
Document Number: P2465R3  

Date: 2022-03-11  

Reply To: Stephan T. Lavavej <stl@microsoft.com> 

 Gabriel Dos Reis <gdr@microsoft.com> 

 Bjarne Stroustrup <bs@ms.com> 

 Jonathan Wakely <cxx@kayari.org> 

Audience: Library (LWG) 

 Core (CWG) 

Standard Library Modules std and std.compat 
Stephan T. Lavavej, Gabriel Dos Reis, Bjarne Stroustrup, Jonathan Wakely 

 

Abstract 
 

This paper provides Standardese for two named modules: std and 

std.compat. 

 

import std; imports everything in namespace std from C++ headers (e.g. 

std::sort from <algorithm>) and C wrapper headers (e.g. std::fopen from 

<cstdio>). It also imports ::operator new etc. from <new>. 

 

import std.compat; imports all of the above, plus the global namespace 

counterparts for the C wrapper headers (e.g. ::fopen). 

 

 

 

 

 

 

 



Changelog 
 

• R0 

o Reviewed by LEWG on 2021-10-12. 

• R1 

o Renamed std.all to std.compat. 

o Removed lists of alternative names. 

o Removed Library Evolution (LEWG) from the target Audience. 

o Added lines mentioning that alternative designs did not have 

consensus in LEWG. 

o Updated the Proposed Wording context to depict stable names 

like [class.spaceship] instead of section numbers like 11.10.3. 

• R2 

o Updated after CWG review on 2022-01-27. 

o Added changes to [basic.stc.dynamic.general]. 

o Changed "is reachable from" to "precedes", which is a Word of 

Power in [basic.lookup.general]. 

o Removed the Open Wording Questions. 

• R3 

o Updated after CWG review on 2022-03-11. 

o Changed [dcl.init.list] back to "is reachable from", adding a 

citation of [module.reach]. 

o Added changes to [dcl.type.auto.deduct]. 

o Rebased on Working Draft N4901 (paragraph numbers changed). 

 

Background 
 

See P2412R0 "Minimal module support for the standard library" which 

explains why import std; is ideal for usability and has amazing compiler 

throughput compared to classic #include directives. 

 

https://wg21.link/P2412R0


Rationale 
 

The biggest concern from the LEWG review of P2412R0 involved the global 

namespace and can be viewed as Adoption versus Cleanliness. 

 

The Adoption concern is that if Standard Library Modules don't provide 

::fopen, ::size_t, ::tm, etc. then it will be difficult to migrate existing 

codebases - especially because on some platforms, the True Names are 

always global, so even if users are disciplined about including <cmeow> 

instead of <meow.h>, it is extremely easy to depend on the global namespace. 

 

The Cleanliness concern is that the global/std namespace issue (where 

<meow.h> definitely provides ::meow and might provide std::meow, and 

<cmeow> definitely provides std::meow and might provide ::meow) is a 

complexity headache that's annoying to teach and to deal with, and 

Standard Library Modules are probably the only chance we'll ever have to 

permanently resolve it. 

 

We believe that providing two named modules will follow LEWG guidance 

and address both concerns by giving users a choice. 

 

• Users who want Cleanliness can say import std; and avoid polluting 

the global namespace. There's no extra typing, and no throughput 

impact. 

• Users who want to prioritize Adoption in an existing codebase can say 

import std.compat; and avoid having to qualify all mentions of fopen, 

size_t, strlen, etc. 

o This is a bit more typing, but it's still just 1 line. 

o There's strictly more throughput impact, but it should be minimal 

(as we've found, importing a named module is extremely fast, 

https://wg21.link/P2412R0


and the <cmeow> headers define much less machinery, both in 

quantity and complexity, than the C++23 Standard Library). 

 

In general, modules are orthogonal to namespaces, but this reflects the 

existing division between <cmeow> and <meow.h>. It should be natural for 

users to learn. 

 

The Sufficient Additional Overloads ([cmath.syn]/2) are always a headache 

to analyze, but we believe that this avoids disrupting them in any way. 

Someone who says import std; gets all of the Overloads in namespace std 

(and no danger of referring to the global name, an improvement). Someone 

who says import std.compat; gets the same behavior as someone who 

includes <cmath>, <cstdlib>, <math.h>, and <stdlib.h> (or just <cmath> and 

<cstdlib> on a platform like MSVC). 

 

Note that [module.unit]/1 has reserved std and std.* as module names. 

 

Alternative Design: Separate Module for the Global Namespace 
 

Another alternative would involve changing the design, where import std; 

would behave as specified here, and import cstd; (or some other name) 

would provide just the global namespace names. (With <new> remaining in 

import std;.) This would require users who want both to say both import 

declarations. This alternative design did not have consensus in LEWG. 

 

Alternative Design: Reverse the Modules 
 

Yet another alternative would be to have import std; provide namespace 

std and the global namespace, while import std.strict; (or some other 



name) provides only namespace std. This alternative design did not have 

consensus in LEWG. 

 

Frequently Asked Questions 
 

Are any macros provided by the Standard Library modules? 

No, and this is intentional. 

 

For feature-test macros, users must #include <version> or import 

<version>; (as header units can emit macros). 

 

For assert, errno, offsetof, va_arg, etc., users must #include <meow.h> or 

#include <cmeow>. (<assert.h>/<cassert> are extra-special as they can be 

repeatedly included with varying behavior controlled by NDEBUG.) 

 

Are deprecated features provided by the Standard Library modules? 

Yes. This is implied by the normative wording. 

 

Are C++ features in C wrapper headers, like std::byte in <cstddef>, 

provided by the Standard Library modules? 

Yes. import std; provides everything in namespace std, including the 

contents of the C wrapper headers, including C++-specific additions. 

 

Are std::initializer_list and other machinery with Core Language 

interactions provided by the Standard Library modules? 

Yes. This is implied by the normative wording. However, we do need to 

update the Core Language wording that requires <compare>, 

<initializer_list>, and <typeinfo> to be included (classically) or imported 

(as header units), now that named modules are available. 

 

 



Is there any implementation experience? 

Not yet. 

 

The experimental named modules that MSVC has been shipping for a while 

are a repackaging of the existing library (with no distinction between 

std::sort and std::_Internal_helper_functions) and divide it into subsets 

(instead of the "only std" and "std plus global" design here). 

 

Should new proposals target only the Standard Library modules? 

No. New proposals should expect that many users will continue to use classic 

includes for many years for various reasons, such as build system issues. 

(We expect that there will be a few users of C++20 Standard Library header 

units, although that early adopter population is likely to migrate to C++23 

Standard Library modules as soon as possible.) 

 

Therefore, new proposals should continue to carefully consider what headers 

to modify, and/or what headers to add. The main consideration for new 

proposals is that if they want to emit macros (other than feature-test 

macros) for any reason, that would be unavailable to users of Standard 

Library modules, so non-macro mechanisms should be found if possible. 

 

Proposed Wording 
 

All changes are relative to N4901. 

 

• Add a new feature-test macro __cpp_lib_modules to [version.syn], with 

a value chosen by the editors as usual. 

o Unlike all of the other library feature-test macros, this should 

not have a comment "// also in <HEADER>". 

 

https://wg21.link/N4901


• Add a new section that's a child of 16.4.2 "Library contents and 

organization" [organization], immediately after 16.4.2.3 "Headers" 

[headers]: 

 

Modules [std.modules] 

 

The C++ standard library provides the following C++ library modules. 

 

The named module std exports declarations in namespace std that are 

provided by the importable C++ library headers ([tab:headers.cpp] or the 

subset provided by a freestanding implementation) and the C++ headers for 

C library facilities ([tab:headers.cpp.c]). It additionally exports declarations 

in the global namespace for the storage allocation and deallocation functions 

that are provided by <new> ([new.delete]). 

 

The named module std.compat exports the same declarations as the named 

module std, and additionally exports declarations in the global namespace 

corresponding to the declarations in namespace std that are provided by the 

C++ headers for C library facilities ([tab:headers.cpp.c]). 

 

It is unspecified to which module a declaration in the standard library 

is attached. [Note: Implementations are required to ensure that mixing 

#include and import does not result in conflicting attachments ([basic.link]). 

- end note] 

 

Recommended practice: Implementations should ensure such attachments 

do not preclude further evolution or decomposition of the standard library 

modules. 

 



A declaration in the standard library denotes the same entity regardless of 

whether it was made reachable through including a header, importing a 

header unit, or importing a C++ library module. 

 

Recommended practice: Implementations should avoid exporting any other 

declarations from the C++ library modules. 

 

[Note: Like all named modules, the C++ library modules do not make 

macros visible ([module.import]), such as assert ([cassert.syn]), errno 

([cerrno.syn]), offsetof ([cstddef.syn]), and va_arg ([cstdarg.syn]). - end 

note] 

 

• Modify 6.7.5.5.1 "General" [basic.stc.dynamic.general] as depicted: 

 

"[Note 2: The implicit declarations do not introduce the names std, 

std::size_t, std::align_val_t, or any other names that the library uses to 

declare these names. Thus, a new-expression, delete-expression, or function 

call that refers to one of these functions without importing or including the 

header <new> ([new.syn]) <ins>or importing a C++ library module 

([std.modules])</ins> is well-formed. However, referring to std or 

std::size_t or std::align_val_t is ill-formed unless <del>the name has 

been declared by importing or including the appropriate 

header</del><ins>a standard library declaration ([cstddef.syn], 

[new.syn], [std.modules]) of that name precedes ([basic.lookup.general]) 

the use of that name</ins>. — end note]" 

 

 

 

 

 

 



• Modify 7.6.1.8 "Type identification" [expr.typeid]/7 as depicted: 

 

"<del>If the header <typeinfo> ([type.info]) is not imported or included 

prior to a use of typeid</del><ins>The type std::type_info ([type.info]) 

is not predefined; if a standard library declaration ([typeinfo.syn], 

[std.modules]) of std::type_info does not precede ([basic.lookup.general]) 

a typeid expression</ins>, the program is ill-formed." 

 

• Modify 7.6.8 "Three-way comparison operator" [expr.spaceship]/8 as 

depicted: 

 

"The three comparison category types ([cmp.categories]) (the types 

std::strong_ordering, std::weak_ordering, and std::partial_ordering) are 

not predefined; <del>if the header <compare> ([compare.syn]) is not 

imported or included prior to</del><ins>if a standard library declaration 

([compare.syn], [std.modules]) of such a class type does not precede 

([basic.lookup.general])</ins> a use of <del>such a 

class</del><ins>that</ins> type – even an implicit use in which the 

type is not named (e.g., via the auto specifier ([dcl.spec.auto]) in a 

defaulted three-way comparison ([class.spaceship]) or use of the built-in 

operator) – the program is ill-formed." 

 

 

 

 

 

 

 

 

 



• Modify 9.2.9.6.2 "Placeholder type deduction" [dcl.type.auto.deduct]/3 

as depicted: 

 

"If the placeholder-type-specifier is of the form type-constraintopt auto, the 

deduced type T' replacing T is determined using the rules for template 

argument deduction. <ins>If the initialization is copy-list-initialization, a 

declaration of std::initializer_list shall precede ([basic.lookup.general]) 

the placeholder-type-specifier.</ins> Obtain P from T by replacing the 

occurrences of type-constraintopt auto either with a new invented type 

template parameter U or, if the initialization is copy-list-initialization, with 

std::initializer_list<U>." 

 

• Modify 9.4.5 "List-initialization" [dcl.init.list]/2 as depicted: 

 

"The template std::initializer_list is not predefined; <del>if the header 

<initializer_list> is not imported or included prior to</del><ins>if a 

standard library declaration ([initializer.list.syn], [std.modules]) of 

std::initializer_list is not reachable from ([module.reach])</ins> a use 

of std::initializer_list — even an implicit use in which the type is not 

named ([dcl.spec.auto]) — the program is ill-formed." 

 

Acknowledgements 
 

Thanks to Cameron DaCamara, Jens Maurer, and Richard Smith for 

reviewing this wording and providing suggestions. 


