
Updated wording and implementation experience for

P1481 (constexpr structured bindings)
Document #: P2686R0
Date: 2022-10-15
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

P1481R0 [1] proposed to allow reference to constant expressions to be themselves con-
stant expressions, as a means to support constexpr structured bindings. This paper reports
implementation experience on this proposal and provides updated wording.

Context

The context for this paper can be found in P1481R0 [1]. I was not aware to reach the original
author, nor do I have the possibility to reproduce the original paper.

The gist of it is that the original author proposed to support constexpr structured binding by
making

constexpr auto[a] = std::tuple(1);

Equivalent to

constexpr auto __sb = std::tuple(1);
const int& __a = std::get<0>(__sb);

Additional motivation

In addition to the original motivation, if we believe structured bindings are useful (they are,
great feature!) and we also believe in constexpr (as a means to increase type safety, improve
runtime performance, etc), then both features ought to work together.

In addition to that, Expansion Statements (P1306R1 [2]) aim to add a new kind of for loop with
the express purpose to loop over tuples at compile time.

auto tup = std::make_tuple(0, ‘’a, 3.14);
// ill-formed without this paper
template for (constexpr auto [idx, member] : std::views::enumerate(meta::data_members_of(^T)))

fmt::print("{} {}", idx, foo.[:member:]);

1

mailto:corentin.jabot@gmail.com
https://wg21.link/P1481R0
https://wg21.link/P1481R0
https://wg21.link/P1306R1

History

Interestingly, this paper was last seen in Kona in 2020. The concerns were

• Lack of implementation

• It was presented late in the C++20 cycle

Encourage further work on this proposal
SF F N A SA

9 16 4 0 0

This paper thereby provides an implementation. I’ve also update the wording as CWG rewrote
the impacted section, and added the wording to support the constexpr keyword on structured
bindings declarations.

Implementation

Circle

Circle implements constexpr structured bindings - and generally supports initializing refer-
ences with constant expressions, and Sean Baxter was not aware that the standard didn’t
support it. Sean further observed that this is a core language syntactic sugar and as such,
users could expect it to work everywhere.

Clang

I implemented a prototype implementation in the hope to weed out issues. It is available on
Compiler Explorer.

Please note that by lack of time, I have not yet published the last version of the implementation,
but that should hopefully be done before Kona.

I don’t think the implementation revealed particular issues (myown inaptitudes non-withstanding),
I, however, believe [basic.odr] might need to be tweaked.

A variable x that is named by a potentially-evaluated expression E is odr-used
by E unless x is a reference that is usable in constant expressions ([expr.const]).

I don’t think this is sufficient. Consider for example,

void foo() {
const int a = 1;
const int& b = a;
auto l = [] { return b; }; // we should not capture b implicitly here,

// even if b is usable in constant expressions
}

2

https://godbolt.org/z/dWWxcEEf9

In my prototype, I check that the initializer of the reference is itself a constant expression,
and that seems to work.

Wording

�? Constant expressions [expr.const]

A variable is potentially-constant if it is constexpr or it has reference or const-qualified integral
or enumeration type.

A constant-initialized potentially-constant variable V is usable in constant expressions at a point
P if V ’s initializing declaration D is reachable from P and

• V is constexpr or it is of reference type initialized with a core constant expression,

• V is not initialized to a TU-local value, or

• P is in the same translation unit as D.

An object or reference is usable in constant expressions if it is

• a variable that is usable in constant expressions, or

• a template parameter object, or

• a string literal object, or

• a temporary object of non-volatile const-qualified literal type whose lifetime is extended
to that of a variable that is usable in constant expressions, or

• a non-mutable subobject or reference member of any of the above.

�? Structured binding declarations [dcl.struct.bind]

A structured binding declaration introduces the identifiers v0, v1, v2, . . . of the identifier-list
as names of structured bindings. Let cv denote the cv-qualifiers in the decl-specifier-seq and S
consist of the constexpr and storage-class-specifiers of the decl-specifier-seq (if any). A cv that in-
cludes volatile is deprecated; see ??. First, a variablewith a unique name e is introduced. If the
assignment-expression in the initializer has array type cv1 A and no ref-qualifier is present, e is de-
finedby attribute-specifier-seqopt S cv A e ;

and each element is copy-initialized or direct-initialized from the corresponding element of
the assignment-expression as specified by the form of the initializer. Otherwise, e is defined as-
if by attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt e initializer ;

where the declaration is never interpreted as a function declaration and the parts of the
declaration other than the declarator-id are taken from the corresponding structured binding
declaration. The type of the id-expression e is called E. [Note: E is never a reference type. —end
note]

3

If the initializer refers to one of the names introduced by the structured binding declaration,
the program is ill-formed.

If E is an array type with element type T, the number of elements in the identifier-list shall
be equal to the number of elements of E. Each vi is the name of an lvalue that refers to the
element i of the array and whose type is T; the referenced type is T. [Note: The top-level
cv-qualifiers of T are cv. —end note] [Example:

auto f() -> int(&)[2];
auto [x, y] = f(); // x and y refer to elements in a copy of the array return

value
auto& [xr, yr] = f(); // xr and yr refer to elements in the array referred to

by f's return value

—end example]

�? The constexpr and consteval specifiers [dcl.constexpr]

The constexpr specifier shall be applied only to the definition of a variable or variable template,
a structured binding, or the declaration of a function or function template. The consteval
specifier shall be applied only to the declaration of a function or function template. A function
or static data member declared with the constexpr or consteval specifier is implicitly an inline
function or variable. If any declaration of a function or function template has a constexpr or
consteval specifier, then all its declarations shall contain the same specifier.

Feature test macros

[Editor’s note: In [tab:cpp.predefined.ft], bump __cpp_structured_bindings to the date of
adoption] .

Acknowledgments

We would like to thank Bloomberg for sponsoring this work. Thanks to Nicolas Lesser for the
original work on P1481R0 [1].

References

[1] Nicolas Lesser. P1481R0: constexpr structured bindings. https://wg21.link/p1481r0, 1
2019.

[2] Andrew Sutton, SamGoodrick, and Daveed Vandevoorde. P1306R1: Expansion statements.
https://wg21.link/p1306r1, 1 2019.

[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4885

4

https://wg21.link/P1481R0
https://wg21.link/p1481r0
https://wg21.link/p1306r1
https://wg21.link/N4885

	1 Abstract
	1.1 Context
	1.2 Additional motivation
	1.3 History

	2 Implementation
	2.1 Circle
	2.2 Clang

	3 Wording
	4 Constant expressions
	5 Structured binding declarations
	5.1 The constexpr and consteval specifiers

	6 Feature test macros
	7 Acknowledgments
	8 References

