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Abstract

We propose a standard library type std::generator which implements a coroutine generator
that models std::ranges::input_range.
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Revisions

P2502R1

• The type generator::yielded is now publicly-visible and not exposition-only per 2021-12-
13 LEWG discussion.

• Feature-test macro insertion is now ordered properly with the other wording.

• Coroutines for generator<T&&> can now yield lvalues; the generated element is an xvalue
denoting a copy of the lvalue. This saves folks the trouble of writing co_yield auto(lval-
ue) instead of co_yield lvalue.

• Reorder generator’s template parameters (again, for the last last time). Coroutine Task
Force discussions convinced all participants (including the author) that it was too big
a break with the rest of the Standard Library to have the Allocator not be the final
template parameter.

• Simplify elements_of into a vanilla two-element struct.

• Update implementations accordingly.

• Per 2022-01-025 LEWG direction, generator<T> now behaves like generator<T&&> instead
of like generator<const T&> per the design in P2529R0 [9].
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P2502R0

• Reorder generator’s template parameters. This allows the reference type to be more
easily defaulted to a true reference, while still respecting requests for differing value
and reference types. This preserves the previous design’s ease-of-use, while providing
full generality.

• Remove concerns about the O(1) destruction requirement for view, which has been
relaxed by P2415R2 “What is a view?” [7].

D2168R4

• Wording improvements

P2168R3

• Wording improvements

P2168R2

• Some wording fixes

• Improve the section on allocator support

• Updated implementation

P2168R1

• Add benchmarks results and discussion about performance

• Introduce elements_of to avoid ambiguities when a generator is convertible to the refer-
ence type of the parent generator.

• Add allocator support

• Symmetric transfer works with generators of different value / allocator types

• Remove iterator::operator->

• Put generator in a new <generator> header.

• Add an other example to motivate the Value template parameter

Example

std::generator<int> fib() {
auto a = 0, b = 1;
while (true) {

co_yield std::exchange(a, std::exchange(b, a + b));
}
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}

int answer_to_the_universe() {
auto rng = fib() | std::views::drop(6) | std::views::take(3);
return std::ranges::fold_left(std::move(range), 0, std::plus{});

}

Motivation

C++ 20 had very minimalist library support for coroutines. Synchronous generators are an
important use case for coroutines, one that cannot be supported without the machinery
presented in this paper. Writing an efficient recursive generator is non-trivial; the standard
should provide one.

Design

While the proposed std::generator interface is fairly straightforward, a few decisions are
worth pointing out.

input_view

std::generator is a move-only view which models input_range and has move-only iterators.
This is because the coroutine state is a unique resource (even if the coroutine handle is
copyable).

Header

Multiple options are available as to where to put the generator class.

• <coroutine>, but <coroutine> is a low level header, and generator depends on bits of
<type_traits> and <iterator>.

• <ranges>

• A new <generator>

This paper uses a new <generator> header since P2168R3 did so, and LEWG has provided
no guidance to do otherwise. We do note on our MSVC STL branch implementation that
#include<ranges> includes 52.6k lines of code, and #include<generator> 53.3k lines. (Note
that <generator> is specified to include both <ranges> and <coroutines>.) Defining generator
in <ranges> together with a #include<coroutine> would penalize people who want <ranges>
but not generator by about 610 LoC.

Reference type

generator has 3 template parameters: generator<R, V = void, Allocator = void>
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From R and V, we derive types:

using Value = conditional_t<is_void_v<V>, remove_cvref_t<R>, V>;}
using Reference = conditional_t<is_void_v<V>, R&&, R>;
using Yielded = conditional_t<is_reference_v<Reference>, Reference, const Reference&>;

• Value is a cv-unqualified object type that specifies the value type of the generator’s range
and iterators,

• Reference specifies the reference type (not necessarily a core language reference type)
of the generator’s range and iterators, and

• Allocator is the type of allocator used for the coroutine state, which can be void to type-
erase any allocator specified as a coroutine argument, defaulting to allocator<byte>
when none is specified.

• Yielded (necessarily a reference type) is the type of the parameter to the primary overload
of yield_value in the generator’s associated promise type.

generator<meow>

Our expectation is that 98% of use cases will need to specify only one parameter. The resulting
generator:

• has a value type of remove_cvref_t<meow>

• has a reference type of meow, if it is a reference type, or meow&& otherwise,

• expects co_yield to appear in the body of the generator with operands that are convert-
ible to the reference type, and

• can use any allocator (via type-erasure) defaulting to allocator<byte>.

This avoids the performance pitfall from earlier revisions of the proposal that used the first
argument type directly as reference type; users who naively chose generator<std::string>
got an iterator that produces independent copies of the yielded value on every dereference,
when they may have been satisfied by yielding a reference to the same constant value.

As a nod to ease of use, and to more readily reflect the semantics of prvalue-returning
functions, we allow yielding lvalues from generators with an rvalue reference type when the
lvalue is copyable. The result is that the yielded lvalue is copied into temporary storage, and
an iterator for the generator will return an xvalue denoting that copy when dereferenced.

generator<meow, woof>

For the rare user who needs generator to step outside the box and use a proxy reference type,
or who needs to generate a range whose iterators yield prvalues for whatever reason, we
have two-argument generator. If woof is void, this is generator<meow>. Otherwise, the resulting
generator:

• has a value type of woof,
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• has a reference type of meow,

• expects co_yield to appear in the body of the generator with operands that are convert-
ible to meow, if it is reference type, and otherwise const meow&, and

• can use any allocator (via type-erasure) if woof is void, or otherwise can use any allocator
convertible to woof.

Your iterators can yield a prvalue, but it must be a prvalue of copy_constructible type so
a copy of the operand of a single co_yield can be returned multiple times from repeated
dereferences of the same iterator value.

generator<meow, woof, quack>

For use cases that want to specify an allocator type statically so they need not constantly pass
pairs of allocator_arg, my_allocator arguments to every coroutine, we have three-argument
generator. The resulting generator can use any allocator convertible to quack, defaulting to
a default-constructed woof if it is default_initializable. The value, reference, and yielded
types are as described for generator<meow> if woof is void, and as described for generator<meow,
woof> otherwise.

Our expectation is that libraries that wish to declare many functions with the same statically-
specified allocator type will define a template alias like

template <class R, class V = void>
using my_generator = generator<R, V, my_allocator>;

to ease declarations. In practice, this should mean generator<R, void, my_allocator> (with
an explicit second argument of void) appears quite rarely in real code.

Allocator = void

In the 2022-01-13 Coroutine Task Force meeting, Lewis Baker brought up that LEWG feedback
on some revision of P2168 had expressed dissatisfaction with the use of void to indicate
“type-erase any allocator.” We discussed some alternatives:

• Devise a new type for this specific purpose. We felt that single-use tag types have low
return-on-investment; every such tag type consumes a few more bytes of memory in
nearly every compilation, and a few more neurons of memory in every programmer.

• Reuse an existing type for this purpose. void has the advantage that it can never be
confused for a conforming allocator type, even if it someday does become a regular type.
void requires no predeclaration, and no memory is is expended to store its definition.

monostate was another suggestion that was universally reviled; that type already has a
very clear purpose in the Standard Library that we didn’t feel inclined to muddle.

No one suggested another type that we found to be an improvement.
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Our conclusion was that we didn’t find the use of void for this purpose confusing, we were
happy to keep it given that more-recent LEWG discussion had resulted in no further feedback
on this topic.

Obsolete discussion about reference specification

[Note: Before P2502R0, generator’s first parameter Type denoted the reference type of the
range / iterators, and the value type was defaulted to remove_cvref_t<Type>. The following
sections of design discussion from that era are preserved here. —end note ]

In earlier versions of this paper, the reference type was exactly the first template parameter.
This had the advantage of being simple. But it was a terrible performance trap:

Consider the behavior of the following code assuming the reference type is exactly the first
template argument:

std::generator<std::string> f() {
std::string hello = "hello";
co_yield hello; // 0 or 1 copy depending on implementation
co_yield "Hello"; // 1 copy (conversion from const char* to std::string)

}

for (auto&& str : f()) {} // 1 copy (*it returns std::string)

Of course the solution, which we advocated for, is for the user to manually specify an explicit
reference type:

generator<const std::string&> f() {
std::string hello = "hello";
co_yield hello; // 0 or 1 copy depending on implementation
co_yield "Hello"; // 1 copy (conversion from const char* to std::string)

}

for (auto&& str : f()) {} // 0 copy

This works, can be explained, and is even logical. You get what you asked for. It is nonetheless
surprising for non-experts that using the simple generator<string> would create 2 copies per
co_yield.

To hope users would not routinely forget to use a reference type when using std::generator
calls for a heaping barrel of optimism.

We later proposed that for a generator<T>, its reference type be conditional_t<is_reference_-
v<T>, T, const T&>.

First parameter reference type default value can yield mutable lvalue ref?

int const int& int No

const int& const int& int No

int& int& int Yes

int&& int&& int No

const int&& const int&& int No
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Attempts have been made to characterize the exact relations between reference, value,
storage, and co_yield exception types and categories. Ultimately, a simpler mental model is
to characterize what expressions can be yielded for a given reference type and how many
copies are made for each scenario.

First parameter co_yield const T& co_yield T& co_yield T&& co_yield U&&

T 0 0 0 1

const T& 0 0 0 1

T& Ill-formed 0 Ill-formed Ill-formed

T&& Ill-formed Ill-formed 0 1

const T&& Ill-formed Ill-formed 0 1

In this table, we see that only co_yield that requires conversion incurs copy, which is ex-
pected. Coroutines guarantee that the yielded expression exceeds the lifetime of the co_yield
expression, so generator can usefully store a pointer to the object denoted by a yielded xvalue.

co_yield expressions involving conversion can store the yielded value in an awaiter. The type
of the stored expression is the reference type with its reference qualifiers stripped, but that is
an implementation detail that is not observable and is therefore of limited interest. Of course,
that type needs to be constructible from yielded values.

Besides the T case, this behaves very much like returning from a function that is intended.

Move-only and immovable types

LEWG was interested in how this works with generator of move-only and immovable types.

First parameter co_yield const T& co_yield T& co_yield T&&

move_only 0 0 0

const move_only& 0 0 0

move_only& Ill-formed 0 Ill-formed

move_only&& Ill-formed Ill-formed 0

const move_only&& Ill-formed Ill-formed 0

immovable 0 0 0

const immovable& 0 0 0

immovable& Ill-formed 0 Ill-formed

immovable&& Ill-formed Ill-formed 0

const immovable&& Ill-formed Ill-formed 0

As that table shows, these types work exactly like other types. However, to be able to move
from a move only reference type, the coroutine has to explicitely state so:

auto f = []() -> std::generator<move_only> { co_yield move_only{}; }();
for (auto&& x : f) {

move_only mo = std::move(x); // ill-formed, decltype(x) is const move_only&
}

auto f = []() -> std::generator<move_only&&> { co_yield move_only{}; }();
for (auto&& x : f) {
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move_only mo = x; // ok
}

auto f = []() -> std::generator<move_only&> { move_only m; co_yield m; }();
for (auto&& x : f) {

move_only mo = std::move(x); // dicey but okay
}

Potential downsides

auto f = []() -> std::generator<MyType> {
MyType t;
co_yield std::move(t);

}();

In the example above std::move doesn’t move. Arguably more than usual. Indeed the code
expands to something similar to:

auto&& __temp = std::move(t);
yield_value(_temp); // <=> promise.value = std::addressof(__temp); // no move

Of course, a move would not have occurred for a std::generator<const MyType&> either as
these things are identical. It might be suprising? The only way to avoid that is to create
temporary value for rvalue reference, which would force a move to actually occurs, at the cost
of performance.

Alternatives considered

Mandating a reference as the first parameter We could make generator<int> ill-formed
and force people to specify a reference type like generator<const int&>. We do not think this
is very user-friendly, given that we can provide a reasonable default.

We rejected this option.

Using T& as the default There are two issues with mutable references:

• They are mutable (They allow mutating the coroutine frame), which would be an interest-
ing default.

• They are very restrictive as to the set of co_yield expression allowed with them.

We rejected this option.

Using T&& as the default This avoids a copy when doing auto object = *it (where it is a
std::generator::iterator), but it is easy to misuse, consider:

auto f = [] -> std::generator<std::string> { co_yield "footgun"; }();
for (auto&& x : f | std::views::filter([](std::string s) { return s.size() > 0; })) {

std::cout << x << '\n'; // outputs a single empty line
}
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We rejected this option. [Note: Nevertheless, we came back to this option after much discus-
sion of pros and cons in both LEWG and several additional meetings if a Coroutine Task Force
formed by LEWG Chair specifically to build consensus. —end note ]

Doing something clever for move-only types We considered returning T& for move_only
types so that they can be moved from by default. We realized this was too clever and inconsis-
tent. Notably, adding a copy constructor to T would change the meaning of the code.

We rejected this option.

Doing something clever for reference types By default generator<reference_wrapper<T>>
could yield reference_wrapper<T> has that is already a ”reference-like” type. However, no other
view does that, ”reference-like” is fuzzily defined, and this would probably cause more trouble
than it’s worth.

We rejected this option.

Keeping the D2168R4 design Returning values has the potential to severely impact per-
formance, is inconsistent with other views, and is not necessary. It also did not work with
move-only types.

The change, along with an implementation strategy described in the ”How to store the yielded
value in the promise type?” guarantees that no copy needs to be made if the reference and
yielded types are the same (with qualifiers stripped).

We think this new approach keeps the simplicity of the original design, improves performance,
and works with more types.

Thank you LEWG, and in particular Mathias, for highlighting these concerns!

Separately specifyable Value Type

This proposal supports specifying both the ”yielded” type, which is the iterator’s reference
type (not required to be a reference) and its corresponding value type. This allow ranges to
handle proxy types and wrapped reference, like this implementation of zip:

namespace ranges = std::ranges;

template<ranges::input_range Rng1, ranges::input_range Rng2>
std::generator<

std::tuple<ranges::range_reference_t<Rng1>, ranges::range_reference_t<Rng2>>
std::tuple<ranges::range_value_t<Rng1>, ranges::range_value_t<Rng2>>>

zip(Rng1 r1, Rng2 r2) {
auto it1 = ranges::begin(r1);
auto it2 = ranges::begin(r2);
auto end1 = ranges::end(r1);
auto end2 = ranges::end(r2);
for (; it1 != end1 && it2 != end2; ++it1, ++it2) {

co_yield {*it1, *it2};
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}
}

In this second example, using string as value type ensures that calling code can take the
necessary steps to make sure iterating over a generator would not invalidate any of the
yielded values.

// Yielding string literals : always fine
std::generator<std::string_view, std::string_view> string_views() {

co_yield "foo";
co_yield "bar";

}

std::generator<std::string_view, std::string> strings() {
co_yield "start";
std::string s;
for (auto sv : string_views()) {

s = sv;
s.push_back('!');
co_yield s;

}
co_yield "end";

}

// conversion to a vector of strings
// If the value_type was string_view, it would convert to a vector of string_view,
// which would lead to undefined behavior operating on elements of v that were
// invalidated while iterating through the generator.
auto v = std::ranges::to<vector>(strings()); // (P1206R3 [4])

How to store the yielded value in the promise type?

There are multiple implementation strategies possible to store the value in the generator. An
early revision of this paper always stored a copy of the yielded value, leading to an extra copy.
Later revisions supported storing the yielded value in an awaitable object returned from the
promise’s yield_value function.

However, the object denoted by a glvalue yield expression is guaranteed to live until the
coroutine resumes. We can take advantage of that fact by storing only a pointer to the
denoted object in the promise, if the result of dereferencing that pointer is convertible to
the generator’s reference type. We guarantee this is the case by providing a yield_value
whose parameter type is always a reference type (conditional_t<is_reference_v<Reference>,
Reference, const Reference&>). This forces any conversions to happen inside the coroutine
itself, yielding a temporary glvalue that can later be dereferenced to an lvalue which is trivially
static_casted to Reference in the iterator’s operator*.

A drawback of this solution is that the yielded value is only destroyed at the end of the full
expression in which co_yield appears, so given

(co_yield x, co_yield y); // x is destroyed after y is yielded.
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We think this is a reasonable tradeoff given that this approachminimizes the number of copies
must be made of the yielded value. We force the coroutine to materialize the element to be
yielded, but after doing so can cleanly pass a reference to that element through the coroutine
and iterator machinery and directly to consuming code.

Recursive generator

A ”recursive generator” is a coroutine that supports the ability to directly co_yield a generator
of the same type as a way of emitting the elements of that generator as elements of the
current generator.

Example: A generator can co_yield other generators of the same type

std::generator<const std::string&> delete_rows(std::string table, std::vector<int> ids) {
for (int id : ids) {

co_yield std::format("DELETE FROM {0} WHERE id = {1};", table, id);
}

}

std::generator<const std::string&> all_queries() {
co_yield std::ranges::elements_of(delete_rows("user", {4, 7, 9 10}));
co_yield std::ranges::elements_of(delete_rows("order", {11, 19}));

}

Example: A generator can also be used recursively

using namespace std;

struct Tree {
Tree* left;
Tree* right;
int value;

};

generator<int> visit(Tree& tree) {
if (tree.left) co_yield ranges::elements_of(visit(*tree.left));
co_yield tree.value;
if (tree.right) co_yield ranges::elements_of(visit(*tree.right));

}

In addition to being more concise, the ability to directly yield a nested generator has some
performance benefits compared to iterating over the contents of the nested generator and
manually yielding each of its elements.

Yielding a nested generator allows the consumer of the top-level coroutine to directly resume
the current leaf generator when incrementing the iterator, whereas a solution that has each
generator manually iterating over elements of the child generator requires O(depth) coroutine
resumptions/suspensions per element of the sequence.

Example: Non-recursive form incurs O(depth) resumptions/suspensions per element and is
more cumbersome to write:
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using namespace std;

generator<int> slow_visit(Tree& tree) {
if (tree.left) {

for (int x : ranges::elements_of(visit(*tree.left)))
co_yield x;

}
co_yield tree.value;
if (tree.right) {

for (int x : ranges::elements_of(visit(*tree.right)))
co_yield x;

}
}

Exceptions that propagate out of the body of nested generator coroutines are rethrown into
the parent coroutine from the co_yield expression rather than propagating out of the top-
level iterator::operator++(). This follows the mental model that co_yield someGenerator is
semantically equivalent to manually iterating over the elements and yielding each element.

For example: nested_ints() is semantically equivalent to manual_ints()

std::generator<int> might_throw() {
co_yield 0;
throw some_error{};

}

std::generator<int> nested_ints() {
try {

co_yield std::ranges::elements_of(might_throw());
} catch (const some_error&) {}
co_yield 1;

}

// nested_ints() is semantically equivalent to the following:
std::generator<int> manual_ints() {

try {
for (int x : might_throw()) {

co_yield x;
}

} catch (const some_error&) {}
co_yield 1;

}

void consumer() {
for (int x : nested_ints()) {

std::cout << x << " "; // outputs 0 1
}

for (int x : manual_ints()) {
std::cout << x << " "; // also outputs 0 1

}
}
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std::ranges::elements_of

ranges::elements_of is a utility function that prevents ambiguity when a nested generator
type is convertible to the value type of the present generator

generator<int> f()
{

co_yield 42;
}

generator<any> g()
{

co_yield f(); // should we yield 42 or generator<int> ?
}

To avoid this issue, we propose that:

• co_yield <expression> yields the value directly, and

• co_yield elements_of(<expression>) yields successive elements from the nested gener-
ator.

For convenience, we further propose that co_yield elements_of(x) be extended to support
yielding the values of arbitrary ranges beyond generators, ie

std::generator<int> f()
{

std::vector<int> v = /*... */;
co_yield std::ranges::elements_of(v);

}

Symmetric transfer

The recursive form can be implemented efficiently with symmetric transfer. Earlier works in
[CppCoro] implemented this feature in a distinct recursive_generator type.

However, it appears that a single type is reasonably efficient thanks to HALO optimizations
and symmetric transfer. The memory cost of that feature is two extra pointers per generator1.
It is difficult to evaluate the runtime cost of our design given the current coroutine support
in compilers. However our tests show no noticeable difference between a generator and
a recursive_generator which is called non-recursively. It is worth noting that the proposed
design makes sure that HALO [8] optimizations are possible.

While we think a single generator type is sufficient and offers a better API, there are three
options:

• A single generator type supporting recursive calls (this proposal).

1The two pointers in our implementation have non-overlapping active times; we believe the pair can be
optimized into a single pointer’s space with some bit hacking to store a discriminator in the unused lower bits.

13



• A separate type recursive_generator that can yield values from either a recursive_-
generator or a generator. That may offer very negligible performance benefits, same
memory usage.

• A separate recursive_generator type which can only yield values from other recursive_-
generators.

That third option would make the following ill-formed:

generator<int> f();
recursive_generator<int> g() {

co_yield f(); // incompatible types
}

Instead you would need to write:

recursive_generator<int> g() {
for (int x : f()) co_yield x;

}

Such a limitation canmake it difficult to decide at the timeofwriting a generator coroutine
whether or not you should return a generator or recursive_generator as you may not
know at the time whether or not this particular generator will be used within recursive_-
generator or not.

If you choose the generator return-type and then later someone wants to yield its ele-
ments from a recursive_generator then you either need to manually yield its elements
one-by-one or use a helper function that adapts the generator into a recursive_generator.
Both of these options can add runtime cost compared to the case where the genera-
tor was originally written to return a recursive_generator, as it requires two coroutine
resumptions per element instead of a single coroutine resumption.

Because of these limitations, we are not recommending this approach.

Symmetric transfer is possible for different generator types as long as the reference type is
the same, aka, different value type or allocator type does not preclude symmetric transfer
(see the section on allocators).

Allocator support

In line with the design exploration done in section 2 of P1681R0 [6], std::generator supports
both stateless and stateful allocators and strives to minimize the interface verbosity for
stateless allocators by templating both the generator itself and the promise_type’s new operator
on the allocator type. Details for this interface are found in P1681R0 [6].

coroutine_parameter_preview_t such as discussed in section 3 of P1681R0 [6] has not been
explored in this paper.
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std::generator<int> stateless_example() {
co_yield 42;

}

template <class Allocator>
std::generator<int> allocator_example(std::allocator_arg_t, Allocator alloc) {

co_yield 42;
}

my_allocator<std::byte> alloc;
input_range auto rng = allocator_example(std::allocator_arg, alloc);

The proposed interface requires that, if an allocator is provided, it is the second argument to
the coroutine function, immediately preceded by an instance of std::allocator_arg_t. This
approach is necessary to distinguish the allocator desired to allocate the coroutine state
from allocators whose purpose is to be used in the body of the coroutine function. The
required argument order might be a limitation if any other argument is required to be the
first. However, we cannot think of any scenario where that would be the case.

We think it is important that all standard and user coroutine types can accommodate similar
interfaces for allocator support. In fact, the implementation for that allocator support can be
shared amongst generator, lazy, and other standard types.

By default std::generator type erases the allocator type, and uses std::allocator unless
an allocator is provided to the coroutine function. Then:

Type erased allocator(default)

template <class Allocator>
std::generator<int> f(std::allocator_arg_t, Allocator alloc) {}

f(std::allocator_arg, my_alloc{});

Returns a generator of type std::generator<int, void, void> where the final void denotes
that the allocator is type erased. The allocator is stored in the same allocation as the coroutine
state if it is stateful or not default constructible; a pointer is always stored so that the deallocate
method of the type erased allocator can be called.

No allocator

std::generator<int> f() {}
f();

Again, returns a generator of type std::generator<int, void, void> where the final void
denotes that the allocator is type erased. A pointer is stored so that the deallocatemethod
of the type-erased allocator can be called, but the default allocator (std::allocator) need not
be stored since it is stateless.

Explicit stateless allocator

std::generator<int, void, std::stateless_allocator<int>> f() {}
f();
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No extra storage is used for the allocator because it is stateless.

Explicit stateful allocator

std::generator<int, void, some_stateful_allocator<int>>
f(std::allocator_arg_t, some_stateful_allocator<int> alloc) {}

f(std::allocator_arg, some_allocator); // must be convertible to some_stateful_allocator

The allocator is copied in the coroutine state.

Can we postpone adding allocator support?

A case can be made that allocator support could be added to std::generator later. However,
because the proposed design has the allocator as a template parameter, adding allocator after
std::generator ships would represent an ABI break. We recommend that we add allocator
support as proposed in this paper now and make sure that the design remains consistent as
work on std::lazy is made in this cycle. However, it would be possible to extend support for
different mechanisms (such as presented in section 3 of P1681R0 [6] later.

Interaction of symmetric transfer and allocator support

The allocator must necessarily be part of a coroutine’s promise type since implementations
query the promise for allocation functions. Nonetheless, it would seem silly for a generator
to be unable to nest another generator with identical element type but differing allocator. For
that matter, even differing value types shouldn’t be problematic: the only interface between
the generator and the coroutine it wraps that differs depending on the type arguments to
generator is yield_value. Ideally, generators would be able to recurse into other generators
whose yield_value has the same parameter type even if all three template arguments to
generator differ.

Our implementation uses a base class to implement the non-allocation behaviors for genera-
tor’s promise type so that generators with different allocator types can yield each other. Doing
so, however, requires that we partially erase the type of a coroutine_handle so we can resume
it later knowing only that its promise type derives from a particular base.

There are at least two ways to implement this partial type erasure:

• Storing a pointer in the common base to a component with full type knowledge, which
can then resume the targeted coroutine,

• Relax the preconditions on some of the coroutine_handle functions to allow conversion
from coroutine_handle<void> to coroutine_handle<T> when the source’s corresponding
address() value was obtained from a coroutine_handle referring to a coroutine whose
promise object is pointer-interconvertible with an object of type T.

Our current plan is to standardize the intent to allow yielding nested generators with different
allocator and value types, leaving the details of the implementation unspecified, and to later
separately propose the changes to coroutine_handle that enable that implementation to be
maximally efficient.
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Implementation and experience

generator has been provided as part of cppcoro and folly. However, cppcoro offers a separate
recursive_generator type, which is different than the proposed design.

Folly uses a single generator type, which can be recursive but doesn’t implement symmetric
transfer. Despite that, Folly users found the use of Folly:::Generator to be a lot more efficient
than the eager algorithm they replaced with it.

ranges-v3 also implements a generator type, which is never recursive and predates the work
on move-only views and iterators [1], [2] which forces this implementation to ref-count the
coroutine handler.

Our implementation [Implementation] consists of a single type that takes advantage of sym-
metric transfer to implement recursion - it notably works well with three different major
standard libraries.

Performance & benchmarks

[Note: These benchmark results are fairly dated now - roughly a year old - and should be
taken with a grain of salt. —end note ]

Because implementations are still being perfected, and because performance is extremely
dependant on whether HALO optimization (see P0981R0 [8]) occurs, it is difficult at this time
to make definitive statements about the performance of the proposed design.

At the time of the writing of this paper, Clang is able to inline non-nested coroutines whether
the implementation supports nested coroutines or not, while GCC never performs HALO
optimization.

When the coroutine is not inlined, support for recursion does not noticeably impact perfor-
mance. And, when the coroutine yields another generator, the performance of the recursive
version is noticeably faster than yielding each element of the range. This is especially notice-
able with deep recursion.

Clang Clang ST1 GCC GCC ST1 MSVC MSVC ST1

Single value (1) 0.235 (2) 2.36 12.4 13.4 61.9 63.7

Single value, noinline (3) 13.5 13.7 14.1 15.2 63.8 64.4

Deep nesting 43670266.0 (4) 427955.0 58801348 338736 224052033 4760914

1 Symmetric transfer.

The values are expressed in nanoseconds. However, please note that the comparison of
the same result across compiler is not meaningful, notably because the MSVC results were
obtained on different hardware. That being said, we observe:

• Only Clang can perform constant folding of values yielded by simple coroutine (1)

• When the generator supports symmetric transfer, clang is not able to fully inline the
generator construction, but HALO is still performed (2).
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• When HALO is not performed, the relative performance of both approaches is similar (3).

• Supporting recursion is greatly beneficial to nested/recursive algorithms (4).

The code for these benchmarks, as well as more detailed results, can be found on Github.
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Wording

Drafting Note: Wording is relative to Working Draft N4901 [5].
Insert in lexicographical order in [version.syn] (updating YYYYXXL to the date of merge):

#define __cpp_lib_generator YYYYXXL // also in <generator>

Drafting Note: Modify [ranges.general] as follows:

�? General [ranges.general]

This Clause describes components for dealing with ranges of elements.

The following subclauses describe range and view requirements, and components for range
primitives and range generators as summarized in Table [tab:range.summary].

Drafting Note: Add a new row at the end of [tab:range.summary] “Range generators” with
header <generator> referring to the new subclause [coroutine.generator] added below.

Drafting Note: Add the declaration of ranges::elements_of to the <ranges> synopsis:

�? Header <ranges> synopsis [ranges.syn]

namespace std::ranges {
[...]

template<input_or_output_iterator I, sentinel_for<I> S, subrange_kind K>
inline constexpr bool enable_borrowed_range<subrange<I, S, K>> = true;

// [range.dangling], dangling iterator handling
struct dangling;

// [elementsof.overview], class template elements_of
template<range R, class Allocator = allocator<byte>>
struct elements_of;

template<range R>
using borrowed_iterator_t = conditional_t<borrowed_range<R>, iterator_t<R>, dangling>;

[...]
}

Drafting Note: Insert the following new subclause immediately after [range.dangling]:

�? class template elements_of [ranges.elementsof]

�? Overview [ranges.elementsof.overview]

Specializations of elements_of encapsulate a range and act as a tag in overload sets to disam-
biguate when a range should be treated as a sequence rather than a single value.

[ Example:
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std::generator<any> f(std::ranges::input_range auto&& rng) {
co_yield rng; // yield rng as a single value
co_yield std::ranges::elements_of(rng); // yield each element of rng

}

—end example ]

namespace std::ranges {
template<range R, class Allocator = allocator<byte>>
struct elements_of {
R range;
[[no_unique_address]] Allocator allocator{};

};

template<class R, class Allocator = allocator<byte>>
elements_of(R&&, Allocator = {}) -> elements_of<R&&, Allocator>;

}

Drafting Note: Add the following subclause to the end of [ranges]:

�? Range Generators [coroutine.generator]

�? Overview [coroutine.generator.overview]

generator presents a view of the elements yielded by the evaluation of a coroutine.

A generator generates a sequence of elements by repeatedly resuming the coroutine it was
returned from. When the coroutine is resumed, it is executed until it reaches either a co_-
yield statement or the end of the coroutine. Elements of the sequence are produced by the
coroutine each time a co_yield statement is evaluated. When the co_yield statement is of
the form co_yield elements_of(rng), each element of the range rng is successively produced
as an element of the generator.

[ Example:

std::generator<int> iota(int start = 0) {
while (true)

co_yield start++;
}

void f() {
for (auto i : iota() | std::views::take(3))

std::cout << i << ' '; // prints 0 1 2
}

—end example ]

�? Header <generator> synopsis [generator.syn]
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#include <coroutine>
#include <ranges>

namespace std {
// [coroutine.generator.class], class template generator
template<class R, class V = void, class Allocator = void>
class generator;

template<class R, class V, class Allocator>
constexpr bool ranges::enable_view<generator<R, V, Allocator>> = true;

}

�? Class template generator [coroutine.generator.class]

namespace std {
template<class R, class V = void, class Allocator = void>
class generator {
using value = // exposition only
conditional_t<is_void_v<V>, remove_cvref_t<R>, V>;

using reference = // exposition only
conditional_t<is_void_v<V>, R&&, R>;

class iterator; // exposition only

public:
using yielded =
conditional_t<is_reference_v<reference>, reference, const reference&>;

class promise_type;

generator(const generator&) = delete;
generator(generator&& other) noexcept;

~generator();

generator& operator=(const generator&) = delete;
generator& operator=(generator&& other) noexcept;

iterator begin();
default_sentinel_t end() const noexcept;

private:
explicit generator(coroutine_handle<promise_type> coroutine) noexcept; // exposition only

coroutine_handle<promise_type> coroutine_ = nullptr; // exposition only
};

}

Mandates: value is a cv-unqualified object type.

Mandates: reference is either a reference type, or a cv-unqualified object type that models
copy_constructible.
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Allocator shall be void, or shall meet the Cpp17Allocator requirements.

Mandates: Let RRef denote remove_reference_t<reference>&& if reference is a reference type,
or reference otherwise. Each of:

• common_reference_with<reference&&, value&>,

• common_reference_with<reference&&, RRef&&>, and

• common_reference_with<RRef&&, const value&>

is modeled. [Note: These requirements ensure the exposition-only iterator type can model
indirectly_readable and thus input_iterator. —end note ]

Specializations of generatormodel view and input_range.

The behavior of a program that adds a specialization for generator is undefined.

An instance of generator has an associated stack of coroutines, which is initially empty. A
coroutine is associated with at most one generator instance at a given time.

�? Members [generator.members]

explicit generator(coroutine_handle<promise_type> coro) noexcept;

Initializes coroutine_ with coro.

generator(generator&& other) noexcept;

Initializes coroutine_ with exchange(other.coroutine_, {}).

~generator();

Effects: Equivalent to:

if (coroutine_) {
coroutine_.destroy();

}

generator& operator=(generator&& that) noexcept;

Effects: Equivalent to:

if (auto old = exchange(coroutine_, exchange(that.coroutine_, {}))) {
old.destroy();

}

Returns: *this.

iterator begin();

Preconditions: coroutine_ refers to a coroutine suspended at its initial suspend-point.

Effects: Equivalent to:
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coroutine_.resume();
return iterator(coroutine_);

Remarks: This function pushes coroutine_ onto the generator’s empty stack of associated
coroutines.

[Note: A program that calls beginmore than once on the same generator has undefined
behavior. —end note ]

default_sentinel_t end() const noexcept;

Returns: default_sentinel.

�? class generator::promise_type [coroutine.generator.promise]

template<class R, class V, class Allocator>
class generator<R, V, Allocator>::promise_type {
friend generator;

add_pointer_t<yielded> value_ = nullptr; // exposition only

public:
generator get_return_object() noexcept;

suspend_always initial_suspend() noexcept;

auto final_suspend() noexcept;

suspend_always yield_value(yielded value) noexcept;

template<class Y = remove_reference_t<yielded>>
requires is_rvalue_reference_v<yielded> &&
constructible_from<remove_cvref_t<yielded>, const Y&>
auto yield_value(const type_identity_t<Y>& lvalue);

template<class R2, class V2, class Alloc2, class Unused>
requires same_as<typename generator<T2, V2, Alloc2>::yielded, yielded>
auto yield_value(ranges::elements_of<generator<T2, V2, Alloc2>&&, Unused> g) noexcept;

template<ranges::input_range Rng, class Alloc2>
requires convertible_to<ranges::range_reference_t<Rng>, yielded>
auto yield_value(ranges::elements_of<Rng, Alloc2> r) noexcept;

void await_transform() = delete;

void return_void() noexcept {}

void unhandled_exception();

static void* operator new(size_t size)
requires same_as<Allocator, void> || default_initializable<Allocator>;
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template<class Alloc, class... Args>
requires same_as<Allocator, void> || convertible_to<Alloc, Allocator>
static void* operator new(size_t size, allocator_arg_t, Alloc&& alloc, Args&...);

template<class This, class Alloc, class... Args>
requires same_as<Allocator, void> || convertible_to<Alloc, Allocator>
static void* operator new(size_t size, This&, allocator_arg_t, Alloc&& alloc, Args&...);

static void operator delete(void* pointer, size_t size) noexcept;
};

generator get_return_object() noexcept;

Returns: generator{coroutine_handle<promise_type>::from_promise(*this)}.

suspend_always initial_suspend() noexcept;

Returns: {}.

auto final_suspend() noexcept;

Preconditions: The coroutine whose promise object is *this is at the top of the stack of
associated coroutines of some generator instance x.

Returns: An awaitable object of unspecified type whose member await_suspend removes
the coroutine whose promise is *this from the top of x’s stack of associated coroutines,
and resumes execution of the new top-of-stack coroutine, if any.

suspend_always yield_value(yielded x) noexcept;

Effects: Equivalent to: value_ = addressof(x).

Returns: {}.

template<class Y = remove_reference_t<yielded>>
auto yield_value(const type_identity_t<Y>& lvalue)
requires is_rvalue_reference_v<yielded> &&
constructible_from<remove_cvref_t<yielded>, const Y&>;

Returns: An object of an unspecified awaitable type ([expr.await]) that stores an object
of type remove_cv_t<Y> direct-non-list-initialized with lvalue, whose member functions
arrange for value_ to point at that stored object before suspending the coroutine.

Throws: Any exception thrown by the initialization of the stored object.

template<class T2, class V2, class Alloc2, class Unused>
requires same_as<typename generator<T2, V2, Alloc2>::yielded, yielded>
auto yield_value(ranges::elements_of<generator<T2, V2, Alloc2>&&, Unused> g) noexcept;

Preconditions: The coroutine whose promise object is *this is at the top of the stack of
associated coroutines of some generator instance x.
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Let r be an lvalue that denotes the same object to which g.range refers.

Returns: An object of an unspecified awaitable type ([expr.await]) which takes owner-
ship of the generator r, whose member await_suspend pushes r.coroutine_ atop the
stack of coroutines associated with x before resuming execution of r.coroutine_, and
whose member await_resume rethrows any exception captured by a call to r.coroutine_-
.promise()’s member unhandled_exception.

[Note: Variables with automatic storage duration in the scope of the coroutine repre-
sented by r.coroutine_ are destroyed before variables with automatic storage duration
in the scope of the coroutine whose promise object is *this. —end note ]

template<ranges::input_range Rng, class Alloc2>
requires convertible_to<ranges::range_reference_t<Rng>, yielded>
auto yield_value(ranges::elements_of<Rng, Alloc2> r) noexcept;

Effects: Equivalent to:

auto nested = [](allocator_arg_t, Alloc2, auto* range_ptr)
-> generator<yielded, ranges::range_value_t<Rng>, Alloc2> {
for (auto&& e : *range_ptr)
co_yield static_cast<yielded>(std::forward<decltype(e)>(e));

};
auto& rng = r.range;
return yield_value(ranges::elements_of(nested(
allocator_arg, r.allocator, addressof(rng))));

void unhandled_exception();

Preconditions: The coroutine whose promise object is *this is at the top of the stack of
associated coroutines of some generator instance x.

Effects: If the coroutine whose promise object is *this is the sole element of x’s stack
of associated coroutines, equivalent to: throw. Otherwise, stores the result of current_-
exception() where it can later be retrieved and rethrown by the await_resumemember
of the awaitable object returned from the yield_value call that pushed this coroutine
onto x’s stack of associated coroutines.

static void* operator new(size_t size)
requires same_as<Allocator, void> || default_initializable<Allocator>;

Let A be allocator<void> if Allocator denotes void, or Allocator otherwise. Let BAlloc be
allocator_traits<A>::template rebind_alloc<U> where U denotes an unspecified type
whose size and alignment are both _STDCPP_DEFAULT_NEW_ALIGNMENT__.

Effects: Initializes an allocator of type BAlloc with A{}, and uses that object to allocate
the smallest number of blocks that provide sufficient storage for:

• a coroutine state of size size,

• if allocator_traits<BAlloc>::is_always_equal::value is false, space to store a copy
of the allocator, and
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• if Allocator denotes void, any additional state necessary to ensure that operator
delete can later deallocate thismemory block with an allocator equal to the allocator
used here.

Returns: A pointer to the space allocated for the coroutine state.

template<class Alloc, class... Args>
requires same_as<Allocator, void> || convertible_to<Alloc, Allocator>
static void* operator new(size_t size, allocator_arg_t, Alloc&& alloc, Args&...);

template<class This, class Alloc, class... Args>
requires same_as<Allocator, void> || convertible_to<Alloc, Allocator>
static void* operator new(size_t size, This&, allocator_arg_t, Alloc&& alloc, Args&...);

Let A be allocator<void> if Allocator denotes void, or Allocator otherwise. Let BAlloc be
allocator_traits<A>::template rebind_alloc<U> where U denotes an unspecified type
whose size and alignment are both _STDCPP_DEFAULT_NEW_ALIGNMENT__.

Effects: Initializes an allocator of type BAlloc with A(std::forward<Alloc>(alloc)), and
uses that object to allocate the smallest number of blocks that provide sufficient storage
for:

• a coroutine state of size size,

• if allocator_traits<BAlloc>::is_always_equal::value is false or default_initial-
izable<BAlloc> is false, space to store a copy of the allocator, and

• if Allocator denotes void, any additional state necessary to ensure that operator
delete can later deallocate this memory block with an allocator equivalent to the
allocator used here.

Returns: A pointer to the space allocated for the coroutine state.

static void operator delete(void* pointer, size_t size) noexcept;

Preconditions: pointer was returned from an invocation of one of the above overloads of
operator new with a size argument equal to size.

Effects: Deallocates the block of allocator memory that includes the coroutine state
denoted by pointer using an allocator equivalent to the one that was used to allocate it.

�? Class template generator::iterator [coroutine.generator.iterator]

template<class R, class V, class Allocator>
class generator<R, V, Allocator>::iterator {
public:

using value_type = value;
using difference_type = ptrdiff_t;

iterator(iterator&& other) noexcept;

iterator& operator=(iterator&& other) noexcept;
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reference operator*() const noexcept(is_nothrow_copy_constructible_v<reference>);

iterator& operator++();
void operator++(int);

bool operator==(default_sentinel_t) const noexcept;

private:
friend class generator;

explicit iterator(coroutine_handle<promise_type> coroutine) noexcept; // exposition only

coroutine_handle<promise_type> coroutine_; // exposition only
};

iterator(iterator&& other) noexcept;

Effects: Initializes coroutine_ with exchange(other.coroutine_, {}).

iterator& operator=(iterator&& other) noexcept;

Effects: Equivalent to: coroutine_ = exchange(other.coroutine_, {});

reference operator*() const noexcept(is_nothrow_copy_constructible_v<reference>);

Preconditions: coroutine_.done() is false, and coroutine_

Let p be the promise object of the coroutine at the top of the stack of coroutines associ-
ated with the generator whose stack of associated coroutines includes coroutine_.

Effects: Equivalent to:

return static_cast<reference>(*p.value_);

iterator& operator++();

Preconditions: coroutine_.done() is false.

Effects: Resumes the coroutine at the top of the stack of coroutines associated with the
generator whose stack of associated coroutines includes coroutine_.

Returns: return *this;

void operator++(int);

Preconditions: coroutine_.done() is false.

Effects: Equivalent to: ++*this.

bool operator==(default_sentinel_t) const noexcept;

Returns: coroutine_.done().
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explicit iterator(coroutine_handle<promise_type> coroutine) noexcept;

Effects: Initializes coroutine_ with coroutine.
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