
Pack Indexing
Document #: P2662R3
Date: 2023-11-08
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Pablo Halpern <phalpern@halpernwightsoftware.com>

Abstract

This paper expands on the pack indexing feature described in P1858R2 [8] and provides
wording.

Revisions

R3

• Wording improvements, as reviewed by CWG in Kona

R2

• Wording improvements, as reviewed by CWG in Varna

• Add a section about ways types could be deduced from an index-type-specifier.

• expand the ”future evolutions” section.

R1

• At EWG’s request, we explained in more detail the syntax choices and explored alterna-
tives.

• Wording improvements

R0

• Initial revision

Motivation

The motivation for pack indexing is covered in P1858R2 [8] and P2632R0 [P2632R0].

1

mailto:corentin.jabot@gmail.com
mailto:phalpern@halpernwightsoftware.com
https://wg21.link/P1858R2
https://wg21.link/P1858R2
https://wg21.link/P2632R0

The short background version is that packs are sequences of types or expressions and indexing
is a fundamental operation on sequences. C++ and its users have so far relied on deduction or
library facilities, such as index_sequence, or full-fledged template metaprogramming libraries,
such as mp11 and boost.hana, to extract the Nth element of a pack, which has a high cost
both in terms of code complexity and compiler throughput.

This paper proposes a new code language syntax to index packs of types (yielding a type) and
packs of expressions (yielding an expression).

Previous works in this area also include P0565R0 [2], P1803R0 [5], N3761 [6] and N4235 [12].

Syntax

The general syntax is name-of-a-pack ... [constant-expression]. The syntax has the benefit
of reusing familiar elements (... usually denotes a pack expansion) and [] subscripts. That
indexing a pack expansion reuses these elements is, therefore, natural:

template <typename... T>
constexpr auto first_plus_last(T... values) -> T...[0] {

return T...[0](values...[0] + values...[sizeof...(values)-1]);
}
int main() {

//first_plus_last(); // ill formed
static_assert(first_plus_last(1, 2, 10) == 11);

}

This syntax is used by Circle and was initially proposed by P1858R2 [8].

Other syntactic options considered

The pack...[index] syntax was selected for this proposal after considering a number of other
options, some of which have been proposed by other committee members.

• pack.[index]; see N4235 [12]

• pack<index> or pack...<index>

• std::nth_type<index, pack...> or std::nth_value<index>(pack...)

• packexpr(args, I); see P1803R0 [5]

• [index]pack; see P0535R0 [14]

• Pack objects; see P2671R0 [9]

So, which syntax is the best choice?

Any syntax would be better than the status quo. However, having considered the different
options, the original choice,

2

https://wg21.link/P0565R0
https://wg21.link/P1803R0
https://wg21.link/N3761
https://wg21.link/N4235
https://wg21.link/P1858R2
https://wg21.link/N4235
https://wg21.link/P1803R0
https://wg21.link/P0535R0
https://wg21.link/P2671R0
https://twitter.com/incomputable/status/1590733659694583808

Pack...[N], still seems to be the best option, as it is straightforward and consistent with
existing pack features. What follows is a detailed analysis of the different options, but readers
who find the proposed syntax acceptable might want to skip forward to the ”Pack Index”
section.

Before arguing what the best syntax is, which is ultimately subjective, we need to understand
the constraints.

• An indexed pack can produce a type, an expression, and maybe in the future a template
template parameter, a universal template, and so on; thus we need a syntax that can
work in all contexts.

• We want a syntax that can be expanded to support slicing in the future.

• Pack elements can be array-like or tuple like, so we need to be careful about ambi-
guities. In particular, directly applying a subscript to a pack (P[i], where P is a pack)
is nonviable. Indeed, indexing a pack of arrays (ArrayPack...[index]), indexing each
array in a pack (ArrayPack[index]...), indexing a single array with a pack of indexes
(Array[IndexPack]...), and indexing each array in a pack of arrays with an index from
an (equal-length) pack of indexes (ArrayPack[IndexPack]...) are different operations,
all of which are useful. [This example] shows how, using the proposed syntax, one
can distinguish between indexing the arrays from a pack with indexes from a pack
(ArrayPack[IndexPack]...) and indexing a pack of arrayswith a pack of indexes (ArrayPack...[IndexPack]...).

pack.[index]

Historically in C++ (and C++-like languages), a single dot denotesmember access. Reusing that
syntax for pack indexing would introduce a semantics inconsistency and, more importantly,
could close the door to future evolutions.

P1858R0 [7] proposes tuple-like.[N] as syntactic sugar over get<N>(tuple-like) and aggregate.[N]
returning the Nth data member of an aggregate.

Ideally, tuple[N]would simplywork. A fewproposals have tried to improve the user-friendliness
of tuple indexing (see P2726R0 [4] and P0311R0 [13]).

We see no technical limitation to making tuple-like[N] work on types that do not otherwise
define a operator[]. P1858R2 [8] prefers .[] to [] because the paper proposes to index not
only tuple-like but also any other decomposable types, such as aggregates. An aggregate
might have an operator[] already, so disambiguating is unnecessary. Note that array-like
classes are tuple-like, but their operator[] has the same semantics as what tuple indexing
would do.

Whether tuple-indexing should be written as .[] or [] depends on whether indexing an
aggregate is a frequent enough use case to warrant a specific syntax, rather than indexing
the pack formed by unpacking an aggregate (aggregate[:] — in the syntax of P1858R2 [8],
aggregate.[N] is a shorthand for aggregate[:]...[N]).

If a shorthand syntax to index the fields of an aggregate doesn’t seem useful, then we can
index tuple-like objects with tuple[N], which would make pack.[N] up for grabs. But that does

3

https://compiler-explorer.com/z/E86h8eMG1
https://wg21.link/P1858R0
https://wg21.link/P2726R0
https://wg21.link/P0311R0
https://wg21.link/P1858R2
https://wg21.link/P1858R2

not mean we should. We see little motivation — other than availability — for using syntax
that usually denotes member access for packs.

Angle brackets

We could use angle brackets instead of square brackets, the argument, we suppose, being
argument is that <> is more template-like and that pack indexing is also template-like. However,
most languages have existing practices in which [] is to be used for both indexing and slicing.
Being consistent with existing practice doesn’t hurt. Besides, pack indexing will often occur in
angle-bracket-heavy code, so using brackets for indexing too would not look better.

std::nth_type<index, pack...> or std::nth_value<index>(pack...)

Asmentioned in themotivation section, there already exist library-only approaches to indexing
a pack in mp11, boost.hana, and other libraries. Indeed, most implementations of the C++
Standard Library contain a private metafunction or two for this purpose.

The implementations are not complicated, but they are hard to write correctly and, in non-
optimized compiles, can result in the generation of a large number of symbols and small
functions:

template <size_t Index, class P0, class... Pack>
struct __nth_type_imp
{

using type = typename __nth_type_imp<Index - 1, Pack...>::type;
};

template <class P0, class... Pack>
struct __nth_type_imp<0, P0, Pack...>
{

using type = P0;
};

template <size_t Index, class P0, class... Pack>
using nth_type = typename __nth_type_imp<Index, P0, Pack...>::type;

template <size_t Index, class T0, class... Types>
constexpr decltype(auto) nth_value(T0&& p0, Types&&... pack) noexcept
{

if constexpr (0 == Index)
return std::forward<T0>(p0);

else
return nth_value<Index-1>(std::forward<Types>(pack)...);

}

The obvious advantage of this approach is that it is implemented entirely in the library, with
no language changes necessary. However, the disadvantages are significant:

• Not only is the syntax harder to use but there are different syntaxes for packs of types
versus packs of values. A metafunction for indexing a pack of templates (not shown)

4

would have a third name and require yet another syntax.

• The recursion level for each of these facilities is O(index). The instantiations for each
index value is not re-used for other index values, so nth_type<5, pack...> and nth_-
type<6, pack...> produce 11 instantiations total, even with the same pack. Retrieving
every element of a pack of size N , requires O(N2) template instantiations. If implemented
entirely as a library, the drag on compile time can be quite large.

A compiler can reduce the instantiation expense through the use of an intrinsic, and
several compilers have implemented such intrinsics. However, there is no guarantee
that every implementation will do so. Moreover, even if the library template invoked
an intrinsic, one level of pack expansion is still needed for the indirection, making the
best-case scenario (O(index)).

• The library solution does not have a future path for treating a subset of a pack as an
unexpanded pack (slicing). Because packs are not first-class objects or types, it is doubtful
that any metafunction could yield an unexpanded pack without language changes, thus
eliminating the advantages of a library-only approach.

• The library solution would also not work for universal template parameters, as described
in P1985R1 [1].

Magic function

P1803R0 [5] proposed packexpr(pack, N), i.e., reserved-identifier(pack, N). We would need
to find an identifier that is meaningful for all types of packs (not just expressions) and is not
widely used. The identifier would most certainly have to be a globally reserved keyword (not
a contextual one), as pack indexing can appear anywhere either a type, or an expression can
appear, which is everywhere.

Perhaps packelement(pack, index)wouldwork, butwewould arguably need another identifier
for slicing.

[N]pack...

P0535R0 [14] explored putting the index before the pack, and this method would probably
work, although some looking ahead might be necessary to distinguish that syntax from that
of lambdas. We see no logic to this choice other than, again, availability.

Pack objects

P2671R0 [9] proposes a syntax (rather arbitrarily given it’s currently unused), to create a pack
object or, rather, to instruct the compiler to manipulate a pack without expanding it. The one
motivating use case is for the expansion statement, where that syntax allows us to distinguish
looping over a tuple versus looping over a pack in a nonambiguous manner. Other examples,
including pack indexing and slicing, look similar but arguably worse using this pack object
mechanism.

5

https://wg21.link/P1985R1
https://wg21.link/P1803R0
https://wg21.link/P0535R0
https://wg21.link/P2671R0

As noted, an expansion statement can be used with a pack using

template for (auto elem : std::tuple(ts...)) { ... }

Revzin observes this use is ”wasteful,” which is true, but a big part of the problem is that a
tuple is a much heavier type than it ought to be, and pack indexing is one of the tools we
need to make tuples lighter - along with forwarding references deduction and member packs.

In this model, pack! is a pack object (the syntax seems to have been chosen rather arbitrarily
on the fact it’s currently not used), and then that object can be indexed using pack![N].

The pack object can be modeled by taking a reflection of the pack and then indexing that
object splices the Nth element, as explained in P2671R0 [9]

template <std::vector<std::meta::info> V>
struct PackObject {

constexpr auto operator[](std::ptrdiff_t idx) const {
return [: V[idx] :];

}
};

This model does not explain how it would deal with packs of types, template parameters,
universal templates, and anything that is not an expression as an operator[] has to return
an expression. Note that it could arguably return a meta::info and then let the user do the
splicing itself, at which point any proclaimed syntax advantage would be lost.

We probably should discuss the concept of pack-objects, because they raise an interest-
ing question: Do we need a syntax to reflect on a pack, that would be a shorthand for
std::vector{^ts...}? Maybe? Because I think that’s the question that ”pack-objects” funda-
mentally tries to answer.

And it is true that pack indexing is equivalent to

[: std::vector{^pack...}[N] :]

And slicing can probably be emulated with

...[: std::vector{^pack...} | std::views::drop(N) | std::views::take(M)] :]...

Note that P2671R0 [9] seems to propose a slicing operator (pack[N:M]) anyway, because the
code above is not exactly terse.

Barry observes that slicing through a pack object creates more questions than it solves. If
slicing a pack creates a pack - which seems fairly obvious, does slicing a pack object create a
pack object or a pack?

Both answers seem equally justified, however, if slicing a pack object produces a pack object,
now we need another syntax to turn the pack object back into a pack, and this is how P2671R0
[9] ends up suggesting ts![1:]~... or ts![1..]~....

Which is a lot of new syntax constructs that do try to offer a consistent story. And only work
for expressions!

6

https://wg21.link/P2671R0
https://wg21.link/P2671R0
https://wg21.link/P2671R0

In terms of compile time, an implementation could either do what the paper proposes, ie
create a pack object, which includes a constexpr vector, evaluate that, and splice it to get
the resulting expression which would be less than optimal (and yet faster than any existing
solution!), or an implementation could be cleaver and treat ![N] as a single ”pack indexing”
construct, which would be efficient but would be, in effect, a pack indexing operation spelled
![] instead of ...[].

I will not claim that one is prettier than the other, but one is certainly a natural extension of
the current grammar.

Something else?

We could entertain all sorts of syntaxes that are not yet used: two dots, four dots, !, @ $, and
so on. None of them would be a logical extension of the existing grammar, and since we are
extending an existing facility, we should aim for something more justified than simply ”it’s not
yet used by something else.”

Too many dots?

One of the arguments heard against the T...[N] syntax is the ”too many dots” argument. And
it’s true that code that performs a lot of pack manipulation has numerous dots. However, the
code does make sense and is readable; e.g., see this linked implementation of tuple. A few
advantages come along with ... for pack expansions.

• Seeing at a glance which pattern is expanded and where is useful.

• The syntax of pack declarations and pack expansion has so far been rather consistent
and follows a given pattern. Multiple paper authors have come up with the same syntax
independently because it’s an obvious extension of existing syntax.

• Using ...postfix-syntax for this feature— and future pack-related features (and nothing
else) — gives us a clear, reserved design space for packs.

Allowable values for the pack index

The index of a pack indexing expression or specifier is an integral constant expression between
0 and sizeof...(pack) - 1. Empty packs can’t be indexed.

In other proposals, a negative index, -N, would be interpreted as indexing from the end of
the pack — as an alias of T...[sizeof...(T)-N]. However, a negative index could occur by
accident, yielding surprising results:

// Return the index of the first type convertible to Needle in Pack
// or -1 if Pack does not contain a suitable type.
template <typename Needle, typename... Pack>
auto find_convertible_in_pack;

// if find_convertible_in_pack<Foo, Types...> is -1, T will be the last type, erroneously.
using T = Types...[find_convertible_in_pack<Foo, Types...>];

7

https://github.com/seanbaxter/circle/blob/master/tuple/tuple.hxx

In general, incorrect computations in an index can lead to a negative value that should make
the program ill-formed but would instead yield an incorrect type.

Note, however, that Circle does support from-the-end indexing using a negative index, and
Sean Baxter reports no surprises from using this feature.

An alternative for indexing from the end is to provide a specific syntax; for example, C# uses ^
to mean ”from the end”, and Dlang interprets $ as the size of the array:

using Foo = T...[0];
using Bar = T...[^1]; // first from the end
using Bar = T...[$ - 1]; // first from the end

Given that alternatives are available, all of which can be added later and for which we do not
have usage experience, this paper does not propose from-the-end indexing.

Indexing a pack of types

Indexing a pack of types is a type specifier that can, like decltype, appear as

• a simple-type-specifier

• a base class specifier

• a nested name specifier

• the type of an explicit destructor call

Type deduction

Pack indexing specifiers should not allow deducing the pack from such an expression:

template <typename... T>
void f(T...[0]);
f(0);

However, CWG in Varna realized a way where a pack indexing type specifier could be deduced,
and is asking EWG to chime in as changing something to be deducible after the fact is always
going to be a breaking change.

Consider the following example, graciously provided by Jens Maurer:

template<class ...T>
int f(T...[0], std::tuple<T...>);
int x = f(-1, std::tuple(5u, 1));

Here T... is deduced from 5u, 1 to be unsigned, int, the first parameter of f is unsigned and
-1 is converted to unsigned.

This is what we propose.

8

But, we could imagine to instead, in that case, consider T... to be a sparse, infinitely-sized
pack of a sort - as we don’t know its size, deduced T...[0] to be int (from -1), then deduce
the remaining of the pack (here the 2nd element) from the remaining arguments, and then
check we have deduced a type for each element of the pack.

However, allowing parts of packs to be deduced only makes sense if the size of the pack is
independently deduced. Consider:

template <typename... T>
int f(T...[0], int) {

static_assert(sizeof...(T) == ???);
}
int a = f(0, 1);

Is the intent that T... is int (size 1) or int, int (size 2)? Both seem reasonable options. We
could add a rule that the size of a deduced pack is deduced to be the size of the smallest pack
that can be deduced, but this would surely notmake sense in all cases, and the implementation
costs seem impossible to justify.

So the only context in which a pack indexing specifier could be deduced seems to be when
the entire pack is otherwise deduced, or when the size of a pack is deduced independently,
which only ever happens for empty (non-indexable packs), which is awfully limited, and yet
very complex.

And this is before we consider whether this would impact partial ordering rules, which it
certainly would, for example, what should this do?

template <typename... T>
int f(T...[0], tuple<T...>); // #1

template <typename F, typename... T>
int f(F, tuple<T...>); // #2

int a = f(0, tuple{1}); // #1 or #2

We are sure there may be cases where this feature could be useful, yet we failed to come up
with genuine motivation for it. The reason for this discussion is that it would be a breaking
change to adopt something like that in a subsequent standard.

Going back to the first example, if T...[0] is not a deduced context, it will correspond to
unsigned, and if we allow it to be deduced it will be deduced to int in the first parameter and
in the second, which would be ill-formed.

In this proposal, we simply always consider pack indexing to be a non-deduced context.

Indexing a pack of expressions

The intent is that a pack indexing expression behaves exactly as the underlying expression
would. In particular, decltype(id-dexpression) and decltype(pack-index-expression) behave
the same.

9

Future evolutions

The syntax can be extended in subsequent proposals to support

• Indexing packs introduced by structured bindings or other non-dependent packs. This
should just work without further modification when both this paper and P1061R5 [10]
are both adopted.

• Indexing packs of template template parameters. To avoid confusing merge conflicts,
we aim to progress concept, variable template, and universal template parameters
before proposing indexing of template parameters packs. But our hope is to complete
the feature for C++26 so that indexing works on all kinds of packs. Packs of universal
template parameters could and should be indexed in the same way.

Other features are more evolutionary but this paper left the design open to allow coherent
design of:

• From-the-end-indexing

• Pack slicing (returning a subset of a pack as an unexpanded pack) as discussed in
P1858R0 [7] and P2632R0 [P2632R0].

• Indexing packs of arbitrary expressions, as described below.

Extending pack indexing to arbitrary expressions

In this proposal, we limit pack-index expressions to index a pack of id-expressions, which
then denotes a function parameter pack, NTTP pack or, the pack introduced by a structured
binding.

The reasons for that is that it is more readable and easier on the compiler to first index a pack,
and then construct an expression around that, rather than construct an arbitrarily complex
pattern, expand it, and reject all but one of the expanded elements - especially as substitution
failures could occur.

Nevertheless, in the presence of multiple packs, being able to index arbitrary complex might
improve code readability slightly, which would be the one motivation for this feature.

void g(auto&&);
template <typename...T>
void f(T&&... t) {

g(std::forward<T...[0]>(t...[0])); // current proposal
g(std::forward<T>(t)...[0]); // not proposed nor implemented

}

This is a possible evolution of this feature that can be explored but we should understand
what would be the viable implementation strategies so that a compiler can avoid instantiating
expressions that are not used.

10

https://wg21.link/P1061R5
https://wg21.link/P1858R0
https://wg21.link/P2632R0

Potential impact on existing code

In C++23, T... [N] is a valid syntax for declaring a function parameter matching a pack of
unnamed arrays of size N:

template <typename... T>
void f(T... [1]); //
int main() {

f<int, double>(nullptr, nullptr); // void f<int, double>(int [1], double [1])
}

Neither MSVC nor GCC supports this syntax and this pattern does not appear outside of
compiler test suites (from a search on Github, isocpp and in VCPKG). The fact that 2 major
compilers did not implement this syntax in over a decade is indicative of its lack of usefulness.

Should anyone be affected, a workaround is to name the variable:

template <typename... T>
void f(T... foo[1]);

See this linked demonstration.

Implementation

This proposal is inspired by features implemented in the Circle compiler (with the same syntax).
The provided wording is based on an implementation in a fork of Clang, which is available on
Compiler Explorer.

Wording

�? Qualified name lookup [basic.lookup.qual]

�? General [basic.lookup.qual.general]

Lookup of an identifier followed by a :: scope resolution operator considers only name-
spaces, types, and templates whose specializations are types. If a name, template-id, or
decltype-specifier computed-type-specifier is followed by a ::, it shall designate a namespace,
class, enumeration, or dependent type, and the :: is never interpreted as a complete nested-
name-specifier.

�? Names [expr.prim.id]

�? General [expr.prim.id.general]

id-expression:
unqualified-id
qualified-id
pack-index-expression

11

https://cs.github.com/
https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=...%5B&search=Search
https://godbolt.org/z/T7v3ETz1G
https://compiler-explorer.com/z/WKobTEq6x

�? Unqualified names [expr.prim.id.unqual]

unqualified-id:
identifier
operator-function-id
conversion-function-id
literal-operator-id

~ type-name

~ decltype-specifier computed-type-specifier
template-id

An identifier is only an id-expression if it has been suitably declared [dcl.dcl] or if it appears as
part of a declarator-id [dcl.decl]. An identifier that names a coroutine parameter refers to the
copy of the parameter [dcl.fct.def.coroutine].

[Note: For operator-function-ids, see ??; for conversion-function-ids, see ??; for literal-operator-
ids, see ??; for template-ids, see ??. A type-name or decltype-specifier computed-type-specifier
prefixed by ~ denotes the destructor of the type so named; see ??. Within the definition of a
non-static member function, an identifier that names a non-static member is transformed to
a class member access expression [class.mfct.non.static]. —end note]

A component name of an unqualified-id U is

• U if it is a name or

• the component name of the template-id or type-name of U , if any.

[Note: Other constructs that contain names to look up can have several component names
[expr.prim.id.qual, dcl.type.simple, dcl.type.elab, dcl.mptr, namespace.udecl, temp.param,
temp.names, temp.res]. —end note]

The terminal name of a construct is the component name of that construct that appears
lexically last.

�? Qualified names [expr.prim.id.qual]

qualified-id:
nested-name-specifier templateopt unqualified-id

nested-name-specifier:
::
type-name ::
namespace-name ::
decltype-specifier computed-type-specifier ::
nested-name-specifier identifier ::
nested-name-specifier templateopt simple-template-id ::

The component names of a qualified-id are those of its nested-name-specifier and unqualified-id.
The component names of a nested-name-specifier are its identifier (if any) and those of its
type-name, namespace-name, simple-template-id, and/or nested-name-specifier.

A nested-name-specifier is declarative if it is part of

12

• a class-head-name,

• an enum-head-name,

• a qualified-id that is the id-expression of a declarator-id, or

• a declarative nested-name-specifier.

A declarative nested-name-specifier shall not have a decltype-specifier. A declaration that uses a
declarative nested-name-specifier shall be a friend declaration or inhabit a scope that contains
the entity being redeclared or specialized.

The nested-name-specifier :: nominates the global namespace. A nested-name-specifier with a
decltype-specifier computed-type-specifier nominates the type denoted by the decltype-specifier
computed-type-specifier, which shall be a class or enumeration type. If a nested-name-specifier
N is declarative and has a simple-template-id with a template argument list A that involves
a template parameter, let T be the template nominated by N without A. T shall be a class
template.

• If A is the template argument list [temp.arg] of the corresponding template-head H
[temp.mem], N nominates the primary template of T ; H shall be equivalent to the
template-head of T [temp.over.link].

• Otherwise, N nominates the partial specialization [temp.spec.partial] of T whose tem-
plate argument list is equivalent to A [temp.over.link]; the program is ill-formed if no
such partial specialization exists.

Any other nested-name-specifier nominates the entity denoted by its type-name, namespace-
name, identifier, or simple-template-id. If the nested-name-specifier is not declarative, the entity
shall not be a template.

A qualified-id shall not be of the form nested-name-specifier templateopt ~ decltype-specifier
computed-type-specifier nor of the form decltype-specifier computed-type-specifier :: ~ type-
name.

The result of a qualified-id Q is the entity it denotes [basic.lookup.qual]. The type of the
expression is the type of the result. The result is an lvalue if the member is

• a function other than a non-static member function,

• a non-static member function if Q is the operand of a unary & operator,

• a variable,

• a structured binding [dcl.struct.bind], or

• a data member,

and a prvalue otherwise.

[Editor’s note: Add a new section after [expr.prim.id.qual]]

13

�? Pack indexing expression [expr.prim.pack.index]

pack-index-expression:
id-expression ... [constant-expression]

The id-expression P in a pack-index-expression shall be an identifier that denotes a pack.

The constant-expression shall be a converted constant expression [expr.const] of type std::size_-
t whose value V , termed the index, is such that 0 ≤ V < sizeof...(P).

A pack-index-expression is a pack expansion ([temp.variadic]).

[Note: A pack-index-expression denotes the V th element of the pack ([temp.variadic]). —end
note]

�? Unary operators [expr.unary.op]

[Editor’s note: Modify [expr.unary.op]/p10]

The operand of the ~ operator shall have integral or unscoped enumeration type. Integral
promotions are performed. The type of the result is the type of the promoted operand.
Given the coefficients xi of the base-2 representation[basic.fundamental] of the promoted
operand x, the coefficient ri of the base-2 representation of the result r is 1 if xi is 0, and 0
otherwise. [Note: The result is the ones’ complement of the operand (where operand and
result are considered as unsigned). —end note] There is an ambiguity in the grammar when

~ is followed by a type-name or decltype-specifier computed-type-specifier. The ambiguity is
resolved by treating ~ as the operator rather than as the start of an unqualified-id naming a
destructor. [Note: Because the grammar does not permit an operator to follow the ., ->, or ::
tokens, a ~ followed by a type-name or decltype-specifier computed-type-specifier in a member
access expression or qualified-id is unambiguously parsed as a destructor name. —end note]

�? Type names [dcl.name]

To specify type conversions explicitly, and as an argument of sizeof, alignof, new, or typeid,
the name of a type shall be specified. This can be done with a type-id, which is syntactically a
declaration for a variable or function of that type that omits the name of the entity.

type-id:
type-specifier-seq abstract-declaratoropt

defining-type-id:
defining-type-specifier-seq abstract-declaratoropt

abstract-declarator:
ptr-abstract-declarator
noptr-abstract-declaratoropt parameters-and-qualifiers trailing-return-type
abstract-pack-declarator

ptr-abstract-declarator:
noptr-abstract-declarator
ptr-operator ptr-abstract-declaratoropt

14

noptr-abstract-declarator:
noptr-abstract-declaratoropt parameters-and-qualifiers
noptr-abstract-declaratoropt [constant-expressionopt] attribute-specifier-seqopt
(ptr-abstract-declarator)

abstract-pack-declarator:
noptr-abstract-pack-declarator
ptr-operator abstract-pack-declarator

noptr-abstract-pack-declarator:
noptr-abstract-pack-declarator parameters-and-qualifiers
noptr-abstract-pack-declarator [constant-expressionopt] attribute-specifier-seqopt
...

[Editor’s note: The sequence ...[constant-expression] should always be treated as pack in-
dexing. However we may want to allow T(&...)[constant-expression], which is the object of
CWG1488 [11]]

[Editor’s note: [...]]

�? Simple type specifiers [dcl.type.simple]

The simple type specifiers are

simple-type-specifier:
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier computed-type-specifier
placeholder-type-specifier
nested-name-specifieropt template-name

computed-type-specifier:
decltype-specifier
pack-index-specifier

[...]

When multiple simple-type-specifiers are allowed, they can be freely intermixed with other
decl-specifiers in any order. [Note: It is implementation-defined whether objects of char type
are represented as signed or unsigned quantities. The signed specifier forces char objects to
be signed; it is redundant in other contexts. —end note]

[Editor’s note: Add a new section after [dcl.type.simple]]

�? Pack indexing specifier [dcl.type.pack.indexing]

pack-index-specifier:
typedef-name ... [constant-expression]

The typedef-name P in a pack-index-specifier shall denote a pack.

15

https://wg21.link/CWG1488

Table 1: simple-type-specifiers and the types they specify
Specifier(s) Type

type-name the type named
simple-template-id the type as defined in [temp.names]
decltype-specifier the type as defined in [dcl.type.decltype]
pack-index-specifier the type as defined in [dcl.type.pack.indexing]
placeholder-type-specifier the type as defined in [dcl.spec.auto]
template-name the type as defined in [dcl.type.class.deduct]
char “char”
unsigned char “unsigned char”
signed char “signed char”
char8_t “char8_t”
char16_t “char16_t”
...

The constant-expression shall be a converted constant expression [expr.const] of type std::size_-
t whose value V , termed the index, is such that 0 ≤ V < sizeof...(P).

A pack-index-specifier is a pack expansion ([temp.variadic]).

[Note: The pack-index-specifier denotes the type of the V th element of the pack ([temp.variadic]).
—end note]

�? Decltype specifiers [dcl.type.decltype]

decltype-specifier:
decltype (expression)

For an expression E, the type denoted by decltype(E) is defined as follows:

• if E is an unparenthesized id-expression naming a structured binding [dcl.struct.bind],
decltype(E) is the referenced type as given in the specification of the structured binding
declaration;

• otherwise, ifE is an unparenthesized id-expression naming a non-type template-parameter
[temp.param], decltype(E) is the type of the template-parameter after performing any
necessary type deduction [dcl.spec.auto, dcl.type.class.deduct];

• otherwise, if E is an unparenthesized id-expression or an unparenthesized class member
access [expr.ref], decltype(E) is the type of the entity named by E. If there is no such
entity, the program is ill-formed;

• otherwise, if E is an xvalue, decltype(E) is T&&, where T is the type of E;

• otherwise, if E is an lvalue, decltype(E) is T&, where T is the type of E;

• otherwise, decltype(E) is the type of E.

The operand of the decltype specifier is an unevaluated operand [term.unevaluated.operand].

16

[Example:

const int&& foo();
int i;
struct A { double x; };
const A* a = new A();
decltype(foo()) x1 = 17; // type is const int&&
decltype(i) x2; // type is int
decltype(a->x) x3; // type is double
decltype((a->x)) x4 = x3; // type is const double&

[](auto... pack){
decltype(pack...[0]) x5; // type is int
decltype((pack...[0])) x6; // type is int&

}(0);

—end example]

�? Classes [class]

�? Destructors [class.dtor]

In an explicit destructor call, the destructor is specified by a ~ followed by a type-name or
decltype-specifier computed-type-specifier that denotes the destructor’s class type. The invoca-
tion of a destructor is subject to the usual rules for member functions [class.mfct]; that is, if
the object is not of the destructor’s class type and not of a class derived from the destructor’s
class type (including when the destructor is invoked via a null pointer value), the program has
undefined behavior.

�? Derived classes [class.derived]

�? General [class.derived.general]

A list of base classes can be specified in a class definition using the notation:

base-clause:
: base-specifier-list

base-specifier-list:
base-specifier ...opt
base-specifier-list , base-specifier ...opt

17

base-specifier:

attribute-specifier-seqopt class-or-decltype class-or-computed-type-specifier

attribute-specifier-seqopt virtual access-specifieropt class-or-decltype
class-or-computed-type-specifier

attribute-specifier-seqopt access-specifier virtualopt class-or-decltype
class-or-computed-type-specifier

class-or-decltype class-or-computed-type-specifier:
nested-name-specifieropt type-name
nested-name-specifier template simple-template-id
decltype-specifier computed-type-specifier

access-specifier:
private
protected
public

�? Type equivalence [temp.type]

If an expression e is type-dependent [temp.dep.expr], decltype(e) denotes a unique depen-
dent type. Two such decltype-specifiers refer to the same type only if their expressions are
equivalent [temp.over.link]. [Note: However, such a type might be aliased, e.g., by a typedef-
name. —end note]

For a type template parameter pack T, T...[constant-expression] denotes a unique depen-
dent type.

If the constant-expression of a pack-index-specifier is value-dependent, two such pack-index-
specifiers refer to the same type only if their constant-expressions are equivalent [temp.over.link].

Otherwise, two such pack-index-specifiers refer to the same type only if their indexes have the
same value.

�? Variadic templates [temp.variadic]

[...]

A pack expansion consists of a pattern and an ellipsis, the instantiation of which produces
zero or more instantiations of the pattern in a list (described below). The form of the pattern
depends on the context in which the expansion occurs. Pack expansions can occur in the
following contexts:

• In a function parameter pack [dcl.fct]; the pattern is the parameter-declaration without
the ellipsis.

• In a using-declaration [namespace.udecl]; the pattern is a using-declarator.

• In a template parameter pack that is a pack expansion [temp.param]:

18

– if the template parameter pack is a parameter-declaration; the pattern is the parameter-
declaration without the ellipsis;

– if the template parameter pack is a type-parameter; the pattern is the corresponding
type-parameter without the ellipsis.

• In an initializer-list [dcl.init]; the pattern is an initializer-clause.

• In a base-specifier-list [class.derived]; the pattern is a base-specifier.

• In amem-initializer-list [class.base.init] for amem-initializer whosemem-initializer-id de-
notes a base class; the pattern is themem-initializer.

• In a template-argument-list [temp.arg]; the pattern is a template-argument.

• In an attribute-list [dcl.attr.grammar]; the pattern is an attribute.

• In an alignment-specifier [dcl.align]; the pattern is the alignment-specifier without the
ellipsis.

• In a capture-list [expr.prim.lambda.capture]; the pattern is the capturewithout the ellipsis.

• In a sizeof... expression [expr.sizeof]; the pattern is an identifier.

• In a pack-index-expression; the pattern is an identifier.

• In a pack-index-specifier; the pattern is a typedef-name.

• In a fold-expression [expr.prim.fold]; the pattern is the cast-expression that contains an
unexpanded pack.

[Example:

template<class ... Types> void f(Types ... rest);
template<class ... Types> void g(Types ... rest) {

f(&rest ...); // ``&rest ...'' is a pack expansion; ``&rest'' is its pattern
}

—end example]

For the purpose of determining whether a pack satisfies a rule regarding entities other than
packs, the pack is considered to be the entity that would result from an instantiation of the
pattern in which it appears.

A pack whose name appears within the pattern of a pack expansion is expanded by that pack
expansion. An appearance of the name of a pack is only expanded by the innermost enclosing
pack expansion. The pattern of a pack expansion shall name one or more packs that are not
expanded by a nested pack expansion; such packs are called unexpanded packs in the pattern.
All of the packs expanded by a pack expansion shall have the same number of arguments
specified. An appearance of a name of a pack that is not expanded is ill-formed. [Example:

template<typename...> struct Tuple {};
template<typename T1, typename T2> struct Pair {};

19

template<class ... Args1> struct zip {
template<class ... Args2> struct with {

typedef Tuple<Pair<Args1, Args2> ... > type;
};

};

typedef zip<short, int>::with<unsigned short, unsigned>::type T1;
// T1 is Tuple<Pair<short, unsigned short>, Pair<int, unsigned>>
typedef zip<short>::with<unsigned short, unsigned>::type T2;
// error: different number of arguments specified for Args1 and Args2

template<class ... Args>
void g(Args ... args) { // OK, Args is expanded by the function

parameter pack args
f(const_cast<const Args*>(&args)...); // OK, ``Args'' and ``args'' are expanded
f(5 ...); // error: pattern does not contain any

packs
f(args); // error: pack ``args'' is not expanded
f(h(args ...) + args ...); // OK, first ``args'' expanded within h,
// second ``args'' expanded within f

}

—end example]

The instantiation of a pack expansion considers items E1, E2, . . . , EN , where N is the number of
elements in the pack expansion parameters. Each Ei is generated by instantiating the pattern
and replacing each pack expansion parameter with its ith element. Such an element, in the
context of the instantiation, is interpreted as follows:

• if the pack is a template parameter pack, the element is an id-expression (for a non-type
template parameter pack), a typedef-name (for a type template parameter pack declared
without template), or a template-name (for a type template parameter pack declared with
template), designating the ith corresponding type or value template argument;

• if the pack is a function parameter pack, the element is an id-expression designating the
ith function parameter that resulted from instantiation of the function parameter pack
declaration; otherwise

• if the pack is an init-capture pack, the element is an id-expression designating the variable
introduced by the ith init-capture that resulted from instantiation of the init-capture pack.

WhenN is zero, the instantiation of a pack expansion does not alter the syntactic interpretation
of the enclosing construct, even in cases where omitting the pack expansion entirely would
otherwise be ill-formed or would result in an ambiguity in the grammar.

The instantiation of a sizeof... expression [expr.sizeof] produces an integral constant with
value N .

When instantiating a pack-index-expression P , let K be the index of P . The instantiation of P is
the id-expression EK .

20

When instantiating a pack-index-specifier P , let K be the index of P . The instantiation of P is
the typedef-name EK .

�? Dependent types [temp.dep.type]

[Editor’s note: Add a bullet in paragraph 7]

A type is dependent if it is

• a template parameter,

• denoted by a dependent (qualified) name,

• a nested class or enumeration that is a direct member of a class that is the current
instantiation,

• a cv-qualified type where the cv-unqualified type is dependent,

• a compound type constructed from any dependent type,

• an array type whose element type is dependent or whose bound (if any) is value-
dependent,

• a function type whose parameters include one or more function parameter packs,

• a function type whose exception specification is value-dependent,

• denoted by a simple-template-id in which either the template name is a template pa-
rameter or any of the template arguments is a dependent type or an expression that is
type-dependent or value-dependent or is a pack expansion,

• a pack-index-specifier, or

• denoted by decltype(expression), where expression is type-dependent[temp.dep.expr].

�? Type-dependent expressions [temp.dep.expr]

[Editor’s note: Add a paragraph at the end of temp.dep.expr]

A braced-init-list is type-dependent if any element is type-dependent or is a pack expansion.

A fold-expression is type-dependent.

A pack-index-expression is type-dependent if its id-expression is type-dependent.

[...]

�? Deducing template arguments from a type [temp.deduct.type]

The non-deduced contexts are:

• The nested-name-specifier of a type that was specified using a qualified-id.

• A pack-index-specifier or a pack-index-expression.

21

• The expression of a decltype-specifier.

• A non-type template argument or an array bound in which a subexpression references a
template parameter.

• A template parameter used in the parameter type of a function parameter that has a
default argument that is being used in the call for which argument deduction is being
done.

• A function parameter for which the associated argument is an overload set [over.over],
and one or more of the following apply:

– more than one function matches the function parameter type (resulting in an
ambiguous deduction), or

– no function matches the function parameter type, or

– the overload set supplied as an argument contains one or more function templates.

• A function parameter for which the associated argument is an initializer list [dcl.init.list]
but the parameter does not have a type for which deduction from an initializer list is
specified [temp.deduct.call]. [Example:

template<class T> void g(T);
g({1,2,3}); // error: no argument deduced for T

—end example]

• A function parameter pack that does not occur at the end of the parameter-declaration-list.

�? C++ and ISO C++23 [diff.cpp23]

�? Declarations [diff.cpp23.dcl.dcl]

�?
Change: [decl.array]

Previously, T...[n] would declare a pack of function parameters. T...[n] is now a pack-index-
specifier.
Rationale: Improve the handling of packs.
Effect on original feature: Valid C++23 code that declares a pack of parameter without
specifying a declarator-id becomes ill-formed.

template <typename... T>
void f(T... [1]);
template <typename... T>
void g(T... ptr[1]);

int main() {
f<int, double>(nullptr, nullptr); // ill-formed, previously void f<int, double>(int [1],
double [1])

22

g<int, double>(nullptr, nullptr); // ok
}

Feature test macros

[Editor’s note: Add a new macro in [tab:cpp.predefined.ft] : __cpp_pack_indexing set to the
date of adoption] .

Acknowledgments

We extend our appreciation to Sean Baxter for his work on Circle and to Barry Revzin for his
work on P1858R2 [8], both works being the foundation of the design presented here.

Thanks also to Lewis Baker for his valuable feedback on this paper, Nina Dinka Ranns for her
help with wording, and Lori Hughes for editing this paper.

References

[1] Gašper Ažman, Mateusz Pusz, Colin MacLean, and Bengt Gustafsonn. P1985R1: Universal
template parameters. https://wg21.link/p1985r1, 5 2020.

[2] BengtGustafsson. P0565R0: Prefix for operator as a pack generator andpostfix operator[]
for pack indexing. https://wg21.link/p0565r0, 2 2017.

[3] Corentin Jabot, Pablo Halpern, John Lakos, Alisdair Meredith, Joshua Berne, and Gašper
Ažman. P2632R0: A plan for better template meta programming facilities in c++26.
https://wg21.link/p2632r0, 10 2022.

[4] Zach Laine. P2726R0: Better std::tuple indexing. https://wg21.link/p2726r0, 11 2022.

[5] JeanHeyd Meneide. P1803R0: packexpr(args, i) - compile-time friendly pack inspection.
https://wg21.link/p1803r0, 8 2019.

[6] Sean Middleditch. N3761: Proposing type_at<>. https://wg21.link/n3761, 8 2013.

[7] Barry Revzin. P1858R0: Generalized pack declaration and usage. https://wg21.link/
p1858r0, 10 2019.

[8] Barry Revzin. P1858R2: Generalized pack declaration and usage. https://wg21.link/
p1858r2, 3 2020.

[9] Barry Revzin. P2671R0: Syntax choices for generalized pack declaration and usage.
https://wg21.link/p2671r0, 10 2022.

[10] Barry Revzin and Jonathan Wakely. P1061R5: Structured bindings can introduce a pack.
https://wg21.link/p1061r5, 5 2023.

23

https://wg21.link/P1858R2
https://wg21.link/p1985r1
https://wg21.link/p0565r0
https://wg21.link/p2632r0
https://wg21.link/p2726r0
https://wg21.link/p1803r0
https://wg21.link/n3761
https://wg21.link/p1858r0
https://wg21.link/p1858r0
https://wg21.link/p1858r2
https://wg21.link/p1858r2
https://wg21.link/p2671r0
https://wg21.link/p1061r5

[11] Richard Smith. CWG1488: abstract-pack-declarators in type-ids. https://wg21.link/
cwg1488, 3 2012.

[12] Daveed Vandevoorde. N4235: Selecting from parameter packs. https://wg21.link/n4235,
10 2014.

[13] Matthew Woehlke. P0311R0: A unified vision for manipulating tuple-like objects. https:
//wg21.link/p0311r0, 3 2016.

[14] Matthew Woehlke. P0535R0: Generalized unpacking and parameter pack slicing. https:
//wg21.link/p0535r0, 2 2017.

[P2632R0] Corentin Jabot, Pablo Halpern, John Lakos, Alisdair Meredith, Joshua Berne, and
Gašper Ažman
A plan for better template meta programming facilities in C++26
https://wg21.link/P2632R0
October 2022

[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4885

24

https://wg21.link/cwg1488
https://wg21.link/cwg1488
https://wg21.link/n4235
https://wg21.link/p0311r0
https://wg21.link/p0311r0
https://wg21.link/p0535r0
https://wg21.link/p0535r0
https://wg21.link/P2632R0
https://wg21.link/N4885

	1 Abstract
	2 Revisions
	2.1 R3
	2.2 R2
	2.3 R1
	2.4 R0

	3 Motivation
	4 Syntax
	4.1 Other syntactic options considered
	4.2 So, which syntax is the best choice?
	4.2.1 pack.[index]
	4.2.2 Angle brackets

	4.3 std::nth_type<index, pack...> or std::nth_value<index>(pack...)
	4.3.1 Magic function
	4.3.2 [N]pack...
	4.3.3 Pack objects
	4.3.4 Something else?
	4.3.5 Too many dots?

	5 Allowable values for the pack index
	6 Indexing a pack of types
	7 Type deduction
	8 Indexing a pack of expressions
	9 Future evolutions
	9.1 Extending pack indexing to arbitrary expressions

	10 Potential impact on existing code
	11 Implementation
	12 Wording
	12.1 Qualified name lookup
	12.1.1 General

	12.2 Names
	12.2.1 General
	12.2.2 Unqualified names
	12.2.3 Qualified names
	12.2.4 Pack indexing expression
	12.2.5 Unary operators

	12.3 Type names
	12.3.1 Simple type specifiers
	12.3.2 Pack indexing specifier
	12.3.3 Decltype specifiers

	13 Classes
	13.1 Destructors

	14 Derived classes
	14.1 General

	15 Type equivalence
	15.1 Variadic templates
	15.1.1 Dependent types
	15.1.2 Type-dependent expressions
	15.1.3 Deducing template arguments from a type

	16 C++ and ISO C++23
	16.1 Declarations
	16.1.1 Change:

	17 Feature test macros
	18 Acknowledgments
	19 References

