. Code before implementation is akin to checking preconditions,
while code after implementation is akin to checking postconditions.

2.2.8 Write a check for the strong exception-safety guarantee

You begin to investigate implementing contract checks for an implementation of a sequence container,
mylib::vector. One clause in the contract of push_back — that it provides the strong exception-safety
guarantee — has no obviously implementable check using the kinds of CCAs known to you.

Any code can be placed inside an interface, which supports the same facilities for labeling and
having requires clauses that other CCAs do. For copyable elements, the strong exception-safety
guarantee can be checked with an interface that makes a copy of the object before invoking the
implementation:

#include <type_traits>

template <typename T>
class vector {

// ...
void push_back(const T& t)

[[ interface requires std::is_copyable_v<T> :
vector<T> origValue(*this);
try {

implementation;
}
catch (...) {

[[ assert : origValue == *this ]]
}

]]

The copy of the original value of *this is stored in the automatic variable origValue in the interface’s
code block. When an exception is thrown, the strong exception-safety guarantee is checked, and
then the exception will be automatically rethrown.

2.2.9 Widen a contract while maintaining backward compatibility

Today you are tasked with providing a replacement for an existing function that has new functionality
outside the original function’s domain. The replacement must meet the original function contract
when invoked within the original domain. After struggling with convoluted logical expressions, you
search for a better tool to express your new function’s contract checks.

The original function you seek to replace has many preconditions and postconditions already checked,
but for expository reasons, we’ll abstract those into a single instance of each:
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void orig_f()
[[ pre : f_preconditions() ]]
[[ post r : f_postconditions(r) ]];

Attempting a replacement that accurately captures the situation in which different postconditions
apply when the original preconditions were not met requires additional captures and boolean logic.
If the invocation happened to be called within the original domain of f (i.e., without violating
f_preconditions), then we are bound to meet the original postconditions of f. When invoked outside
that domain, a (possibly entirely different) set of postconditions apply:

void new_f1()
[[ pre : f_preconditions() || new_preconditions() ]]
[[ post [ f_preconditions_met = f_preconditions() ]

r : f_preconditions_met ? f_postconditions(r) :
new_postconditions(r) ]];

Using an interface CCA instead, we can express these same ideas — albeit less concisely — in a
potentially clearer, more straightforward form by exploiting conventional block-level control flow:

void new_f2()
[[ interface :

if (f_preconditions()) {
// in domain of f
const auto& r = implementation;
[[ assert : f_postconditions(r) ]];

}
else if (new_preconditions()) {

// outside domain of f, in domain of f2
const auto& r = implementation;
[[ assert : new_postconditions(r) ]];

}
else {

// no preconditions met
[[ assert : false ]];
implementation; // must still be invoked on all control paths

}
]]

With this interface, you can see that all invocations that would be valid for the original f will meet
the postconditions of f, while only the new postconditions will apply outside that domain. The
implementation new_f2 can safely replace f and can then used by newer code with the wider set of
inputs.13

2.2.10 Gain a better understanding of interfaces

As you write interfaces to express highly involved contract checks, you might reason that this new
contract kind could subsume the need for [[pre]] and [[post]]. Can that be true?

13In other words, new_f2 is Liskov-substitutable for f within the bounds of the checked parts of both of their
contracts. See [liskov94].
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The answer is clear yes. With interfaces available, [[pre]] and [[post]] CCAs are syntactic sugar,
although they are truly useful since they cover the vast majority of CCAs that typical developers
will encounter in their careers.

Any precondition or postcondition CCA can be expressed as an equivalent interface CCA:
int f_withprepost(const int x)

[[ pre : x > 0 ]]
[[ post r : r > x ]];

int f_withinterface(const int x)
[[ interface :

[[ assert : x > 0 ]];
implementation; ]]

[[ interface :
auto r = implementation;
[[ assert : r > x ]] ]];

Other more advanced features, like capture lists (e.g., [init_x = x]) and destructuring return values
(i.e., ([a,b])) for postconditions, can be used within an interface:

std::tuple<int,int> g_withpost(int x)
[[ post [init_x = x] ([a,b]) : a < init_x && b > init_x ]];

std::tuple<int,int> g_withinterface(int x)
[[ interface :

auto init_x = x;
auto [a,b] = implementation;
[[ assert : a < init_x && b > init_x ]]; ]];

Of course, these interfaces are equivalent yet clearly much more verbose than the corresponding uses
of pre and post CCAs. As a tool, the more concise forms are sufficient for most contract-checking
tasks.

2.2.11 Check a class’s public invariants

Thinking back to that first computer science course you took, fond memories of learning about the
benefits of well-designed objects that maintain robust invariants fill your heart with joy. Everything
about class invariants sounds like a set of properties that could be checked defensively, but how do
you encode that and what will checking the properties accomplish?

Invariant checks can be added to a user-defined class or struct using the invariant kind of CCA:
class MyIntVector {

// ...
public:

[[ invariant : size() < capacity() ]];
[[ invariant : capacity() == 0 || data() != nullptr ]];
[[ invariant uncheckable : is_reachable(begin(), end()) ]];

// ...
};
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Due to the invariants being in the public section of the class definition, they will all, by default, be
added automatically, with the same labels, in a few places.

• Every public constructor will have all public invariants as postconditions.

• Every public, nonconst nonstatic member function will have all public invariants as precon-
ditions (checked after any declared preconditions) and postconditions (checked before any
declared postconditions).

• The destructor, if public, will have all public invariants as preconditions.

Invariants in a protected or private section of a class will apply to all constructors, member
functions, and destructors with that access level or a less restrictive one (e.g., a protected invariant
will apply to all public or protected member functions).

Member functions that are marked const do not check invariants because an often encountered
problem when checking invariants ubiquitously is overwhelming costs or unbounded recursive
invocations. Note that the invariants declared above on MyIntVector would recursively invoke
themselves if size(), data(), begin(), or end() were nonconst member functions.

2.2.12 Check invariants related to a mutable member

You’ve been saved a few times from recursive explosions when writing invariant conditions that use
const member functions. Today, you’re dealing with a class that has a mutable member that caches
some stored data, and invariants related to it must be checked even on your const member functions.

You know you need to be careful because an invariant can have the const label added to it, which
will cause it to be checked on const member functions as well:

class Values {
mutable int* d_value1;
mutable int* d_value2;

public:

[[ invariant const
: (d_value1 == nullptr) == (d_value2 == nullptr) ]];

int getValue1() const;
int getValue2() const;

};

On invocations of getValue1() and getValue2(), this class will lazily initialize its d_value1 and
d_value2 members. The invariant will be checked for these const member functions to guarantee
that both member pointers are initialized if either one is initialized.

2.2.13 Check invariants of a function parameter

Today you’re writing a friend of a class that has invariants, and you want to check that, when a
function is passed objects of that type, those objects are currently in states where their invariants
hold. How do you do that?

27



A pre, post, or assert contract check normally has an expression that converts to bool. A contract
check with the contract label check_invariants, however, will instead inspect the return value of
the expression and evaluate all public invariants of the returned expression:

template <typename T>
void f(T& t)

[[ pre check_invariants : t ]];

Before invoking this function, all public invariants defined by the type T will be evaluated for the
object t. If T is not a user-defined type or if it has no public invariants declared, the evaluation of
this precondition will have no effect.

Similar labels exist to check the const, protected, and private invariants of a type. Labels on a CCA
that uses check_invariants will be automatically combined with those on each of the individual
invariant CCAs.

2.2.14 Write CCAs for an abstract interface

As the resident expert on writing CCAs, you have been asked to implement CCAs for the contracts
on an abstract interface — i.e., a class with pure virtual functions that is used as the interface to a
number of different potential implementations.

As with any other function, CCAs may be placed on virtual member functions:
struct Base {

virtual void f()
[[ pre : pre1() ]] // #1
[[ post : post1() ]]; // #2

};

Any invocation of Base::f, whether on a concrete instance of type Base or through a pointer or
reference, will evaluate the CCAs on Base::f:

void call_f_directly()
{

Base b;
b.f(); // checks #1 and #2

}
void call_f(Base& b)
{

b.f(); // checks #1 and #2
}

Of course, this second invocation within call_f does not know that b refers to an object of type
Base (the runtime type of this object may be a class derived from Base which overrides f), but the
requirement that the CCAs of Base::f not be violated still stands with this invocation.

Derived classes that override f will have no CCAs by default, and the CCAs of the base-class
function will be checked only when invoking the function through a pointer or reference of that
base-class type:
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struct Derived : Base {
void f() override;

};
void call_f_with_derived()
{

Derived d;
d.f(); // checks #1 and #2

Base& b;
b.f(); // checks nothing

}

The virtual dispatch through Base& b will evaluate the CCAs of Base::f, while the direct invocation
of Derived::f will check the (empty) set of CCAs on that function.

2.2.15 Widen the CCAs of a concrete implementation

Your next task is to address a series of subclasses in your system that have wider preconditions than
your abstract interface requires. How do you implement and take advantage of that?

A derived class may specify CCAs on an overriding function that will be checked whenever that
particular function is found through dynamic dispatch, or invoked for virtual dispatch:

struct Derived2 : Base {
void f()

[[ pre : pre2() ]] // #3
[[ post : post2() ]] // #4
override;

};

When used through a pointer or reference to the base class, the base-class CCAs will be evaluated
in addition to those of the derived class function that is found through virtual dispatch.

void call_f_with_derived2()
{

Derived2 d2;
Base& b = d2;

b.f(); // virtual dispatch, checks #1, #3, #4, and #2
}

Dispatch through a variable of the derived class, however, will only potentially evaluate the CCAs
of the derived class, circumventing potentially narrower contract checks from the base class:

void call_f_with_derived2_2()
{

Derived2 d2;
d2.f(); // checks #3, #4

Derived2& d2r;
d2r.f(); // checks #3, #4 (twice)

}
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When dynamic dispatch through a pointer or reference can be statically determined to find an
object of the underlying type of that pointer or reference, the duplicate checks can be reduced by
the compiler to only a single set of checks, leaving no observable difference between d2.f() and
d2r.f() above.

The ability to specify distinct CCAs on a function override provides complete flexibility to implement
derived classes for specialized purposes as well as those that are more general than the interfaces
they choose to implement.

2.2.16 Reconcile distinct CCAs with multiple inheritance

You have been tasked with developing a computation engine that implements multiple interfaces with
distinct requirements. Your implementation will meet these requirements simultaneously, but how do
you express that?

Consider two different abstract interfaces for computation:
struct ComputeOdd
{

// Given a positive number, compute an even number.
virtual int compute(const int x)

[[ pre : x > 0 ]]
[[ post r : r % 2 == 0 ]] = 0;

};
struct ComputeBig
{

// Given an even number, compute a big number.
virtual int compute(const int x)

[[ pre : x % 2 == 0 ]]
[[ post r : r > 100 ]] = 0;

};

Extending both of these base classes and declaring no CCAs on the override of compute results in a
function with no CCAs on it:

struct MyCompute1 : ComputeOdd, ComputeBig
{

// Given a number, compute a number.
int compute(const int x) override;

};

Of course, this lack of CCAs causes all unit tests for MyCompute1 to fail to verify that this object
would work properly if used as either a ComputeOdd or a ComputeBig. No CCAs are being evaluated
when MyCompute1::compute is invoked directly.

To have a compute implementation that can be reliably used anywhere a ComputeOdd or a ComputeBig
is needed, more specified preconditions and postconditions that are properly consistent with those
of both base classes must be provided:

struct MyCompute2 : ComputeOdd, ComputeBig
{

int compute(const int x)
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[[ pre : (x > 0) || (x % 2 == 0) ]]
[[ post r : (x > 0) ? (r % 2 == 0 ]] // `ComuteOdd` postcondition
[[ post r : (x % 2 == 0) ? (r > 100) ]] // `ComputeBig` postcondition
override;

};

On any use of MyCompute2 as a ComputeOdd or a ComputeBig, the base-class precondition checks will
be invoked along with the (redundant by construction) CCAs on MyCompute2::compute.

Of course, in many cases, these checks might be simplified further when you have an even wider
contract or provide stronger guarantees:

struct MyCompute3 : ComputeOdd, ComputeBig
{

int compute(const int x)
[[ pre : true ]] // fully wide contract
[[ post r : (r > 100) && (r % 4 == 0) ]] // narrower postconditions

};

2.2.17 Narrow the CCAs of a concrete implementation

Today you took delivery of a new hardware interface that can be used to implement your new compu-
tation engine with incredible efficiency. The hardware, however, requires an involved initialization
sequence before it can be used effectively. How do you require that initialization sequence be done
when such a requirement is not part of the abstract interface your clients are using?

No requirement is made that the preconditions on a derived class be wider than those of a base
class; on any invocation involving virtual dispatch, both are checked. Consider a generalized Compute
abstract interface that takes positive numbers and computes int results:

struct Compute
{

virtual int compute(int x)
[[ pre : x > 0 ]];

};

The HardwareCompute class is, of course, free to require initialization as a precondition for its compute
function:

struct HardwareCompute : Compute
{

void initialize();
bool isInitialized() const;

int compute(int x)
[[ pre : isInitialized() ]]
[[ pre : x > 0 ]];

};

Such checks will catch cases in which a function working with a Compute object by reference has
been passed a HardwareCompute that was not first properly initialized:
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void use_compute(Compute& c)
{

c.compute(100);
}

void bad_hardware_compute()
{

HardwareCompute h;
use_compute(h); // violation because h is not initialized

}

void good_hardware_compute()
{

HardwareCompute h;
h.initialize();
use_compute(h); // ok

}

2.2.18 Prevent invocation of a default virtual function implementation

You’ve been tasked with extending an existing class hierarchy with new functions that need to be
rolled out independently of clients implementing those functions. Only updated objects will have
these new functions invoked, but all clients still need to compile so a pure virtual function is not an
option. How do you provide an implementation that cannot be invoked?

The preconditions and postconditions on a virtual member function declaration are checked when
using that virtual function to dispatch to the family of virtual functions that might override the
named function. When a virtual function is used for both virtual dispatch and for providing
an implementation, CCAs for the implementation itself might be implemented using [[assert]]
CCAs:

struct S {
virtual void newFunction() { [[ assert : false ]]; }

};

Separately, CCAs that apply only to the implementation — not to using the virtual function for
virtual dispatch — can be declared using the impl_only label on the CCAs:

struct S {
virtual void newFunction() [[ pre impl_only : false ]];

};

With the above declaration, the false CCAs will be evaluated (and violated) only when S::newFunction
is invoked explicitly or found through virtual dispatch. Any code that tries to use this function with
an S subclass that has not yet overridden newFunction will encounter contract violations.

2.2.19 Write CCAs for a default virtual function implementation

The next new function you add to your existing class hierarchy has a fairly wide interface to clients,
but the default implementation provides very strong guarantees. How do you implement that?
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The label impl_only can be applied to any CCAs, and they will be evaluated when the annotated
function is invoked directly or through virtual dispatch. CCAs without that label will be invoked in
both cases:

struct S {
virtual int newFunction2()

[[ post r : r >= 0 ]] // always non-negative, #1
[[ post impl_only r : r == 0 ]]; // default is always 0, #2

};

struct T : S {
int newFunction2()

[[ post r : r >= 0 ]] // always non-negative, #3
override;

};

void f()
{

S s;
int i = s.newFunction2(); // checks #1, #2

T t;
int j = t.newFunction2(); // checks #3, #1

S& ts = t;
int k = ts.newFunction2(); // checks #3, #1

}

2.3 Expert-Level Contract Checking

All the features we’ve seen so far are higher-level, user-facing tools built on a core set of functionality
provided by the C++ language, along with a variety of Standard Library features that have been
adopted to make the most common use cases and best practices as easy to implement correctly
as practicable. Occasionally, other needs arise that require a deeper understanding of those core
frameworks and more direct leveraging of the core language facilities.

2.3.1 Write a custom contract label

As you begin to investigate making a suite of custom labels to use as part of a large-scale C++
library, the most basic question that might come to mind is how to create custom label types (to be
used in CCAs) in the first place.

When parsing a CCA and searching for contract-label types, the C++ compiler will perform a
special form of name resolution to find a C++ user-defined type that is associated with each label. A
type can be defined as a contract-label type by adding a contract_label_id specifier to its definition.
For example, an otherwise empty type can have a label ID (with a namespace) assigned that lets it
be used as a label:

struct my_label_type contract_label_id(mylib::my_label) {};

At any point where this definition is reachable, the label can then be used on a CCA:
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void f() [[ pre mylib::my_label : true ]];

Label IDs having no namespace are reserved for the Standard Library, and all such label types are
defined in the <contracts> header.

An empty label type, such as my_label_type, will have no effect on the program other than to be
recorded in the list of labels on the CCA, which is available from the contract_violation object
populated and passed to the contract-violation handler when the CCA detects a contract violation
at run time.

Other functionality related to labels applies an iterative algorithm that looks for certain members
of the label types for each label type in a specified order (left to right or right to left, depending on
the property).

• Each type may provide a public member named allowed_semantics that must be a type
convertible to std::contracts::contract_semantic_set. When an implementation is selecting
the semantic with which to evaluate a CCA, only one of the allowed semantics will be chosen.
If there are no allowed semantics, a program will be ill-formed.

• Each type may provide a static, consteval (or constexpr) compute_semantic member function
that takes and returns a value of the enumeration type std::contracts::contract_semantic.
This function transforms the semantic determined by the implementation and earlier labels
and produces a new resulting semantic. When all label types with compute_semantic functions
have had that function evaluated, the CCA will be evaluated with the resulting semantic. A
program is ill-formed if it produces a semantic not in the list of allowed semantics for that
CCA.

• If two label types on the same CCA have the same dimension member, the program is ill-formed,
allowing labels to express when they are mutually exclusive.

• A label type may provide a handle_contract_violation static member. This function will be
invoked on contract violations of CCAs with that label attached. Multiple such functions will
be visited on labels from right (closest to the predicate) to left (furthest from the predicate),
followed by the global contract-violation handler. Such local contract-violation handlers may
return false (or an object that converts to false, such as std::false_type) and prevent the
invocation of earlier contract-violation handlers (or the global contract-violation handler) for
the CCA to which they are applied.

2.3.2 Provide a new cost-of-evaluation–based contract label

A select few algorithms your advanced graphic library provides have CCAs that are so expensive
to evaluate they must be disabled even in audit-level builds. You still, however, wish to be able to
occasionally turn the contracts.cost knob up even higher to enable them and would love to integrate
them cleanly with the existing labels that express CCA cost.

The Standard Library costs are associated with an enum defined in <contracts> that names the
contract-checking levels and gives them arbitrary (yet ordered) numeric values:

namespace std::contracts {
enum class cost : int {
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off = 0,
default_cost = 100,
audit = 200

};
}

The Standard Library audit label is a subclass of a Standard Library template, cost_label_type,
which has a single parameter of type std::contracts::cost and defines a label type having the
appropriate behavior, i.e., computing a semantic by comparing its cost template parameter to
the configured contract.cost knob. The type std::contracts::audit_label_type is an otherwise
empty subclass of an instantiate of that class template, with the appropriate contract_label_id
specifier:

namespace std::contracts {
class audit_label_type

contract_label_id(audit)
: public cost_label_type<cost::audit> {};

}

The cost_label_type<cost Cost> class template provides a suite of functionality that can be lever-
aged by other subclasses.

• The label type defines a dimension member having a single (arbitrary and unspecified) value,
making all cost_label_type subclasses mutually exclusive.

• The compute_semantic member of cost_label_type is a static consteval function that deter-
mines the semantic for CCAs with a specified Cost.

– When the configured value of contracts.cost is equal to or greater than the Cost template
parameter, the CCA will take on the default semantic.

– Otherwise, when the configured value of contracts.cost.new is equal to or greater than
the Cost template parameter, the CCA will apply the same logic as the label new to the
default semantic.

– Otherwise, the CCA will have the ignore semantic.

With this simple, logical model, a complete range of CCA labels can readily be defined. In a checked
build, as the contracts.cost value is raised, more CCAs will be enforced. When a developer wants
to deploy higher checking levels to an existing running system, the contracts.cost.new value can
be raised first to observe the higher-cost checks before moving on to enforce them at a later point in
time.

Specifying a brand-new label type on the same scale is as simple as providing a new, otherwise-empty
label type that leverages cost_label_type for its implementation:

namespace mylib {
class extra_expensive_label_type

contract_label_id(mylib::extra_expensive)
: public cost_label_type<10 * std::contracts::cost::audit>

{};
}
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With this label in hand, applying the desired behavior to any appropriate check is simple:
void optimize_graph(Graph *graph)

[[ post mylib::extra_expensive : cubic_time_check(graph) ]];

2.3.3 Manage an ongoing library release cycle

One of your company’s products is a library distributed to clients. Some clients adopt each revision
as it is released, yet others take only major releases or even skip major releases when no compelling
features entice them to upgrade.

The label new has worked effectively for adding contract checks safely to clients who upgrade continu-
ously. After a single release cycle, the label is removed and the CCA becomes enforceable. Other
clients with less frequent upgrade cadences, however, are demanding that they be provided the same
functionality: Any CCA that was not included in functions used in the previous version they had
actually deployed needs to be observed, not enforced. How can you satisfy such a request?

The problem here is that when we add a CCA to a function that might have existed in a previous
release, we don’t want a client that doesn’t update with every release to suddenly get a CCA that
is enforced. To address this concern, a custom label can be created that captures the library version
where the contract check was added and provides the appropriate logic to identify when such a
check is being enabled for the first time by that specific client.

Throughout your library, when a contract check is added to a pre-existing function in a new library
version, add a contract label defined by your library to that CCA. When a function is added with
CCAs on it, no particular label is needed:

namespace mylib {
void f(int x) // added in revision 1.0

[[ pre : x > 0 ]]; // added in revision 1.0
}

On the other hand, suppose mylib::g gets added in revision 2.0, but a check for its precondition
was missed. In revision 2.1, the missing CCA gets added, but now a label is put on that CCA to
help guide the checking of this newly introduced CCA in code that might already be in use by some
clients in production systems:

#include <mylib_contracts.h>

namespace mylib {
void g(int x) // added in revision 2.0

[[ pre mylib::version<2,1,0> : x > 0 ]]; // added in revision 2.1
}

When clients build their programs, they may specify the last stable version of your library that they
had deployed, using a build environment flag specific to their library label:

gcc -Kmylib.stableversion=2.0.0

Clients that do not specify this version will have the previous version assumed, treating only the
most recently introduced CCAs as if they had the label new. Specifying the current version as the

36



stable version — something you instruct your clients to do once they have deployed a version for an
acceptable period of time — will treat none of the marked CCAs as having the label new and will
enforce all of them.

Regardless of stable version, any code that references mylib::f must have been built against a
library revision of at least 1.0, so the precondition check on mylib::f must have already been there.

Now consider Client A, who regularly updates with each new release of your library.

• Client A uses the default build out of the box and begins making use of mylib::g as soon as
they download version 2.0. The label will determine that the stable version is 1.17, the last
minor version that was released before the upgrade to 2.0.

• The new function seems to work well and is deployed to production, but the missing CCA
means Client A is not being made aware of (possibly subtle) defects that might result from
violation the contract of mylib::g.

• When upgrading to revision 2.1, the stable version is now 2.0, the misuse is detected with a
log message, the bug is fixed, and Client A finds their software works more reliably without
having had a catastrophic production shutdown.

• When upgrading to revision 3.0, the stable version is now 2.1, the precondition check on
mylib::g is now enforced, and a future mistake or unhandled edge case will be quickly caught
before the production system goes completely awry due to a misused function.

Client B, however, takes only major revision releases. Because they have read the documentation of
mylib, they know to set the stable version to the previous stable version with each upgrade.

• With each new library version, Client B specifies, as they build mylib, what their last stable
version of the library was. When deploying version 2.0, they set this value to 1.0. When
deploying version 3.0, they set this value to 2.0 by adding -Kmylib.stableversion=2.0 to
their build command line.

• Just like Client A, Client B can use the new mylib::g in version 2.0 and might use it incorrectly.

• When Client B adopts version 3.0, the precondition on mylib::g will still be treated as having
the label new since the precondition was added after the configured, last stable version (2.0).
Had the stable version not been set, Client B would see the check on mylib::g enforced,
resulting in a terminating production system if a defect is discovered. However, unlike Client
A, Client B sets the stable version to an earlier one when deploying version 3.0, and thus the
check on mylib::g is observed and defects can be detected without a production failure being
guaranteed.

Each client retains the option to build the software with the current version as the last stable
version once they are comfortable that no newly introduced contract checks require observation.
This choice makes even the newest checks in the library into enforced checks, increasing the safety
and correctness of each client’s running software.

The custom contract label mylib::version is defined as a template in mylib_contracts.h:
// mylib_contracts.h:
#include <contracts>
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namespace mylib {

class Version { /*...*/ }; // literal value-semantic abstraction for a version

constexpr Version stable_version();
// implementation defined accessor for the configured stable version

template <int major, int minor, int patch = 0>
class version_label_type contract_label_id(mylib::version) {

static consteval std::contracts::semantic compute_semantic(
std::contracts::kind kind, std::contracts::semantic semantic)

{
if (stable_version() < make_version(major,minor,patch)) {

// Act just like the label new.
return std::contracts::new_label_type::compute_semantic(kind,semantic);

}
else {

// Do not adjust the semantic.
return semantic;

}
}

};

The contract_label_id specifier on this class template facilitates name lookup for contract labels
finding this template as the implementation for the mylib::version label.

2.3.4 Make your own code depend on build configuration options

Most of these Standard Library contract labels will change their behavior based on how you build
your program. How is that customization accomplished?

From the uncharted regions of the C preprocessor, source code has long provided mechanisms to
configure compile-time and runtime behavior through the specification of preprocessor macros —
usually via the -D compiler switch — during compilation. This great power provided equally great
flexibility but at the cost of many real and perceived downsides of the preprocessor.

The build environment provides a flexible, powerful, and more hygienic and type-aware facility to
pass an arbitrary set of values from the compiler command line such that those values can be used
during constant evaluation.

The Standard Library provides a metafunction to access the values of named and controllable knobs
in the build environment:

namespace std::meta {
consteval char const* get_env_raw(char const* k);

// Return the value of knob k, or return nullptr if
// the knob does not have a value set.

}
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The specific value returned is controlled in an implementation-defined manner, but these extrinsic
values can vary based on build configurations — through explicit command-line flags, different
defaults when choosing Debug or Release builds, or other mechanisms. Each Standard Library
contract label’s behavior is controlled by the values of Standard-specified control points, called
knobs, in the build environment.

The gcc implementation, for example, allows users to set knobs on the command line via the -K
compiler switch. Consider a simple program that, when built, simply outputs the value of a specific
knob (e.g., "testknob") from the build environment:

// main.cpp
#include <iostream>
#include <meta>

int main()
{

std:: cout << "Test Knob Value:"
<< std::meta::get_env_raw("testknob") << std::endl;

}

This program can then be built and run in multiple ways by specifying various values for the knob:
$ gcc test.cpp
$ ./a.out
Test Knob Value:

$ gcc -Ktestknob=Hello test.cpp
$ ./a.out
Test Knob Value: Hello

$ gcc -Ktestknob=World test.cpp
$ ./a.out
Test Knob Value: World

Utilities are also provided to extract knob values as typed data, leveraging user-defined literals to
parse strings into objects within the consteval metafunction framework.

2.3.5 Categorize a group of checks to be enabled as a unit

Working on your company’s implementation of a sequence container, you have identified a number
of situations in which container operations invalidated iterators that should not have been invalidated
by certain operations. All the checks to identify these problems are at least linear in cost and, more
importantly, require memory allocations, whereas the underlying function in the same situation
would require none. Enabling these checks must happen only in highly specialized builds being run to
deeply test all behaviors of your vector implementation.

A custom label (e.g., mylib::itercheck) can easily specify a completely independent knob in the
build environment to control a decision between the ignore and enforce semantics:

namespace mylib {
class itercheck_label_type contract_label_id(mylib::itercheck) {
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static consteval std::contracts::semantic compute_semantic(
std::contracts::kind kind, std::contracts::semantic semantic)

{
if (std::meta::get_env<bool>("mylib::iterchecks",false)) {

return std::contracts::semantic::enforce;
}
else {

return std::contracts::semantic::ignore;
}

}
};
}

Each time a CCA with this label is evaluated, this compute_semantic function will be invoked with
the compiler-selected semantic for that CCA. This implementation of compute_semantic, however,
will ignore that input and instead select between enforce and ignore based on the value of the build
environment knob "mylib::iterchecks".

Then, on each of the postconditions and interfaces that check iterator invalidation, this label can be
applied so that the checks themselves occur in only the specific builds where you have enabled this
group of checks:

template <typename T>
void mylib::vector<T>::push_back(const T& t)

[[ interface mylib::iterchecks :

if (size() == capacity()) {
// All iterators are invalidated; nothing to check.
implementation;

}
else {

// Leverage std vector to store iterators.
std::vector<const_iterator> iters;
for (const_iterator it = begin(); it != end(); ++it)
{ iters.push_back(it); }

implementation;

for (std::ptrdiff_t ndx = 0; ndx < std::ssize(*this)-1; ++ndx)
{

// Verify that each element of iters is the same as
// the current iterator to that index.
[[ assert : iters[ndx] == begin() + ndx ]];

}
}

]];

In all builds that do not specify a value for the "mylib::iterchecks" knob or that specify that value
to be false, the above interface will be ignored and thus do nothing. When the knob is set to true,
however, the interface will validate that the address of all elements in the vector remains stable
whenever push_back is invoked while there is available capacity for the new element.
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A label such as mylib::iterchecks will also interoperate with other labels that transform the
semantic that will be used to evaluate a CCA. For example, the above interface might use the new
label when first introduced, resulting in the build environment variable toggling this CCA between
the ignore and observe semantics:

template <typename T>
void mylib::vector<T>::push_back(const T& t)

[[ interface mylib::iterchecks new :

// observed if "mylib::iterchecks" is true in build environment
// ignored if "mylib::iterchecks" is false in build environment

// ... same as above ...
]];

3 Proposed Features
This section contains discussion of all of the individual, relatively separable features that comprise
the complete, robust Contracts facility we envision for C++. Each individual subsection will, in
subsequent revisions of this paper, include complete descriptions of the proposals, motivations, usage
examples, and a discussion of the chosen design along with various alternatives that were considered.

3.1 Existing Contract Functionality

A brief description of the essential parts of the currently proposed SG21 Contracts facility proposal
(otherwise known as the MVP).

3.1.1 Nomenclature

A glossary of terms used throughout this paper when discussing Contracts.

3.1.2 Contract semantics

The defined set of semantics with which a CCA might be evaluated.

3.2 Supporting Features

Features to be added to Standard C++ to facilitate other features.

3.2.1 Build environment

A metafunction replacement for the preprocessor to allow configuration-built program behavior at
compile time.

3.2.2 Standard Library memoization

A Standard Library extension point for defining how the value of a type may be captured for later
comparison.

41



3.2.3 The [[symbolic]] function attribute

An attribute that indicates a function that is capable of affirmatively verifying certain runtime
capabilities but which, in general, cannot reliably detect all such situations or which will invalidate
those very capabilities should it actually be evaluated.14

3.3 New Contract Kinds

New contract kinds.

3.3.1 Procedural interfaces

The [[interface]] contract kind to specify a block of code that, when checked, will be evaluated
around the invocation.

3.3.2 Class invariants

The [[invariant]] contract kind and supporting functionality to specify class invariants, explicitly
check them, and control which parts of a class interface have which invariants checked.

3.4 Updates to CCAs

Enhancements to some or all contract kinds.

3.4.1 Postcondition captures

The ability to specify an init-capture list on postconditions that is initialized when preconditions
would be checked.

3.4.2 Postcondition return value destructuring

The ability to specify a sequence of names that will destructure the return value of a function.

3.4.3 CCA requires clauses

Control whether a CCA is applicable based on a concept check on template parameters.

3.5 Contract Labels

A mechanism to provide user-defined annotations that may be attached to CCAs of all kinds.

3.5.1 Creating user-defined labels

The framework to tie a class definition to a label and specify a sequence of (possibly parameterized)
labels applied to a CCA.

14This attribute is similar to the special return type mentioned in [P2176R0], but it allows (but does not require)
an implementation and is not itself directly tied to the Contracts facility.
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3.5.2 CCA semantic computation

When determining the semantics with which to evaluate a CCA, a metafunction on the label types
will be used to transform the implementation-defined chosen semantic into the effective semantic.

3.5.3 Allowed semantics

Labels may specify a set of semantics that are the potential results of the computation semantics.
CCAs with particularly restricted sets of allowed semantics have additional properties, such as no
ODR use for a CCA that has no allowed checked semantics.

3.5.4 Local contract-violation handlers

A label may specify a contract-violation handler function that will be invoked prior to or instead of
the global contract-violation handler.

3.5.5 Label dimensions

Labels may specify that they represent a particular dimension, and multiple labels having the same
dimension are mutually exclusive within any given CCA.

3.5.6 Precondition checking operator

An operator that, when provided a function invocation and a default semantic, will return whether
the preconditions of that function would be violated by that invocation.

3.5.7 Standard Library — Labels for concrete semantics

Standard library labels to select specific concrete Semantics with which a CCA should be evaluated,
often useful for testing things directly related to the Contracts facility itself.

3.5.8 Standard Library — Labels for cost of evaluation

Labels for CCAs to express the expected cost of evaluating the CCA’s predicate, usable to selectively
not check expensive conditions except in specialized builds that might not be universally deployable.

3.5.9 Standard Library — A label for newly introduced contract checks

A label to mark a contract check as one that has been newly introduced into already existing
software, influencing the semantic to be observe in most conditions where they would otherwise be
enforce.

3.5.10 Standard Library — A label for unchecked contracts

A contract label that indicates a predicate that should never be evaluated at run time and thus is
useful for only static analysis, optimization, and documentation purposes.

3.6 Behavioral Improvements

Additions and improvements to the minimal behaviors adopted by the SG21 MVP.
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3.6.1 The assume semantic

A semantic for CCAs that does not evaluate the predicate and introduces undefined behavior on
violations.

3.6.2 Contract-violation handler updates

Minor updates to the contract_violation object to capture the rest of the changes in this proposal,
such as adding an accessor for the labels on a CCA when it is violated.

3.6.3 CCAs on virtual functions

Specification of how contract checks on virtual functions can vary across class hierarchies and which
checks will be validated on any given virtual dispatch.

The labels impl_only and virtual_only denote a CCA as being invoked when a function is directly
invoked or invoked via virtual dispatch, respectively.

3.6.4 CCAs and where to find them

Extending the ability to specify CCAs on declarations that are not the first declaration of a function,
with allowances for potentially repeating CCAs and invoking functions before having seen the CCAs
with which they are annotated.

3.6.5 Pack expansion of CCAs

The ability to apply the pack expansion operator to a CCA, in a manner similar to which it can be
applied to an attribute.

3.6.6 Integration with <cassert>

Changes to <cassert> to invoke the contract-violation handler when an assertion fires (prior to
invoking std::abort() as currently specified) and a discussion about why no other changes can or
should be proposed to <cassert>.

3.6.7 Integration with core-language UB

A proposal regarding the ability to attach contract labels to occurrences of checkable, language-
undefined behavior within a scope, enabling the ability to, for instance, have all pointer dereferences
checked that the pointer value is not null with the enforce semantic.

4 Real World Examples
Various use cases demonstrate how large-scale endeavours might be accomplished with the pieces
made available by this proposal.
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4.1 Unit Testing CCAs

This subsection will present a complete example of how to manually perform negative testing on a
function using the precheck operator as well as examples of how this testing can be incorporated
into macros or generic functions.

4.2 Fuzz Testing Functions with Narrow Contracts

We’ll show, via examples, how to write fuzz tests that use the precheck operator to test only
in-contract invocations, and we’ll discuss the various ramifications of this form of testing.

4.3 Third-Party Contract Labels

Various examples of third-party contract labels can be developed for a many purposes.

4.4 Contract Checks for std::vector

This subsection will offer a complete implementation of contract checks, capturing many of the
preconditions and postconditions of the public interface of std::vector and will include discussion
about needs and concerns when writing contract checks on a complete data structure.

5 Further Evolution
In this section are features that we do not yet propose but that might arise in the future to build
upon the components described above.

5.1 Core-Language Contract Labels

This subsection will present design considerations for contract labels that might be supported by
the core language itself.

5.2 Contract Checks on Coroutines

Here we’ll offer design considerations for what contract checks might be applicable to a coroutine
and how they might be expressed.

6 Wording Changes
Due to the size of this paper, formal wording for each of the proposed features is likely to be
produced in individual, smaller papers for each of the proposed features once consensus has been
achieved for the overall direction.

7 Conclusion
The C++20 Contracts facility was a compromise solution that was intended to be the foundation
for a full-featured system to enable consistent and powerful tools for defensive programming and
static analysis in C++. SG21 has been heavily focused on finding the core set of features that can
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retain consensus and can evolve to support all current and future needs, yet the group has been
doing so without a clear understanding of the full scope of those needs.

By adopting the features proposed here or comparable features that meet the same needs, C++
would have a robust, powerful, and user-extensible tool for contract checking that can be integrated
into the many different platforms and workflows in which C++ exists today. Incorporating these
features into the language and its Standard Library will enable developing, testing, and deploying
vastly more robust software than can currently be accomplished and will do so uniformly and
portably across the various toolchains that implement modern C++.
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A Design Alternatives
Some alternatives to the proposed designs might be considered if they evolve to be superior or if
they seem to be more likely to achieve greater consensus..

A.1 CCA Control Objects

The proposal here for labels maps each label ID to a type whose properties are used to identify what
affect the label has. The syntax for placing labels on a CCA is an extension of the C++20 Contracts
syntax for labels, which used the same space with a small set of Standard-specified identifiers with
special meaning. All mechanisms for combining multiple labels to determine the CCA properties
are described in the language and vary based on which particular property is being considered.

An alternate possibility is for each CCA to provide a place where a single, optional control object
maybe be specified with an arbitrary expression that is evaluated at compile time:

#include <contracts>

15sentences or paragraphs
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void f()
[[ pre<audit> : true ]];

The <contracts> header provides two important elements to make the above example work:

1. The constexpr variable std::contracts::labels::audit, which is referenced in the control
object expression audit in the precondition on f.

2. A using contract namespace std::contracts::labels declaration, which adds the Standard
Library contract label namespace to the namespaces implicitly searched by CCA control-object
expressions.

The labels provided by the Standard Library would also provide a consistent interface for combining
them when appropriate, such as by using the bitwise or (|) operator:

#include <contracts> // for audit and review labels
void g()

[[ pre<audit | review> : true ]];

The <contracts> header would also provide utilities and base classes that simplify writing label
objects such as audit and review that interoperate smoothly with other labels.

The type and value of the control object expression are used for the same purposes as label types.
The expression’s type and value would determine the same properties as labels, but combining labels
together would be the purview of the label types themselves and their overloaded operators.

• Semantics would be determined by invoking member functions on the resulting constexpr
object produced by the control object expression.

• If present, a local violation handler will be invoked on that same object.

• The | operator provided by the <contracts> header will appropriately combine the above
operations into a single compound operation on the object it returns.

Due to specification of the control object being a regular C++ expression, the <contracts> header
would also necessitate the use of a nonkeyword name for labels like new, hence our use of review as
a Standard Library label above.

The primary difference, from a user perspective, between these choices will be where labels are placed
within the CCA syntax and how multiple labels will be combined. Advanced users implementing
labels will have more freedom to control how labels are combined but greater responsibility for
properly interoperation with (rather than subverting the expected behavior of) Standard Library
labels, such as review, or concrete semantic labels.
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