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Unconditional termination is a serious problem 

Bjarne Stroustrup 

P2521R2 entitled “Contract support — Working Paper” allows just two translation modes: 

• No_eval: compiler checks the validity of expressions in contract annotations, but the 

annotations have no effect on the generated binary. Functions appearing in the predicate are 

odr-used.  

• Eval_and_abort : each contract annotation is checked at runtime. The check evaluates the 

corresponding predicate; if the result equals false, the program is stopped an error return value. 

[The grammatical error is copied rather than corrected.] 

This renders such contracts unusable for run-time checking in programs that are not allowed to 

unconditionally terminate. In particular, it renders libraries, such as the standard library, unusable in 

programs that are not allowed to unconditionally terminate if such contracts are used as 

Eval_and_abort in their implementation. Consequently, the use of such contracts must be opposed for a 

large number of libraries that might otherwise be useful in such programs. 

Programs that may not unconditionally terminate are not uncommon, some are foundational, others are 

critical applications. In most cases, such code has strict requirements for reliability and performance – it 

is a kind of code that can benefit significantly from the use of contracts. Supporting such code was a 

major reason for my work on contracts pre-C++20 (e.g., P0542R5). 

Just turning off run-time checking of contracts for such programs is not a general solution. We cannot be 

100% sure that “the last bug” has been found and a major rationale for contracts is to move checking of 

invariants from “random code” to more formal and easily identified contracts. Separating contracts into 

those that we’d like to be run-time checked in production from those we’d like just for debugging 

and/or for static analysis is hard to scale. 

In addition, there will always remain a residue of tests needed to offer some protection against wholly 

unanticipated software errors and hardware malfunctions. The question is whether tests are contracts 

or “ordinary code.” Ada SPARK may be the most widely used contract system in critical applications; it 

uses exceptions to report run-time contract violations. Ada2002 has adopted that into the standard in 

the form or the Assertion_error exception. Having tests that can become run-time as contracts means 

that they are distinguished from “ordinary logic” and available to static analyzers. 

A contract violation is best handled by a separate system (a different process, or better yet, a separate 

processor). However, there isn’t always a second separate “system” to which we can delegate the 
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handling of the “fatal” error, so we must somehow proceed. The Linux kernel is one such example. I 

have seen critical financial systems that are not allowed to terminate unconditionally because that 

might leak objects representing financial entities. Examples that I have heard of but not personally 

experienced tend to come from relatively small critical embedded systems, such as scuba equipment.  

Could we delegate the management of such problems to termination handlers? No. That would 

compromise the necessary simplicity of the termination handlers and force termination handlers to 

distinguish between different kinds of terminations: 

 if (real_termination) { 
  // … really terminate … 
 } 
 else if (initialize_and_restart) { 
  // … 
 } 
 else if (report_and_terminate) { 
  // … 
 } 
 else if (something_else) { 
  // … 
 } 
 else { 
  // … really terminate … 
 } 
 
This looks bad, but I’m confident that some resulting messes will be worse. Termination handlers would 
have to deal with the messy issues that couldn’t be expressed by an inadequate contracts design. 
 
The P2521R2 design has been characterized as “minimally viable.” It may be minimal, but it is not viable. 

It fails to address a class of important motivational use cases. I consider it “sub-minimal.” I don’t usually 

quote Linus Torvalds but have a look what he (in his usual polite way) says about unconditional 

termination in the Linux kernel: https://lkml.org/lkml/2022/9/19/1105 . The Linux kernel is not the only 

such case. 

It has been said that the P2521R2 design is minimal and can be improved by later additions, such as 

adding a mechanism to address the concerns articulated here. I don’t think that is realistic. If P2521R2 

was added to C++ the odds are that the motivation for further improvements will be less and that any 

proposal involving a fundamental extension would fail or be bogged down in controversies for years. 

This would prevent the use of the “minimal viable” contracts in key code bases.  A mechanism for not 

terminating after a contract violation is part of any minimally acceptable contract design. 

Alternatives 

Give the system builder a choice and the programmer an opportunity to express it in code. Here is a 

simple design that I and others have used for code that needed to run under different rules of error 

handling (in the absence of contracts): 

https://lkml.org/lkml/2022/9/19/1105
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// error-handling alternatives: 
enum class Error_action { ignore, throwing, terminating, logging };  
 
constexpr Error_action default_Error_action = Error_action::throwing; // a default 
 
enum class Error_code { range_error, length_error };  // individual errors 
 
string error_code_name[] { "range error", "length error" }; // names of individual errors 
 
template<Error_action action = default_Error_action, class C> 
constexpr void expect(C cond, Error_code x) // take "action" 

// if the expected condition "cond" doesn't hold 
{ 
    if constexpr (action == Error_action::logging) 
        if (!cond()) std::cerr << "expect() failure: " << int(x) << ' ' <<error_code_name[int(x)]<<'\n'; 
    if constexpr (action == Error_action::throwing) 
        if (!cond()) throw x; 
    if constexpr (action == Error_action::terminating) 
        if (!cond()) terminate(); 
    // or no action 
} 

 
A use: 

double& Vector::operator[](int i) // not std::vector 
{ 
 expect([i,this] { return 0<=i && i<size(); }, Error_code::range_error); 
 return elem[i]; 
} 
 

This is an example and an illustration, and obviously not a proposal for the standard. 

One possible remediation of P2521R2 would seem to be to add a third alternative to the possible 

actions after a violation: 

• Eval_and_throw: each contract annotation is checked at runtime. The check evaluates the 

corresponding predicate; if the result equals false, an exception is thrown. 

Obviously, this option would not be used by people rejecting all uses of exceptions. 

Assuming that exceptions are usable for reporting contract violations, design questions will include 

• How is the exception to be thrown chosen? In particular, is there a way to have different 

contracts throw different exceptions? 

• How do you set the action used for a program? The uses I have seen rely on there being a 

default action in a program, but that that action can be changed in one place (e.g., from debug 

behavior to minimal run-time checking, to no checking) to address changing needs during 

development and deployment. 
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• Should it be possible to overrule the default action for a specific contract? That option is allowed 

for expect() where it was used for things like controlling the effect of range errors separately 

from other violations. 

Please note that I am not re-opening the discussion about continuation of execution past the point of 

violation. C++ exceptions are not resuming. Nor am I suggesting that it should be possible to modify the 

method of violation handling at run time. 

Noexcept shows the problem 

A noexcept can be seen as a contract that no exception is thrown out of the noexcept function. More 

specifically, noexcept is a kind of postcondition: this function will return. A noexcept turns a throw into 

a termination. This has repeatedly led to crashes when people overenthusiastically sprinkled noexcept 

over code in hope of performance or simplicity but missed some possible exception throws. Obviously, 

people shouldn’t overuse noexcept in this way in code that is not supposed to terminate 

unconditionally. However, people have caused crashes in programs that didn’t use to crash.  

Contracts are more complex than noexcept in that they depend on run-time properties if run-time 

evaluated and are potentially more plentiful than noexcept. This limits the use of contracts in noexcept 

functions or the use of noexcept functions in programs that may not unconditionally terminate. In 

addition, could introduce crashes in programs that traditionally used recovery strategies. Given the 

experience with noexcept, we must expect run-time checked contracts to become a source of crashes. 

Such crashes must be made avoidable to allow wide use of contracts. 

I would like to 

• see contracts widely used, including in the implementations of widely used libraries (to help 

static analysis, to catch problems at run time, and to separate assumptions from ordinary 

conditional actions). 

• be able to recover from serious errors that can be caught only at run time, such as range errors, 

and recover from them at least to the point of recording that the error happened and restoring 

the system to a safe state. 

In the discussions leading up to the C++20 contracts (withdrawn at the last minute), it was made clear 

that exceptions couldn’t escape a noexcept function. I agree with that decision; it does not seem 

practical to have a special rule for exceptions thrown from contracts. 

This complicates solutions to the classical problem of specifying (the now noexcept) vector::operator[] 

using a contract. In one case, we wrapped every use of vector::operator[]  in access functions using 

expect() in access operators of more specialized contains to express preconditions, hoping that no time-

travel optimizations would defeat our efforts. 
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