
constexpr Stable Sorting

Document: P2562R1
Date: June 14, 2022
Project: Programming Language C++, Library Working Group
Audience: LEWG & LWG
Reply to: Oliver J. Rosten (oliver.rosten@gmail.com)

Abstract

It is proposed to make std::stable sort, std::stable partition, std::inplace merge and
their ranges counterparts useable in constant expressions. This applies to overloads which do not
accept an execution policy.

CONTENTS

I. Revision History 1

II. Introduction 1

III. Motivation & Scope 1

IV. State of the Art 2

V. Impact On the Standard 2

References 2

VI. Proposed Wording 2

I. REVISION HISTORY

R1 Bump the cpp lib constexpr algorithms fea-
ture test macro.

II. INTRODUCTION

C++ 20 saw many of the existing algorithms defined
in the <algorithm> header declared constexpr [P0202].
Those with counterparts in the ranges library en-
tered the standard similarly enabled [P0896]. A
notable omission, however, is the family of algo-
rithms relating to stable sorting: std::stable sort,
std::stable partition, std::inplace merge, and
their ranges counterparts. The purpose of this paper
is to rectify the situation, for those overloads which do
not accept an execution policy.

III. MOTIVATION & SCOPE

Since the introduction of constexpr in C++11, the
past decade has seen ever growing parts of both the core
language and library useable in constant expressions. In
C++20, there were some significant extensions. Of par-
ticular relevance to this paper are that:

1. Many algorithms are now constexpr;

2. It is possible to detect if a function call
is being used in a constexpr context, via
std::is constant evaluated();

3. Containers may be implemented such that they
can be used, to some extent, in a constexpr con-
text [P0787]. A concrete, relevant example is
std::vector [P1004].

The first point suggests that wherever there is the op-
portunity to bring algorithms into the constexpr club,
it makes sense to do so: this improves the uniformity of
the standard library and removes what may appear to
users to be artificial restrictions.

The importance of the second point is subtle and will
be discussed in section IV. As will be seen, a consequence
is that the third point is more motivational than strictly
necessary. However, it may provide some interesting op-
portunities, as will now be discussed. Merge sort is per-
haps the canonical example of an efficient stable sort al-
gorithm. It may be straightforwardly implemented using
std::vector in a way which is now amenable to use in
constant expressions.

template<class Iter, class OutIter>

constexpr void merge_sort(Iter first,

Iter last,

OutIter out)

{

const auto dist{std::distance(first, last)};

if(dist < 2) return;

const auto partition{std::next(first, dist / 2)};

merge_sort(first, partition, out);

merge_sort(partition, last, std::next(out, dist / 2));

std::merge(first, partition, partition, last, out);

std::copy(out, std::next(out, dist), first);

}

template<class Iter>

constexpr void merge_sort(Iter first, Iter last)

{

using T = typename Iter::value_type;

std::vector<T> v(first, last);

merge_sort(first, last, v.begin());

}



2

An example of the code in action can be found
on compiler explorer [6]. The key point to note is
that it is the availability of extra storage, here pro-
vided by std::vector, which enables the algorithm to
achieve its optimal asymptotic efficiency of N lnN . It
is worth noting that a std::array cannot be used in-
stead. Tempting code along the lines of std::array<T,
std::distance(first, last)> does not compile.

IV. STATE OF THE ART

The reality of implementing stable sort (and related
algorithms) for the standard library is more subtle than
the example above supposes. Most importantly, it is
not guaranteed that additional storage is available. In-
deed, should this be the case, the standard relaxes the
computational complexity requirements. For example,
std::stable sort, is allowed to weaken to N ln2 N
in this situation. Implementations typically deal with
this by implementing some sort of merge-without-buffer
helper function [7, 8]. Interestingly, these are directly
amenable for use in constant expressions, since they
can make use of things like iterator arithmetic and
std::rotate. This begs the question: why aren’t the
stable sorting algorithms constexpr already?

The answer is that implementations branch, dynam-
ically, according to whether or not additional storage
is available. For current implementations, the path
where it is available cannot directly be made useable
in constant expressions. This is why the advent of
std::is constant evaluated() is relevant: one solu-
tion (though not necessarily the most elegant!) is to
ensure that in a constexpr context the algorithms of
interest statically branch to take a constexpr-friendly
route. Alternatively, it may be possible to rework imple-
mentations roughly along the lines of the std::vector
example above.

The final subtlety to mention is that while merge sort

has unbeatable asymptotic behaviour, it may not be all
that fast for small numbers of elements. Therefore, im-
plementations typically resort to cruder sorting methods,
such as insertion sort, below some threshold. This does
not present any difficulties as far this proposal goes, since
there are no barriers to implementing insertion sort in a
manner suitable for constant expressions. And even if
there were, std::is constant evaluated() would offer
a solution.

V. IMPACT ON THE STANDARD

This is a pure library extension. Library ven-
dors may either patch existing implementations using
std::is constant evaluated() or rework implemen-
tations such that they exploit the extended range of
constexpr for containers. For the former, an implemen-
tation of the essential elements, based on libstdc++, can
be found on github [9].

REFERENCES

[N4910] Thomas Köppe, ed., Working Draft, Standard for
Programming Language C++.

[P0202] Antony Polukhin, Add Constexpr Modifiers to Func-
tions in <algorithm> and <utility> Headers

[P0896] , Eric Niebler, Casey Carter, Christopher Di Bella
The One Ranges Proposal

[P0787] , Peter Dimov, Louis Dionne, Nina Ranns, Richard
Smith, Daveed Vandevoorde, More constexpr containers

[P1004] , Louis Dionne, Making std::vector constexpr
[6] https://godbolt.org/z/n3vEsMr6e

[7] gcc/libstdc++-v3/include/bits/stl algo.h
[8] libcxx/include/algorithm
[9] https://github.com/ojrosten/sequoia/blob/

constexpr_stable_sort/Tests/Experimental/

ExperimentalTest.cpp

VI. PROPOSED WORDING

The following proposed changes refer to the Working Paper [N4910].

A. Modifications to “Header <algorithm> synopsis” [algorithm.syn]

// [alg.sorting], sorting and related operations
// [alg.sort], sorting

. . .

template<class RandomAccessIterator>

constexpr void stable sort(RandomAccessIterator first, RandomAccessIterator last);

template<class RandomAccessIterator, class Compare>

constexpr void stable sort(RandomAccessIterator first, RandomAccessIterator last, Compare comp);

template<class ExecutionPolicy, class RandomAccessIterator>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0202r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0202r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0784r7.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1004r2.pdf
https://godbolt.org/z/n3vEsMr6e
https://github.com/gcc-mirror/gcc/blob/d9375e490072d1aae73a93949aa158fcd2a27018/libstdc%2B%2B-v3/include/bits/stl_algo.h
https://github.com/llvm-mirror/libcxx/blob/a12cb9d211019d99b5875b6d8034617cbc24c2cc/include/algorithm
https://github.com/ojrosten/sequoia/blob/constexpr_stable_sort/Tests/Experimental/ExperimentalTest.cpp
https://github.com/ojrosten/sequoia/blob/constexpr_stable_sort/Tests/Experimental/ExperimentalTest.cpp
https://github.com/ojrosten/sequoia/blob/constexpr_stable_sort/Tests/Experimental/ExperimentalTest.cpp


3

void stable_sort(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads]

RandomAccessIterator first, RandomAccessIterator last);

template<class ExecutionPolicy, class RandomAccessIterator, class Compare>

void stable_sort(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads]

RandomAccessIterator first, RandomAccessIterator last,

Compare comp);

namespace ranges {

template<random_access_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>

requires sortable<I, Comp, Proj>

constexpr I stable sort(I first, S last, Comp comp = {}, Proj proj = {});

template<random_access_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>

constexpr borrowed iterator t<R>

stable sort(R&& r, Comp comp = {}, Proj proj = {});
}

. . .

// [alg.partitions], partitions

. . .

template<class BidirectionalIterator, class Predicate>

constexpr BidirectionalIterator stable partition(BidirectionalIterator first,

BidirectionalIterator last,

Predicate pred);

template<class ExecutionPolicy, class BidirectionalIterator, class Predicate>

BidirectionalIterator stable_partition(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads]

BidirectionalIterator first,

BidirectionalIterator last,

Predicate pred);

namespace ranges {

template<bidirectional_iterator I, sentinel_for<I> S, class Proj = identity,

indirect_unary_predicate<projected<I, Proj>> Pred>

requires permutable<I>

constexpr subrange<I> stable partition(I first, S last, Pred pred, Proj proj = {});

template<bidirectional_range R, class Proj = identity,

indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>

requires permutable<iterator_t<R>>

constexpr borrowed subrange t<R> stable partition(R&& r, Pred pred, Proj proj = {});
}

. . .

// [alg.merge], merge

. . .

template<class BidirectionalIterator>

constexpr void inplace merge(BidirectionalIterator first,

BidirectionalIterator middle,

BidirectionalIterator last);

template<class BidirectionalIterator, class Compare>

constexpr void inplace merge(BidirectionalIterator first,

BidirectionalIterator middle,

BidirectionalIterator last, Compare comp);



4

template<class ExecutionPolicy, class BidirectionalIterator>

void inplace_merge(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads]

BidirectionalIterator first,

BidirectionalIterator middle,

BidirectionalIterator last);

template<class ExecutionPolicy, class BidirectionalIterator, class Compare>

void inplace_merge(ExecutionPolicy&& exec, // see [algorithms.parallel.overloads]

BidirectionalIterator first,

BidirectionalIterator middle,

BidirectionalIterator last, Compare comp);

namespace ranges {

template<bidirectional_iterator I, sentinel_for<I> S, class Comp = ranges::less,

class Proj = identity>

requires sortable<I, Comp, Proj>

constexpr I inplace merge(I first, I middle, S last, Comp comp = {}, Proj proj = {});

template<bidirectional_range R, class Comp = ranges::less, class Proj = identity>

requires sortable<iterator_t<R>, Comp, Proj>

constexpr borrowed iterator t<R>

inplace merge(R&& r, iterator t<R> middle, Comp comp = {}, Proj proj = {});
}

B. Modifications to “Header <version> synopsis” [version.syn]

#define cpp lib constexpr algorithms 201806L 20????L // also in <algorithm>


	constexpr Stable Sorting
	Contents
	Revision History
	Introduction
	Motivation & Scope
	State of the Art
	Impact On the Standard
	References
	Proposed Wording
	Modifications to ``Header <algorithm> synopsis'' [algorithm.syn]
	Modifications to ``Header <version> synopsis'' [version.syn]



