
Thread attributes
Document #: P2019R4
Date: 2023-10-15
Programming Language C++
Audience: LEWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose a way to set a thread stack size and name before the start of its execution, both
of which are, as we demonstrate, current practices in many domains.

The absence of these features make std::thread and std::jthread unfit or unsatisfactory for
many use cases.

Revisions

R4

During the review of P2019R3 [2], LEWG did not like the proposed make_with_attributes and
said they would prefer a constructor that allows both attributes and arguments, such that
attributes could be prepended to existing constructor calls of std::thread, without further
modifications. The thread_attribute base class was removed as LEWG felt that we should not
prescribe a way for implementation to detect that a type is a thread attribute.

R3

Wepropose a make_with_attributes static factory function instead of an additional constructor.
This is because LEWG expressed a slight preference for that design durting the 24th January 23
telecon. The new design, and the names should avoid confusion with the existing constructor,
and make the intent clearer.

The design section add a note on the viability of NTTP and getter and setters as these questions
came up during the meeting.

Fix some typos.

R2

Wording improvements.

1

mailto:corentin.jabot@gmail.com
https://wg21.link/P2019R3


R1

Rework the design to take a list of attributes as parameters, instead of a single type. This is
done to alleviate ABI and extensibility concerns raised by SG1.

SG1 suggested exploring a property-based design, but this ship doesn’t seem to still be sailing,
So instead there is still a constructor interface, but with a separate type for each attribute.

Both thread_name and thread_stack_size are preserved in this revision despite the mixed
feelings SG1 expressed for the thread_stack_size attribute (see polls section).

Example

The following code illustrates the totality of the proposed additions:

void f(int);
int main() {

std::jthread thread(std::thread_name("Worker"), std::thread_stack_size(512*1024), f, 42);
return 0;

}

This code suggests a thread name as well as a stack size the implementation should use when
creating a new thread of execution.

Achieving the same result in C++20 requires duplicating the entire std::thread class, which
would be difficult to fit in a Tony table.

Here is how to set the name and stack size of a thread on most POSIX implementation

int libcpp_thread_create(libcpp_thread_t *t, void *(*func)(void *),
void *arg,
size_t stack_size,
const libcpp_threadname_char_t* name)

{
int res = 0;
if(stack_size != 0) {

pthread_attr_t attr;
res = pthread_attr_init(&attr);
if (res != 0) {

return res;
}
// Ignore errors
pthread_attr_setstacksize(&attr, stack_size);
res = pthread_create(t, &attr, func, arg);
// Ignore errors
pthread_attr_destroy(&attr);

}
else {

res = pthread_create(t, 0, func, arg);
}
if (res == 0) {

// Ignore errors

2



pthread_setname_np(*t, name);
}
return res;

}

Previous Polls

SG1, July 2020 We want the ability to provide attributes to thread (full threads:
thread, jthread) constructors, even if we can’t specify their semantics fully.

Yay Nay

12 1

The name attribute.

Yay Nay

14 1

The stack size attribute.

Yay Nay

7 7

Motivation

Threads have a name

Most operating systems, including real-time operating systems for embedded platforms,
provide a way to name threads.

Names of threads are usually stored in the control structure the kernel uses to manage
threads or tasks.

The name can be used by:

• Debuggers such as GDB, LLDB, WinDBG, and IDEs using these tools

• Platforms and third-party crash dump and trace reporting tools

• System task and process monitors

• Other profiling tracing and diagnostic tools

• Windows Performance Analyzer and ETW tracing

The Visual Studio documentation for SetThreadDescription explains:

3

https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-set-a-thread-name-in-native-code?view=vs-2019


Thread naming is possible in any edition of Visual Studio. Thread naming
is useful for identifying threads of interest in the Threads window when de-
bugging a running process. Having recognizably-named threads can also be
helpful when performing post-mortem debugging via crash dump inspection
and when analyzing performance captures using various tools.

This non-exhaustive table shows that most platforms do in fact provide a way to set and often
query a thread name.

Platform At Creation After Query

Linux pthread_setname_np1 pthread_getname_np

QNX pthread_setname_np pthread_getname_np

NetBSD pthread_setname_np pthread_getname_np

Win32 SetThreadDescription2 GetThreadDescription

Darwin pthread_setname_np3 pthread_getname_np

Fuchsia zx_thread_create

Android JavaVMAttachArgs4

FreeBSD pthread_setname_np

OpenBSD pthread_setname_np

RTEMS 5 pthread_setname_np pthread_setname_np pthread_getname_np

FreeRTOS xTaskCreate pcTaskGetName

VxWorks taskSpawn

eCos cyg_thread_create

Plan 9 threadsetname6 threadsetname7

Haiku spawn_thread rename_thread get_thread_info

Keil RTX osThreadNew osThreadGetName

WebAssembly

Web assembly was the only platform for which we didn’t find a way to set a thread name.

A cursory review of programming language reveals that at least the following languages/envi-
ronments provide a way to set thread names:

Rust, Python, D , C# , Java , Raku , Swift , Qt , Folly

We also found multiple questions related to setting name thread on StackOverflow.

Thread names are also the object of a C proposal [?]

All of that illustrates that giving a name to os threads is standard practice.

Threads have a stack size

In the following, non-exhaustive table, we observe that almost all APIs across a wide range of
environments expose a stack size that can either be queried or set. The necessity for such a
parameter results from the unfortunate non-existence of infinite tape.

4

https://doc.rust-lang.org/std/thread/struct.Builder.html
https://docs.python.org/3/library/threading.html#thread-objects
https://dlang.org/phobos/core_thread_osthread.html#.Thread.name
https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread.name?view=netframework-4.8
https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html
https://docs.raku.org/type/Thread#method_name
https://doc.qt.io/qt-5/qthread.html#managing-threads
https://github.com/facebook/folly/blob/master/folly/system/ThreadName.h
https://stackoverflow.com/questions/10121560/stdthread-naming-your-thread
https://stackoverflow.com/questions/57477053/how-to-set-custom-name-of-this-thread
https://stackoverflow.com/questions/16486937/name-a-thread-created-by-beginthread-in-c


A stack size refers to the number of bytes an application can use to store variables of static stor-
age duration and other implementation-defined information necessary to store the sequence
of stack entries making the stack.

Because of that, all implementations which let a stack size be set, do so during the creation of
the thread of execution.

We observe fewer variations of APIs across platforms (compared to names) as the parameter
is a simple integer that can be no greater than the total system memory.

pthread_attr_setstacksize is part of the POSIX specification since Issue 5 (1997). However,
platforms vary in the minimum and maximum stack sizes supported.

Platform At Creation Query

Linux pthread_attr_setstacksize pthread_attr_getstacksize

QNX pthread_attr_setstacksize pthread_attr_getstacksize

Win32 CreateThread

Darwin pthread_attr_setstacksize pthread_attr_getstacksize

Fuchsia

Android pthread_attr_setstacksize pthread_attr_getstacksize

FreeBSD pthread_attr_setstacksize pthread_attr_getstacksize

OpenBSD pthread_attr_setstacksize pthread_attr_getstacksize

NetBSD pthread_attr_setstacksize pthread_attr_getstacksize

RTEMS pthread_attr_setstacksize pthread_attr_getstacksize

FreeRTOS xTaskCreate

VxWorks taskSpawn

eCos cyg_thread_create

Plan 9 threadcreate

Haiku get_thread_info

Keil RTX osThreadGetStackSize

WebAssembly pthread_attr_getstacksize

We observe that Java, Rust, Python, C#, Haskell (through a compile-time parameter), D, Perl,
Swift, Boost, Qt support constructing threads with a stack size.

There are many reasons why a program may need to set a stack size:

• Ensuring a consistent stack size across platforms for portability and reliability as some
applications are designed to be run with a specific amount of stack size.

More generally, such inconsistencies are a source of bugs and expensive testing.

• Ability to use less than the platform default (usually 1MB on windows, 2MB on many
Unixes), which, when not used is a waste (on systems without virtual memory), especially
if a large number of threads is started.

5

https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#Thread()
https://doc.rust-lang.org/std/thread/struct.Builder.html
https://docs.python.org/3/library/threading.html
https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread.-ctor?view=netframework-4.8#System_Threading_Thread__ctor_System_Threading_ParameterizedThreadStart_System_Int32_
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/runtime_control.html
https://dlang.org/phobos/core_thread_osthread.htm
https://perldoc.perl.org/threads.html#THREAD-STACK-SIZE
https://www.boost.org/doc/libs/1_72_0/doc/html/thread/thread_management.html#thread.thread_management.tutorial.attributes
https://doc.qt.io/qt-5/qthread.html#setStackSize


• Some applications will set a larger stack trace for themain thread, which is then inherited
by spawn threads, which might be undesirable.

• Some applications, notably big games, and other large applications will require a stack
larger than the default.

Motivation for standardization

Libc++ std::thread implementation is (very approximately) 1000 lines of code. Because stack
size needs to be set before thread creation, an application wishing to use a non-default stack
size has to duplicate that effort.

We found threads classes supporting names and stack size in many open source projects,
including POCO, Chromium, Firefox, LLVM, Bloomberg Basic Development Environment, Folly,
Intel TBB, Tensorflow... In many cases, these classes are very similar to std::thread, except
they support a stack size.

Like thread names, adding this support to std::thread would be standardizing existing prac-
tices.

People working on AAA games told us that the lack of stack size support prevented them to
use std::thread, which therefore fails to be a vocabulary type. As such this proposal is more
about rounding an existing feature rather than proposing a new one.

FAQ

In which we try to answer all the questions we heard about this proposal

What about queries?

We observe that

• It is rarely useful to query the stack size (except to assert that it is in a range acceptable
to the application).
Querying the stack size could be done by storing a std::size_t within the std::thread
instance, which is rather cheap, but we still don’t think it is worth it.

• It is rarely useful to query the thread name, nor is there a portable way to do so (some
platforms have API to do that). Use cases for querying a thread name include printing
stack traces [4]

• It is also more difficult to design a query API for the name that would not pull in <string>

• While less convenient facility, it is at least possible to query available properties after
creation from native_handle.

6



Threads should have names??? What next, mutex should have a name? vector?

Naming threads is standard practice across many operating systems and environments. This
proposal merely proposes to expose this widely available and used system feature. We
observe that it is common for threads to have names as processes do.

Windows indeed has the concept of named mutexes which are used to share mutexes across
processes. However, std::mutex is not intended to be shared across processes and as such
does not need a name nor should it have one. A quick review of platforms reveals that it is
not standard practice to use a mutex across processes (many UNIX systems rely on lock files).

std::vector and other C++ objects are not visible outside the program, except by debuggers
which can identify them by their identifiers. Giving them a name would make little sense.

I don’t need that and don’t want to pay for it

None of the proposed attributes is stored in the thread object nor in any object associated
with the thread or its associated thread object. The proposed thread::attribute object can
be destroyed after the thread creation. The behavior of preexisting constructors remains
unchanged.

On many implementations, including Linux, the space for the thread name is allocated re-
gardless of whether it is used or not.

It’s an ABI break ???

No. Because none of the attributes is stored in the thread or its associated std::thread object,
the ABI is not changed. We proposed adding a single template constructor.

We cannot speak about stack size in the standard?

There exist a POSIX function that makes the wording more palatable. Setting a stack size
insufficient for the correct execution of a well-formed program isn’t different than if the default
stack size is insufficient ([intro.compliance])

This is not something that the committee has the bandwidth to deal with?

We spent resources standardizing 2 (!) thread classes, which are not used in many cases. This
proposal will help more people use std::thread.

The author of this proposal is aware of the limited resources of the committee, and that
informed the design. The cost of re-implementing classes similar to std::thread is great for
the industry.

I cannot implement that on my platform?

Here is a conforming minimal implementation

7



namespace std {

struct thread_name {
constexpr thread_name(std::string_view str) noexcept {};
constexpr thread_name(std::u8string_view str) noexcept {};

};

struct thread_stack_size {
constexpr thread_stack_size(std::size_t) noexcept {}

};

This belongs in a library?

Because the proposed attributes may need to be set during the thread creation, a library
would have no choice but to reimplement all of std::thread. Besides the cost of doing
that implementation, it poses composability challenges (cannot put a custom_thread in a
std::thread_poool for example)

What about GPU threads?

While std::thread has no mechanism to specify an execution context, an implementation that
wishes to use std::thread on a GPU or other hardware could ignore all attributes or the ones
not relevant on their platform.

What about other properties

Depending on platforms, threads may have

• A CPU affinity such that they are only executed on a given CPU or set of CPU

• A CPU preference such that they preferentially executed on a given CPU

• A priority compared to the thread in the process

• A priority compared to threads in the system

The meaning of each value and parameter has more variation across implementations, as it
is tied to the scheduler or the system.

It is also less generally useful and mostly used in HPC and embedded platforms, where there
is the greatest variety of implementation.

As such, thread priorities and other properties are not proposed in this paper. However, the
API is designed to allow adding support for more properties in the future.

Note that priorities can often be changed after the thread creation making it easier for third
parties libraries to support thread priorities.

8



Proposed design

Constraints

• Some environments do not support naming threads.

• Thread names can be either narrow encoded or, in the case of win32, Unicode (UTF-16)
encoded

• There is a platform-specific limit on thread name length (15(+1) on Linux, 32K onwindows)

• All platforms expect names to be null-terminated.

• Some platforms set the name during the thread creation, while on Darwin (and plan 9)
it can only be set in the thread in which the name is set.

• The stack size is always set prior to the thread creation.

• Platforms have minimum and maximum stack sizes that are not always possible to
expose

• Implementation may allocate more stack size than requested (it is usually aligned on a
memory page)

• Implementation may ignore stack size requests

• On some platforms, the thread stack size is not configurable.

• On some platforms, the thread stack size is not query-able.

• Defining these features in terms of wording may be challenging.

• Users who do not care about these features should not have to pay for it

Design

We propose to modify the constructor of std::thread and std::jthread so that thread at-
tributes can be passed before the invocable. This allows adding attribute without modifying
the rest of the code.

Having separate types for individual attributes alleviates ABI concerns, and makes extension
easier. Individual attributes - which only serve to hold a value, have constexpr constructors
so they can be cheaply initialized.

Supporting both attributes and arguments in the same function call will require implemen-
tation some meta programming contortion to extract the different parameters (attribute,
invocable, arguments). This is made slightly easier by pack indexing (P2662R2 [3]) [Compiler
Explorer].

thread_namemakes a copy of this argument and supports non-null terminated strings, and u8
strings, as to portably support environments with utf-8 execution encodings (Linux), environ-
ments where Unicode encodings can be preserved (Windows), and other environments.

9

https://wg21.link/P2662R2
https://compiler-explorer.com/z/n8vYb7Tar
https://compiler-explorer.com/z/n8vYb7Tar


This interface ismade possible by the realization that lambdas alleviate the needs for (j)thread
to support parameter forwarding, and so we don’t need attributes + function + arguments
but just function + attributes.

What about using NTTP?

During this review of this paper, it was suggested we could pass thread attributes as NTTP.
However, in many cases these attributes may depend on runtime values (thread names
depending on a counter would be a good example of that).

Can we add setters/getters later?

As explained, this would not be portable, however it would be possible to add the interface to
support these later:

class thread {
template <typename Attr>
auto get_attribute() -> optional<typename Attr>;
template <typename Attr>
auto set_attribute(Attr);

};

This might require to extend attributes with (static, constexpr) members specifying

• Whether they can be retrieved/read after construction

• Whether they can be set

• The type of the attribute (int, string, etc), as returning the attribute itself may not be the
best way to interact with its value

This would allow to place better compile-time constraints:

class thread {
template <typename Attr>
requires is-readable-attribute
auto get_attribute() -> optional<typename Attr::value_type>;
template <typename Attr>
requires is-settable-attribute
auto set_attribute(Attr);

};

In that design, the attributes types are then only used by the getter as a tag to indicate to the
implementation which attribute to return.

This could be added later (and isn’t ABI breaking).

Implementation

A prototype implementation for libc++ (supporting only POSIX) threads has been created to
validate the design. This is available on Compiler explorer, but of limited usefulness in the

10

https://github.com/cor3ntin/llvm-project/tree/corentin/thread_name_p2019
https://compiler-explorer.com/z/MzGsndc7W


absence of debugging tools.

Alternatives considered

P0320R1 [1]

P0320R1proposes thread::attributesholding a set of attributes thatwould all be implementation-
defined (the standard would specify no attributes). This puts the burden on the user to check
which attributes are present, presumably using #ifdef. We feel very strongly that such an
approach fails to improve portability and only improves the status quo marginally. There is
little value in standardizing a class without standardizing its members.

A class is also less extensible and portable than individually declared attributes and poses
more ABI concerns.

Moreover, it proposes a get_attributes() function which would returned an implementation-
defined object with all the supported attributes of that platform. The problem is that not all
attributes that can be set can be queried (and reciprocally), and that interface would force
and implementation to return all the attributes it supports, which is wasteful (would have to
allocate for the name if a user wants to check the stack size).

P0484R1

P0484 proposes several solutions in the same design space:

• A constructor taking a native handle as a parameter

std::thread thread::thread(native_handle_type h);

This is probably a good idea, regardless of the attributes presented here, to interface
with C libraries or third-party code.

This solves the problem of having to rewrite an entire thread class just to set a stack size.
However, it would still be painful to do so portably, as described in P0484. A standard
library that targets a limited number of platforms can set the attributes more easily than
a library that may desire to work in an environment where C++ is deployed.

• A factory function for creating a thread with attributes

template <class F, class ... Args>
unicorn<std::thread, ??> make_with_attributes(thread::attributes, F && f, Args && ...

args);

We think this is trying to solve two problems:

– Threads cannot be used without exceptions support

– Some users want the stack size to be guaranteed

11

https://wg21.link/P0320R1


We are sympathetic to the first concern, however, it seems orthogonal to thread at-
tributes. If a unicorn type (expected?) or a cheaper exceptionmechanism is ever standard-
ized, such a factory function will be welcome, but it doesn’t prevent a thread constructor
to support attributes. As for guaranteed stack size:

– Some platforms do not support stack size at all - doesn’t mean they won’t use the
desired amount

– Some platforms may ignore stack size requests silently

– Some platforms may allocate more than request to align with memory pages

– Trying to check after the thread has started is not possible (aka it would throw an
exception even though the new thread has started)

As such, we allow but do not require an implementation to throw when a stack size
request cannot be fulfilled.

Wording

�? Threads [thread.threads]

�? General [thread.threads.general]

?? describes components that can be used to create and manage threads. [Note: These
threads are intended to map one-to-one with operating system threads. —end note ]

�? Header <thread> synopsis [thread.syn]

#include <compare> // see ??

namespace std {

class thread_name;
class thread_stack_size;

// ??, class thread
class thread;

void swap(thread& x, thread& y) noexcept;

// ??, class jthread
class jthread;

// ??, namespace this_thread
namespace this_thread {

thread::id get_id() noexcept;

void yield() noexcept;

12



template<class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& rel_time);

}
}

�? Thread Attributes [thread.attributes]

Thread attributes can be used to define additional implementation-defined behaviors on a
thread or jthread object.

�? Class thread_name [thread.thread.name.class]

class thread_name {
public:

constexpr thread_name(std::string_view name) noexcept;
constexpr thread_name(std::u8string_view name) noexcept;

private:
implementation-defined __name[implementation-defined]; // exposition only

};

Recommended practice:

The thread_name thread attribute, can be used to set the name of a thread such that the name
could be used for debugging or platform-specific display mechanisms. The name should not
be stored in the std::thread or std::jthread object.

constexpr thread_name(std::string_view name) noexcept;
constexpr thread_name(std::u8string_view name) noexcept;

Effects: Initializes __name with name in an implementation-defined manner.

Recommended practice: If __name is not large enough to store the value of name, the thread
name might be truncated. If the implementation performs a text conversion during the
initialization of __name and if name is a valid code unit sequence in the encoding associated
with its type, __name should be a valid code unit sequence in its associated encoding.

�? Class thread_stack_size [thread.thread.stack.size.class]

class thread_stack_size {
public:

constexpr thread_stack_size(std::size_t size) noexcept;
private:

constexpr std::size_t __size; // exposition only
};

Recommended practice: Configure a desired stack size as if by POSIX pthread_attr_setstacksize().
The stack size set by the implementationmay be adjusted up or down tomeet platform-specific
requirements

13



If __size == 0 is true the thread attribute should be ignored.

constexpr thread_stack_size(std::size_t size) noexcept;

Effects: Initializes __size with size in an implementation-defined manner.

�? Class thread [thread.thread.class]

�? General [thread.thread.class.general]

The class thread provides a mechanism to create a new thread of execution, to join with a
thread (i.e., wait for a thread to complete), and to perform other operations that manage
and query the state of a thread. A thread object uniquely represents a particular thread of
execution. That representation may be transferred to other thread objects in such a way that
no two thread objects simultaneously represent the same thread of execution. A thread of
execution is detached when no thread object represents that thread. Objects of class thread
can be in a state that does not represent a thread of execution. [Note: A thread object does
not represent a thread of execution after default construction, after being moved from, or
after a successful call to detach or join. —end note ]

namespace std {
class thread {

public:
class thread::id;
class id;
using native_handle_type = implementation-defined; // see ??

// construct/copy/destroy
thread() noexcept;
template<class F, class... Args> explicit thread(F&& f, Args&&... args);

~thread();
thread(const thread&) = delete;
thread(thread&&) noexcept;
thread& operator=(const thread&) = delete;
thread& operator=(thread&&) noexcept;

// ??, members
void swap(thread&) noexcept;
bool joinable() const noexcept;
void join();
void detach();
id get_id() const noexcept;
native_handle_type native_handle(); // see ??

// static members
static unsigned int hardware_concurrency() noexcept;

};
}

14



�? Constructors [thread.thread.constr]

template<class F, class... Args>
explicit thread(F&& f, Args&&... args);

Constraints:

• sizeof...(Args) > 0 is true, and

• remove_cvref_t<F Args[0]> is not the same type as thread.

• Let i be the smallest value such that decay_t<Args...[i]> is not a thread attribute type.
[Editor’s note: We need to define that]

If no such i exists, the programm is ill-formed.

• Let F be Args...[i].

• Let f be args...[i].

• Let attrs a pack of the expressions args...[j] for each j such that 0 ≤ j < i.

• Let FArgs a pack of the types Args...[j] for each j such that i ≤ j ≤ sizeof...(args).

• Let fargs apack of the expressions args...[j] for each j such that i ≤ j ≤ sizeof...(args).

Mandates: The following are all true:

• is_constructible_v<decay_t<F>, F>,

• (is_constructible_v<decay_t<Args>, Args> && ...),

• is_move_constructible_v<decay_t<F>>,

• (is_move_constructible_v<decay_t<Args>> && ...), and

• is_invocable_v<decay_t<F>, decay_t<FArgs>...>. , and

• No type is present more than once in the pack remove_cvref_t<Attrs>. [Editor’s note:
// is there a better way to say that ?]

Preconditions: decay_t<F> and each type in decay_t<Args>meet the Cpp17MoveConstructible
requirements

Effects: The new thread of execution executes

invoke(decay-copy(std::forward<F>(f)), decay-copy(std::forward<FArgs>(fargs))...)

with the calls to decay-copy being evaluated in the constructing thread. Any return value
from this invocation is ignored. [Note: This implies that any exceptions not thrown from
the invocation of the copy of f will be thrown in the constructing thread, not the new
thread. —end note ] If the invocation of invoke terminates with an uncaught exception,
terminate is called.

attrs can be used to tailor the thread with additional implementation-defined behaviors.
(see [thread.attributes]).

15



Synchronization: The completion of the invocation of the constructor synchronizes with
the beginning of the invocation of the copy of f.

Postconditions: get_id() != id(). *this represents the newly started thread.

Throws: system_error if unable to start the new thread.

Error conditions:

• resource_unavailable_try_again — the system lacked the necessary resources to
create another thread, or the system-imposed limit on the number of threads in a
process would be exceeded.

jthread

[Editor’s note: TODO: exact same wording as for thread] .

Feature test macros

[Editor’s note: Add a new macro in <version>, <thread>: __cpp_lib_thread_attributes set to
the date of adoption] .

Acknowledgments

Thanks to Martin Hořeňovský, Kamil Rytarowski, Clément Grégoire, Bruce Dawson, Patrice
Roy, Ronen Friedman, Billy Baker, and others for their valuable feedback.

Thanks to Tomasz Kamiński, as well as Jonathan Wakely and Mathias Stearn for their wording
suggestions.

References

[1] Vicente J. Botet Escriba. P0320R1: Thread constructor attributes. https://wg21.link/
p0320r1, 10 2016.

[2] Corentin Jabot. P2019R3: Thread attributes. https://wg21.link/p2019r3, 5 2023.

[3] Corentin Jabot and Pablo Halpern. P2662R2: Pack indexing. https://wg21.link/p2662r2, 7
2023.

[4] Antony Polukhin and Antony Polukhin. P0881R5: A proposal to add stacktrace library.
https://wg21.link/p0881r5, 6 2019.

[P0484R1] Patrice Roy, Billy Baker Enhancing Thread Constructor Attributes – An Exploration of
the Design Space
https://wg21.link/P0484R1

16

https://wg21.link/p0320r1
https://wg21.link/p0320r1
https://wg21.link/p2019r3
https://wg21.link/p2662r2
https://wg21.link/p0881r5
https://wg21.link/P0484R1


[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4892

17

https://wg21.link/N4892

	1 Abstract
	2 Revisions
	2.1 R4
	2.2 R3
	2.3 R2
	2.4 R1

	3 Example
	4 Previous Polls
	5 Motivation
	5.1 Threads have a name
	5.2 Threads have a stack size

	6 Motivation for standardization
	7 FAQ
	7.1 What about queries?
	7.2 Threads should have names??? What next, mutex should have a name? vector?
	7.3 I don't need that and don't want to pay for it
	7.4 It's an ABI break ???
	7.5 We cannot speak about stack size in the standard?
	7.6 This is not something that the committee has the bandwidth to deal with?
	7.7 I cannot implement that on my platform?
	7.8 This belongs in a library?
	7.9 What about GPU threads?
	7.10 What about other properties

	8 Proposed design
	8.1 Constraints
	8.2 Design
	8.2.1 What about using NTTP?
	8.2.2 Can we add setters/getters later?


	9 Implementation
	10 Alternatives considered
	10.1 P0320R1 P0320R1
	10.2 P0484R1

	11 Wording
	12 Threads
	12.1 General
	12.2 Header <thread> synopsis
	12.3 Thread Attributes
	12.3.1 Class thread_name
	12.3.2 Class thread_stack_size

	12.4 Class thread
	12.4.1 General
	12.4.2 Constructors


	13 jthread
	14 Feature test macros
	15 Acknowledgments

