Move-only types for equality comparable with,
totally ordered with, and three way comparable with

Document #: P2404R2

Date: 2022-01-19

Project: Programming Language C++

Audience: LEWG and SG9

Reply-to: Justin Bassett (jbassett271 at gmail dot com)

Abstract

None of equality_comparable_with, totally_ordered_with, or three_way_comparable_-—
with support move-only types. For move-only types, these concept’s common reference require-
ment currently ends up requiring that the two types const T& and const U& can be converted to
the non-reference common_reference_t, meaning that it requires T and U to be copyable. This
common reference requirement should be relaxed to support these move-only types, effectively
turning the common reference requirement into a common supertype requirement, as the original
reason to require formable references no longer exists.

Contents

Contents 1
1 Motivation e 3
2 Backgroundo Lo 5
3 Design o L 6
4 Testing the proposed implementation 12
9 Intent e 14
6 Proposed wording L e 14

References 18

Document history

— R2, 2022-01-19: Changes from R1:

— Added a feature test macro. See 3.7. This feature test macro is also in the proposed
wording.

— RI,

Factor out the remove_cvref_t from the proposed wording for the exposition-only
concept. It was quite difficult to read when every T and U was instead remove_cvref_-
t<T> and remove_cvref_t<U>; factoring it out solves the readability issue. common_-
reference_t<const T&, const U&> was also factored out. Note that the intent (5) was
also modified to clarify these changes. Note that the implementation experience (4) was
not updated to verify that this factoring out still passes the tests as stated there.

2021-12-21: Changes from RO:

Rebased on top of N4901.
Replaced disjunction with atomic constraint. See 3.1.1.

Fixed a bug in the wording of common-comparison-supertype-with; each T and U
should have remove_cvref_t. Section 3.2 already discussed this, but it was missed when
applying it to the wording.

Add a breakage example and reorganize breakages. See 3.4.1 for the additional example.

3.4.2 is a reorganization of the prior breakage examples.

Address monomorphic functions potentially requiring runtime common type conversion.
See 3.4.3.

Removed a discussion of a partial solution, as there was no interest in it and because
such a partial solution comes with all of the drawbacks of the full solution.

Expand the discussion of why this paper does not propose to entirely remove the common
reference requirements or strip it down to weakly-equality-comparable-with. See
3.6.

— Expand implementation experience. See 4.1 for the new section; 4.2 is the same as RO.

— Minor rephrasing and reformatting in the document.

— RO,

2021-07-15: Initial version.

1 Motivation

1.1 Overview

The common reference requirements of the comparison_relation_with concepts are stricter than
the mathematical requirement. Ideally, this requirement could be relaxed to be as close to the
mathematical requirement as possible to allow the maximum number of eligible types to satisfy
these concepts.

For example, equality_comparable_with<unique_ptr<T>, nullptr_t> is false despite the fact
that the heterogeneous operator== captures an actual equality. This happens because the common
reference requirement requires that the types are convertible_to the common reference, but
common_reference_t<const unique_ptr<T>&, const nullptr_t&> is unique_ptr<T>, meaning
that it requires convertible_to<const unique_ptr<T>&, unique_ptr<T>>, which is the same as
requiring that unique_ptr<T> is copyable. The other direction is also possible, where common_-
reference_t<const T&, const U&>is T and a constructor T(const U&) does not exist but T (U&&)
does exist.

Because they have the same common reference requirement, this also applies to three_way_-
comparable_with and totally_ordered_with.

1.2 Specific Code Changes

Some specific examples of code which this paper will simplify can be found in Table 1, given:

class bigint { class copyable_bigint {
public: public:
bigint (int); copyable_bigint(bigint);
// Move-only strong_ordering operator<=>(
bigint(const bigint&) = delete; const copyable_bigint&) const;
bigint(bigint&&) noexcept = default; bool operator==
bigint& operator=(const bigint&) const copyable_bigint&) const;
= delete;
bigint& operator=(bigint&&) noexcept strong_ordering operator<=>(
= default; const bigint&) const;
bool operator==(const bigint&) const;
strong_ordering operator<=>(};

const bigint&) const;
bool operator==(const bigint&) const;

strong_ordering operator<=>(int) const;
bool operator==(int) const;

Table 1: Examples which are simplified by this paper

Before

After

auto remove_zeros(
vector<bigint>& range)

{
return ranges::remove_if (
) auto remove_zeros(
range, [1(const autof i) { vector<bigint>& range)
return i == 0; {
P . return ranges::remove(range, 0);
// Alternatively: }
return ranges: :subrange (remove (
range.begin(), range.end(), 0),
range.end());
}

auto find_sorted(
vector<bigint>& range, int x)

t auto find_sorted(
return ranges::lower_bound(.. .
vector<bigint>& range, int x)
range, X, {
1 ; Not ::1 .
ess())' // Not ranges ess return ranges::lower_bound(range, x);
// Alternatively: }
return lower_bound(
range.begin(), range.end(), x);
}

bool is_same(
const vector<bigint>& 1lhs,
const vector<copyable_bigint>& rhs)
{
return ranges::equal(
lhs, rhs,
// Not ranges: :equal_to.
equal_to());
// Alternatively:
return equal(
lhs.begin(), lhs.end(),
rhs.begin(), rhs.end());
}

bool is_same(

{

}

const vector<bigint>& lhs,
const vector<copyable_bigint>& rhs)

return ranges::equal(lhs, rhs);

bool multiset_includes(
const vector<bigint>& lhs,
const vector<copyable_bigint>& rhs)

{ bool multiset_includes(
return ranges::includes(const vector<bigint>& 1lhs,
lhs, rhs, const vector<copyable_bigint>& rhs)
less()); // Not ranges: :less. {
// Alternatively: return ranges::includes(lhs, rhs);

return includes(
lhs.begin(), lhs.end(),
rhs.begin(), rhs.end());

}

Notably, all of the above on the “After” column would compile today if bigint was copyable instead
of move-only, although no copies will be made. Also, note that although all of the above examples
use ranges, this issue would appear at any location where the comparison_relation _with concepts
are used.

2 Background

2.1 Overview

equality_comparable_with<T, U> does far more than test for a compatible operator==(T, U),
instead attempting to capture true cross-type equality. To do so, it considers the equality in
the context of a common supertype, codified as the requirement common_reference_with<const
remove_reference_t<T>&, const remove_reference_t<U>&>, which includes requiring both re-
quirements convertible_to<const T&, common_reference_t<const T&, const U&>> and sym-
metrically convertible_to<const U&, common_reference_t<const T&, const U&>>. Because
it is possible for common_reference_t<const T&, const U&> to be a non-reference type, these
convertible_to requirements can end up requiring that we copy the const T& or const Uk, es-
pecially if the common_reference_t is T or U itself as it is for the case of unique_ptr<T> and
nullptr.

Importantly, the conversion to the common reference never needs to happen at runtime!, as we can
always use the provided heterogeneous operator==(T, U) instead. Historically, this was not the
case, as the C++40X concepts had a mechanism that would resolve the EqualityComparable<T,
U> cross type equality t == u as first converting to the common type if there was no heterogeneous
operator==(T, U) [Stroustrup2012, 51]. However, as concepts are now only a way to check
syntactic validity, this feature was removed.

three_way_comparable_with has the same common reference requirement and can similarly be
relaxed. totally_ordered_with has this common reference requirement, but only transitively
through equality_comparable_with.

2.2 Why the common reference requirement?

Cross-type equality is not initially well defined in mathematics, so some work must be done to
capture it. The Palo Alto report describes this conundrum [Stroustrup2012, 16]. In particular,
establishing an equivalence relation between two arbitrary sets A and B only makes sense if you
instead establish the equivalence relation over AU B. In C++, this means that we need to think of
the equality as operating over some common “supertype” of T and U. This requirement is codified
in equality_comparable_with by the common reference requirement common_reference_with,
where common_reference with<T, U> is defined as follows:

template<class T, class U>
concept common_reference_with =
same_as<common_reference_t<T, U>, common_reference_t<U, T>> &&
convertible_to<T, common_reference_ t<T, U>> &&
convertible_to<U, common_reference_t<T, U>>;

[N4901, 548]

This requirement is not the same as the purely mathematical supertype requirement, as C++ has
to deal with objects and references, incidentally adding the requirement that this common reference
must be formable from the two types.

This same argument applies to three_way_comparable_with and totally_ordered_with: the
relations only make sense when we lift the types to the common supertype, but this common
supertype conversion never needs to happen at runtime. three_way_comparable_with similarly
encodes this with the same invocation of common_reference_with, but totally_ordered_with
receives this requirement transitively through equality_comparable_with.

!Except for implementation details, the common reference conversion will never happen at runtime. See 3.4.3 for
a more in-depth discussion.

3 Design

3.1 Overview

The problem with the comparison_relation _with concepts is the encoding of the supertype
requirement as a common reference requirement; we want to encode the supertype requirement
without requiring formable references or any particular cvref-qualities. Considering comparison_-
relation _with<T, U> with the type common_reference_t<const T&, const U&> notated as C,
this issue can be considered in two parts:

1. T is a move-only type, and C is the same as T.

2. Cis not T and can only be constructed by an rvalue T.

For both of these issues, it is essential to note that although a conversion to C must exist to satisfy
our mathematical axioms, we never need to perform this conversion, as we will always use the
heterogeneous operator@(T, U) comparison functions. This means that it is okay to make it require
extreme acrobatics or even make it impossible to write a bool equal_by_common_reference(T,
U) function, and similarly for the other comparison relations.

The first case can be solved by noting that, although the cvref-quality differs, T and C are of the
same base type, so we can solve it by relaxing the convertible_to<const T&, C> requirement
to also accept cases where const T& and C are the same after remove_cvref_t, which can be
accomplished by using convertible_to<const T&, const C&> (and similarly for U). This works
because if const T& is already const C&, we can simply bind the reference, but we can still construct
a C from the const T& by binding the const C& to the temporary C object. Despite how dangerous
that sounds, the risk is resolved by the fact that we do not have to do this at runtime.

The second case can be solved by relaxing the convertible_to<const T&, C> to not require
copying the T but instead look for any valid conversion, which can be accomplished by using
convertible_to<const T&, C> || convertible_to<T&&, C> (and similarly for U).

Taking both solutions together yields convertible_to<const T&, const C&> || convertible_-
to<T&&, const C&>, and this combined solution does not invalidate any of the prior arguments.

3.1.1 Avoiding disjunctions

Disjunctions in concepts may slow down compilation times due to added costs in the conver-
sion to disjunctive normal form, so it is desirable to avoid them. As such, this new disjunc-
tion should be made into an atomic constraint to avoid this issue. Lost functionality is not
a concern in this case, because users are not expected to find it useful to have subsumption
between equality_comparable_with<T, U> and convertible_to<const T&, const common_-
reference_t<const T&, const U&>&> or the other similar cases.

Avoiding the disjunctions in this case is easily resolved by forcing the disjunction to be an atomic
constraint via a requires expression and nested requirements:
requires {

requires convertible_to<const T&, const C&> || convertible_to<T&&, const C&>;

}

In this particular case, we have two disjunctions, one for T and one for U. Having a conjunction
between atomic constraints is not useful, so the proposed wording will merge them into a single
atomic constraint.

3.2 Syntactic requirements changes

Changing the meaning of common_reference_with is not the best idea, as the proposed changes are
inconsistent with the concept’s name and with its usage in other contexts. As such, it makes sense
to add a new exposition only concept common-comparison-supertype-with<T, U> which applies
these modifications to common_reference_with. However, since T and U are possibly cvref-qualified,
this new concept will need to account for that by stripping the cvref-qualifiers. const and references
are mathematically meaningless, so stripping the cvref-qualifiers does not cause any issues with the
meaning of this exposition only concept. In summary, common-comparison-supertype-with<T, U>
is a variant of common_reference_with<remove_cvref_t<T>, remove_cvref_ t<U>> which modi-
fies the convertible_to<...> requirements to support move-only types.

This modified exposition only concept will replace the common_reference_with requirements in
three_way_comparable_with and equality_comparable_with, transitively applying to totally_-
ordered_with as well.

3.3 Semantic requirements changes

Changing the syntactic requirements also requires that we change the semantic requirements of all of
these concepts. Rather than purely copying the semantic requirements of common_reference_with
where we construct the common reference via C(t) and C(u), common-comparison-supertype-with
must instead capture the idea that we will copy or move to a const& by modifying the wording to
use both static_cast<const C&>(t) and static_cast<const C&>(move(t)) to allow for either
the copying constructor or the moving constructor to be used, whichever is valid.

For equality_comparable_with, the common supertype requirement may now move its arguments,
but equality_comparable_with<T, U> specifies its semantic requirements using t and u of const
remove_reference_t<T> and const remove_reference_t<U> respectively. Instead of having t
and u be const, this paper proposes making them the non-const remove_cvref _t<T> and remove_-
cvref_t<U>, allowing us to move from t and u. This is not to prohibit the equality comparison of
const lvalues, but the behavior of equality comparison of const lvalues must be the same as if they
were non-const and allowed to be moved from. Furthermore, despite moving from these lvalues, the
objects should retain the exact same state as before they were moved from, because a move never
actually happens at runtime. That is to say, the bool result of the heterogeneous operator== must
be the same as if we move to the const C& common supertype and perform the comparison there,
ignoring any side effects caused by the move. The same holds true for three_way_comparable_with
and totally_ordered_with.

Actually encoding this new model is a bit tricky, because the comparison operators do not introduce
a sequence point between their arguments. As such, the two comparisons must be evaluated in
separate lines of code to prevent the move from affecting the heterogeneous comparison.

3.4 Potential issues with this approach
3.4.1 Breakage of existing code

Changing any existing concept is a breaking change for many reasons. In particular, this change
breaks anyone relying on the comparison_relation _with concepts implying common_reference_-
with. This is by design; removing this requirement is exactly the intention of the paper.

Figure 1 shows such an example. Currently, the code in Figure 1 is allowed. When using equality_-
comparable_with<T, U>, the implementer was free to expect to be able to convert to the common
reference as an implementation detail. This expectation is broken by this paper. To fix the
code, either the implementer must remove the implementation detail by directly using *firstl ==
xfirst?2, or if they wish to keep the conversion as an implementation detail, the implementer would
have to add the requirement common_reference_with<const T&, const U&>. Note that this is

Figure 1: Example of code broken due to relying on common_reference_with as an implementation
detail.

template <ranges::range Rl, ranges::range R2>
requires equality_comparable_with<
ranges: :range_reference_t<R1>,
ranges: :range_reference_t<R2>>
int count_equals(R1&& rl, R2&& r2) {
using C = common_reference_t<
ranges: :range_reference_t<R1>,
ranges: :range_reference_t<R2>>;

auto firstl = ranges::begin(rl);
auto first2 = ranges::begin(r2);
const auto lastl = ranges::end(rl);
const auto last2 = ranges::end(r2);

int count = 0;

while (firstl != lastl && first2 != last2) {
// Copies to the common reference.
// This is allowed before this paper, but not after.
C cl = xfirstl;
C c2 = xfirst2;

if (c1 == c2) ++count;

++firsti;
++first2;

return count;

3

enough, because although this paper removes common_reference_with from its definition, the way
the paper specifies equality_comparable_with means that common_reference_with is applying
a stricter condition on the same common_reference_t.

That said, although Figure 1 is broken by this paper, because this paper is a relaxation, count_-
equals will continue to work as before for any types which it accepted before. The only types
which fail to be converted to the common reference type are those which previously did not pass the
equality_comparable_with requirement. In other words, this paper does break Figure 1 and other
algorithms relying on common_reference_with as an implementation detail, but only as it pertains
to whether the algorithm is appropriately constrained; any existing code using the algorithm would
continue to compile.

3.4.2 Breakage in existing code: edge cases

Figure 2 shows more examples of code broken due to this paper, but these cases are considered
unlikely to occur. Figure 2a demonstrates that behavior can change for types which only now
meet equality_comparable_with by changing which overload is chosen for an overload set for
when passed these types. Figure 2b demonstrates that the removed subsumption with common_-
reference_with can break code which was relying on that subsumption. Figure 2c shows that
code which deliberately relies on the result of the changed concepts can be broken due to the change
in its value.

Figure 2: Examples of code broken due to edge cases in this paper’s changes.

(a) Behavior change of a fallback against the modified con-

cept’s. (b) Removed subsumption makes the overload ambiguous.
template <typename T, typename U> // Some type using a different spelling of equality.
struct equality_traits; class fancy_int {
int x;
// Assume bigint and
// copyable_bigint are as before. public:
template <> fancy_int(int x) : x(x) {}
struct equality_traits<
bigint, copyable_bigint> { bool equals(int y) const { return x == y; }
// A manual implementation which, for };
// some reason, does not use operator==.
static bool equals(template<class T, class U>
const bigint&, const copyable_bigint&); requires equality_comparable_with<T, U>
}; bool attempted_equals(const T& t, const U& u) {
return t == u;
template <typename T, typename U> }

requires equality_comparable_with<T, U>
bool fancy_equals(const T& t, const U& u) { template<class T, class U>

return t == u; requires common_reference_with<

} const remove_reference_t<T>&,
const remove_reference_t<U>&>

template <typename T, typename U> bool attempted_equals(const T& t, const U& u) {
bool fancy_equals(const T& t, const U& u) { static_assert(requires { { t.equals(u) }

return equality_traits<T, U>::equals(t, u); -> convertible_to<bool>; });
} return t.equals(u);

}

// Calling code
bigint a = ...; auto testl(const shared_ptr<int>& p) {
copyable_bigint b = ...; return attempted_equals(p, nullptr);

// With this proposed change:
// error: call of overloaded ‘common ()’ is ambiguous

}

auto test2(const fancy_int& x, int y) {
// Still works:
return attempted_equals(x, y);

}

(c) Directly testing the concept’s value.

template <typename T>
void questionable(unique_ptr<T> p) {
if constexpr (equality_comparable_with<
unique_ptr<T>, nullptr_t>) {
1/ 0; // Cause undefined behavior.
X
}

Although these examples are broken by this change, the drawbacks of these breakages are low
compared to the benefits of enabling move-only types for the comparison_relation_with concepts.
For Figure 2a, despite the change in behavior by which function is called, either the end result
will be the same or the code already had a bug where the semantic meaning of “equals” was not
respected by equality_traits<bigint, copyable_bigint>::equals(...). Despite Figure 2b
showing subsumption being broken, the loss of subsumption generally results in hard errors rather
than silently incorrect behavior changes, and subsumption can always be regained by adding the
additional constraint of common_reference_with<const T&, const U&>. Figure 2c is pathological,
as the code modifies semantics or even creates undefined based on type introspection whose answer
may change. Refusing to break such pathological code is to forbid changing the standard, as adding
member functions, overloads, and so on also breaks similar code.

3.4.3 Why do we never need a runtime common supertype conversion?

Although the current specification of equality_comparable_with allows implementations to convert
the arguments to the common supertype at runtime, this never needs to happen and can instead
be replaced with a direct comparison of the two types. This specifically applies for algorithms
which want to use operator== rather than an arbitrary predicate, where the predicate is not
constrained with equality_comparable_with like ranges: :equal_to is. For arbitrary predicates
in the algorithms, there are cases where the equivalence relation required of the predicate can
perform a conversion to the common supertype if the user specifies it. Such a case is presented here,
along with why this does not affect this paper’s change.

In Iterators++, Part 3, Eric Niebler describes how the intersection of proxy iterators with
std: :ranges: :unique_copy produces a case where users may wish to use a conversion to common_-
reference_t in a predicate in order to use a monomorphic function rather than a template
[Niebler2015]. To summarize the point in the article, code such as the following fails to compile
(example modified from [Niebler2015]):

vector<bool> vec = some_initial_value();

using R = vector<bool>::reference;

ranges: :unique_copy (vec,
ostream_iterator<bool>{cout, " "},
[T(R b1, R b2) { return bl == b2; });

But using the common reference type allows a monomorphic predicate to compile (again, example
modified from [Niebler2015]):

vector<bool> vec = some_initial_value();
using C = iter_common_reference_t<vector<bool>::iterator>;
ranges: :unique_copy (vec,

ostream_iterator<bool>{cout, " "},

[1(C b1, C b2) { return bl == b2; });

However, this example does not apply to equality_comparable_with since the user is specifying
a predicate rather than relying on ranges: :equal_to. That is to say, because the user specifies
their own predicate, there is no equality_comparable_with requirement in Niebler’s example,
only a requirement that the predicate forms an equivalence relation. Even if the user added an
equality_comparable_with<C, C> requirement, there is no issue, because the equality happens
after the conversion to the common reference.

This paper only affects similar user provided predicates if the user provided a templated predicate
using equality_comparable_with which delegated to a monomorphic common supertype predicate
without also specifying common_reference_with; a breaking change already mentioned in 3.4.1 and
Figure 1.

10

Figure 3: An example demonstrating a class deleting the constructor from an rvalue reference.

// Assume bigint is as before.

class bigint_cref {

public:
bigint_cref (const bigint&);
// Forbid construction from rvalue references:
bigint_cref (const bigint&&) = delete;

strong_ordering operator<=>(bigint_cref) const;
bool operator==(bigint_cref) const;

strong_ordering operator<=>(const bigint&) const;
bool operator==(const bigint&) const;

};

static_assert(equality_comparable_with<bigint, bigint_cref>);

3.5 Why is convertible_to<T&&, const C&> insufficient?

It may appear that we could simplify convertible_to<const T&, const C&> || convertible_-
to<T&&, const C&> to just convertible_to<T&&, const C&>, as a constructor that takes a const
T& can also always take a T&&. However, this forgets the case of deleted rvalue overloads as in Figure
3.

Figure 3 compiles fine before this paper and with the disjunction. However, with only convertible_-
to<T&&, const C&> and no disjunction, the static_assert fails, with the compilation error
including the note: “‘convertible_to<bigint &&, const bigint_cref &>’ evaluated to false.”

This pattern deletes the rvalue overload of an overload set—the constructor in this case—to attempt
to prevent the function from being called with temporaries and solve some lifetime management
errors. Although this pattern fails to correctly capture lifetime constraints as rvalue references
do not necessarily imply an immediately expiring lifetime, there is currently no way to properly
manage lifetime constraints, so this is a pattern that is used not too infrequently. To maintain
support of this pattern, this paper uses the disjunction convertible_to<const T&, const C&>
|| convertible to<T&&, const C&>.

3.6 Could we remove the common reference requirement or move to weak
equality?

A common suggestion has been to remove the common reference requirement altogether, leaving us
with approximately weakly-equality-comparable-with and partially-ordered-with, possibly
with additional semantic requirements. This paper deliberately does not propose such a change for
two reasons:

1. Stripping the common reference requirement is orthogonal to the changes presented in this
paper. The changes that this paper proposes do not in any way prevent such a change from
being made in the future.

2. It is the author’s belief that the common reference requirements are necessary for these
concepts to be sound. The common reference requirements exist to provide at least some
verification that the types meet the mathematical models of equality and ordering. The
common reference requirements very closely match the mathematical model for extending
equality and ordering to be heterogeneous (see 2.2). It seems likely that removing these
requirements would easily allow types through which do not meet the mathematical models,
which would lead to serious repercussions on the ability to reason about code. It seems unwise

11

to ignore the analysis in the Palo Alto report [Stroustrup2012] which explains that these
requirements are important. See 2.2 for more information on the Palo Alto report’s discussion
of these requirements.

It is important to note that a large number of types—including in the standard library—use
operator== for something other than equality. Removing the common reference requirements
erroneously allows these types to meet equality_comparable_with. It turns out to be easy to
write an operator==(T, U) which feels like equality but actually is not when considered in the
context of all of operator==(T, T), operator==(T, U), operator==(U, U), and operator==(C,
C) (where C is the common reference). To be a proper equality, all of these operator==s must be
part of the same equality.

As an example, iterators and sentinels have a cross-type operator==(iterator, sentinel) which
feels like equality and could form an equivalence relation, except that operator==(iterator,
iterator) is mot part of the same equivalence relation as operator==(iterator, sentinel).
Indeed, if these were to be part of the same equivalence relation, then operator==(iterator,
iterator) must instead be testing to see if both iterators have reached the end of the range.
Therefore, equality_comparable_with<iterator, sentinel> must be false, because the relevant
equality operators are not consistent with each other.

The same holds true for three_way_comparable_with and totally_ordered_with.

This paper intentionally only attempts to appropriately expand the concepts under the assump-
tion that the current model is correct. If it is possible to strip the requirements down to
weakly-equality-comparable-with and partially-ordered-with while retaining a sound model,
such a significant change—involving reworking what it means for a type to be reqular and working
out all of the mathematical implications—is out of scope for this paper.

3.7 Feature Test Macro

A feature test macro should be added. Two possible approaches could make sense: either update
__cpp_lib_concepts to a higher value or add a new feature test macro. This paper proposes
to add a new feature test macro: __cpp_lib_relaxed_comparison_concepts. This feature test
macro should be available in <version> as well as the headers which provide any of the three
concepts equality_comparable_with, totally_ordered_with, or three_way_comparable_with,
so additionally <concepts> and <compare>.

4 Testing the proposed implementation

4.1 Full implementation

The proposed wording (6) was implemented in libc++ [Libexx] and libstdc++ [Libstdexx]. Each
standard library was then built with GCC 11.1 [GCC] and the full test suites were run. Clang—+-+
14.0.0 [Clang] was also used to build and test libc++-.

Note that these changes were not implemented in the Microsoft STL [MicrosoftSTL] due to lack of
access to a Windows machine.

To summarize the results, the proposed changes do not have any further repercussions in broken
tests in libc++ nor in libstdc+—+.

4.1.1 Libc++

Libc++ was modified at commit d5b73a70a0611fc6c082e20acb6ce056980c8323 to incorporate
the proposed changes.

12

Clang++ 14.0.0 successfully built libc++. There were 6 failed tests in the test suite, all of which
were tests on the constrained comparison function objects—such as ranges: :equal_to—to verify
that they cannot be invoked with a move-only object. As that is precisely the change which this
paper attempts to fix, these failures are expected.

GCC 11.1 successfully built libc++. There were 6 failed tests in the test suite, precisely those 6
tests which failed for Clang++ 14.0.0. As such, these failures are expected.

Thus we can confirm that nothing in libc++’s test suite is broken due to this paper’s change.

4.1.2 Libstdc++

Libstdc++ was modified at commit df 1a0d526e2e4c75311345c0b73ce8483e243899 to incorporate
the proposed changes.

GCC 11.1 successfully built libstdc++. A single test failed at runtime, 30_threads/jthread/95989.cc,
which failure happened without this change and is also not related to this change. All other tests
passed.

Clang++ 14.0.0 was not tested due to lack of time.

4.2 Running concept-specific tests

Rather than changing the standard libraries, this experiment implemented the new concepts
separately, then ran all of the test cases referencing the changed concepts in the standard libraries’
test suites over the alternative implementations. In contrast with 4.1, this allowed testing the
Microsoft STL test suite, the Microsoft compiler, and how the different implementations perform
on each other’s test suites.

These concepts’ tests were gathered from the libc++ [Libexx] test suite and the Microsoft
STL [MicrosoftSTL] test suite at commits 1c69005c2e11414669ac8ba094a9b059920936db and
280347a4309eaaf5f 1bba3b1ad98a27687b9d9c3 respectively. At the time of writing, libstde++
[Libstdexx| at commit a7098d6ef4ede799dab8ef925c62b199d707694b did not have tests specif-
ically for these concepts. These gathered tests were then modified to be run over the concepts
from the proposed wording (6), thus testing the proposed concepts against both libc++’s and the
Microsoft STL’s tests.

With the proposed changes, all the tests pass for all three of equality_comparable_with, totally_-
ordered_with, and three_way_comparable_with except tests which fail even without these changes
due to compiler bugs or incomplete implementations. That is to say, the only tests that fail do so
for unrelated reasons. To summarize the test results:

— A single test fails for GCC 11.1, as it claims that nullptr_t meets totally_ordered. This
is because GCC 11.1 has relational operators defined for nullptr_t. This test failure is
unrelated to the proposed changes.

— Two tests fail for MSVC 19.29.30130.2:

— MSVC does not support static_assert(requires { ... 1}),so it fails to parse a test
in that form. This test failure is unrelated to the proposed changes.

— MSVC claims !equality_comparable_with<nullptr_t, int (&) ()>, but libc++ in-
cludes such a test in its test suite. This test failure is unrelated to the proposed changes.

— All tests pass for Clang 12.0.0.

In short, the proposed changes do not break any of these concepts’ tests in libc+4 or the Microsoft
STL.

13

5 Intent

To summarize the intent of the proposed changes, given C = common_reference_t<const T&,
const U&>, this paper intends to relax the common reference requirements by:

— Relaxing the convertible_to<const T&, C> invocations to allow types satisfying same_-
as<remove_cvref_t<T>, remove_cvref_t<C>> to meet the concept without requiring copy-
ing the T.

— Relaxing the convertible_to<const T&, C>invocations to allow for types where it is possible
to convert a T to C, but only via moving the T. Recall that the move does not happen at
runtime, so despite allowing moves, we are not changing any values (3.1).

The following proposed wording (6) uses some patterns whose intent is as follows:

— COMMON (. ..) is intended to convert the ... to the common reference via copying or moving
the value, whichever is valid. This should allow for types which can be moved to the common
reference, but not copied to the common reference.

— COMMON (...) uses static_cast<const C&>(...) in its conversions, but this is intended
solely to convert to a const C& instead of C directly. This is not intended to require explicit
conversions to be taken, which should already be forbidden by the fact that the syntactic
requirements require implicit conversions via convertible_to.

— FEach expression which previously had conversions to the common type is split into two pieces,
first evaluating without the conversion, then comparing this prior evaluation against the result
after the conversion. This is intended to avoid any issue where moving the T or U lvalues
via COMMON (...) changes the value of the objects before we perform the heterogeneous
evaluation.

— The original semantic requirements used lvalues of type const remove_reference_t<T> and
similarly for U, but these lvalues were changed to be of type remove_cvref_t<T> and remove_-
cvref_t<U>. This change is not intended to say that the concepts only work with non-const
lvalues, but it is instead intended to allow COMMON (...) to properly move if necessary by
creating T&& and U&& instead of const T&& and const U&&.

— In the wording for common-comparison-supertype-with, a helper concept is used, with
the name of common-comparison-supertype-with—impl. This is solely to improve the
readability of the concept definition, by factoring out the remove_cvref_t<T> and remove_-
cvref_t<U> and also by factoring out the common_reference_t<const T&, const U&>. This
is intended to be exactly the same as if everything was textually inlined into the definition
of common-comparison-supertype-with, meaning that any potential change in semantics
between the two is not intended. In particular, the default argument for factoring out
the common_reference_t should not block proper syntactic checking, which already works
because the context where the possibly ill formed common_reference_t<const T&, const
U&> appears is in the definition of common-comparison-supertype-with.

6 Proposed wording

In [concepts.lang], the following exposition-only concept is added, intended to detect that there
exists a common supertype of T and U as described earlier:

14

Common supertypes [concept.commonsupertype]

For two types T and U, if common_reference_t<const remove_cvref_ t<T>&, const

remove_cvref _t<U>&> is well-formed and denotes a type C such that both convertible_-
to<const T&, const C&> || convertible_to<T&&, const C&> and convertible_-
to<const U&, const C&> || convertible_to<U&&, const C&> are modeled, then T

and U share a common comparison supertype C.

template<class T, class U, class C = common_reference_t<const T&, const U&>>
concept common-comparison-supertype-with-impl = // exposition only
same_as<
common_reference_t<const T&, const U&>,
common_reference_t<const U&, const T&>> &&
requires {
requires convertible_to<const T&, const C&> ||
convertible_to<T&&, const C&>;

requires convertible_to<const U&, const C&> ||
convertible_to<U&&, const C&>;

};

template<class T, class U>
concept common-comparison-supertype-with = // exposition only
common—compartson—supertype-with—impl <
remove_cvref _t<T>, remove_cvref_ t<U>>;

Let C be common_reference_t<const T&, const U&>. Let t1 and t2 be equality-
preserving expressions such that decltype((t1)) and decltype((t2)) are each
remove_cvref_t<T>, and let ul and u2 be equality-preserving expressions such that
decltype((ul)) and decltype((u2)) are each remove_cvref_t<U>. Let COMMON (. . .)
be static_cast<const C&>(...) if static_cast<const C&>(...) is a valid ex-
pression and static_cast<const C&>(move(...)) otherwise. T and U model
common-comparison-supertype-with<T, U> only if:

— COMMON (t1) equals COMMON (t2) if and only if t1 equals t2, and
— COMMON (ul) equals COMMON (u2) if and only if ul equals u2.

In [cmp.concept]:

template<class T, class U, class Cat = partial_ordering>
concept three_way_comparable_with =
three_way_comparable<T, Cat> &&
three_way_comparable<U, Cat> &&
common—reference—with<

const—remove—_reference—t<T>&;—~const—remove—referencet<U>&>&&
common—compartson—supertype-with<T, U> &&
three_way_comparable<

common_reference_t<

const remove_reference_t<T>&, const remove_reference_t<U>&>, Cat> &&

weakly-equality—-comparable-with<T, U> &&
partially-ordered-with<T, U> &&
requires(const remove_reference_t<T>& t, const remove_reference_t<U>& u) {

{t <=>ul} -> compares-as<Cat>;

{u<=>t 1} -> compares-as<Cat>;

};

Let—t and u be lvalues of types const remove reference t<T> and
const—remove—_reference—t<U>respeetively= Let C be common_reference_t<const

15

remove_reference_t<T>&, const remove_reference_t<U>&>. Let CcoMMONC...)
be static_cast<const C&>(...) if static_cast<const C&>(...) is a valid
expression and static_cast<const C&>(move(...)) otherwise. T, U, and Cat model
three_way_comparable_with<T, U, Cat> only if given Ivalues t and u of types
remove_cvref_t<T> and remove_cvref_t<U>, respectively:

— t <=> uand u <=> t have the same domain,
— ((t <=> u) <=> 0) and (0 <=> (u <=> t)) are equal,

— (t <=> u == 0) == bool(t == u) is true,

— (t <=> u !'= 0) == bool(t != u) is true,

After evaluating const auto cat = Cat(t <=> u);,
cat == Cat(COMMON (t) <=> COMMON (u)) is true,

— (£ <=> u < 0) == bool(t < u) is true,

— (t <=> u > 0) == bool(t > u) is true,

— (t <=> u <= 0) == bool(t <= u) is true,

— (t <=> u >= 0) == bool(t >= u) is true, and

— if Cat is convertible to strong_ordering, T and U model totally_ordered_-
with<T, U>.

In [concept.equalitycomparable]:

Concept equality_comparable [concept.equalitycomparable]

template<class T, class U>
concept equality_comparable_with =
equality_comparable<T> && equality_comparable<U> &&
common—_reference—with<

const—remove—reference—t<>&;

const—remove—reference—t<U>&>&&
common—compartison—-supertype-with<T, U> &&
equality_comparable<
common_reference_t<
const remove_reference_t<T>&,
const remove_reference_t<U>&>> &&

weakly-equality-comparable-with<T, U>;

Given types T and U, let tbean-lvalue of type const remove_reference t<T>.u be
antvalue-of type-const—remove—reference—t<U>and C be:

common_reference_t<
const remove_reference_t<T>&,
const remove_reference_t<U>&>

T and Umodel equality_comparable_with<T, U>only if bool(t == u) == bool(C(t)
== C(u)). Let COMMON (. ..) bestatic_cast<const C&>(...) if static_cast<const
C&>(...) is a valid expression and static_cast<const C&>(move(...)) otherwise. T
and U model equality_comparable_with<T, U> only if given lvalues t and u of types
remove_cvref_t<T> and remove_cvref_t<U>, respectively, after evaluating const
bool eq = bool(t == u);, eq == bool (COMMON (t) == COMMON (u)) .

In [concept.totallyordered]:

16

template<class T, class U>
concept totally_ordered_with =
totally_ordered<T> && totally_ordered<U> &&
equality_comparable_with<T, U> &&
totally_ordered<
common_reference_t<
const remove_reference_t<T>&,
const remove_reference_t<U>&>> &&
partially-ordered-with<T, U>;

Given types T and U, let +-be-antvalue-of-type-const—remove—_reference—t<T>ube
antvadune-of type-const—remove—reference—t<U>and C be:

common_reference_t<const remove_reference_t<T>&,
const remove_reference_t<U>&>

Let COMMON (. ..) be static_cast<const C&>(...) if static_cast<const C&>(...)
is a valid expression and static_cast<const C&>(move(...)) otherwise. T and U

model totally_ordered_with<T, U> only if given lvalues t and u of types
remove_cvref_t<T> and remove_cvref_t<U>, respectively:

— bool(t < u) == bool(C(t) < C(u)).
— bool(t > u) == bool(C(t) > C(uw)).
— bool(t <= u) == bool(C(t) <= C(u)).
— bool(t >= u) == bool(C(t) >= C(u)).
— bool(u < t) == bool(C(u) < C(t)).
— bool(u > t) == bool(C(u) > C(t)).
— bool(u <= t) == bool(C(u) <= C(t)).
— bool(u >= t) == bool(C(u) >= C(t)).

After evaluating const
r == bool (COMMON (t)
After
r ==
After

After
r ——
After
r ——
After
r —_——
After
r ==

After evaluating const
r == bool (COMMON (t)

evaluating const
bool (COMMON (t)

evaluating const
bool (COMMON (t)

evaluating const
bool (COMMON (t)

evaluating const
bool (COMMON (t)

evaluating const
bool (COMMON (t)

evaluating const
bool (COMMON (t)

In [version.syn]:

#define
cepts>, <compare>

bool r = bool(t < u);,
< COMMON (u)) is true,
bool r = bool(t > u);,
> COMMON (u)) is true,
bool r = bool(t <= u);,
<= COMMON (u)) is true,
bool r = bool(t >= u);,
>= COMMON (u)) is true,
bool r = bool(u < t);,
< COMMON (u)) is true,
bool r = bool(u > t);,
> COMMON (u)) is true,
bool r = bool(u <= t);,
<= COMMON (u)) is true,
bool r = bool(u >= t);,
>= COMMON (u)) is true,

__cpp_lib_relaxed_comparison_concepts <DATE OF ADOPTION> // also in <con-

The proposed changes are relative to the current working draft [N4901].

17

Acknowledgements

Many thanks to:

— Matthew Rodusek for their question on Stack Overflow which brought this issue to my
attention.

— Tim Song for pointing me in the right direction to gain a mathematical understanding of
cross-type equality.

— Christopher Di Bella for helping determine whether this paper is mathematically sound.

References

[Clang] https://github.com/1lvm/llvm-project/tree/main/clang.
[GCC] git://gcc.gnu.org/git/gec.git.

[Libcxx] https://github.com/11lvm/1lvm-project/tree/main/libecxx.
[Libstdexx| git://gcc.gnu.org/git/gec.git.

[MicrosoftSTL] https://github.com/microsoft/STL.

[N4901] Thomas Koppe. Working Draft, Standard for Programming Language C+-+. https:
//wg21.1ink/n4901, 2021 (accessed 2021-11-21).

[Niebler2015] Eric Niebler. Iterators++, Part 3. https://ericniebler.com/2015/03/03/
iterators-plus-plus-part-3/, 2015 (accessed 2021-11-12).

[Stroustrup2012] Bjarne Stroustrup and Andrew Sutton. A Concept Design for the STL. https:
//wg21.1ink/n3351, 2012 (accessed 2021-06-30).

18

https://stackoverflow.com/q/66937947/1896169
https://github.com/llvm/llvm-project/tree/main/clang
git://gcc.gnu.org/git/gcc.git
https://github.com/llvm/llvm-project/tree/main/libcxx
git://gcc.gnu.org/git/gcc.git
https://github.com/microsoft/STL
https://wg21.link/n4901
https://wg21.link/n4901
https://ericniebler.com/2015/03/03/iterators-plus-plus-part-3/
https://ericniebler.com/2015/03/03/iterators-plus-plus-part-3/
https://wg21.link/n3351
https://wg21.link/n3351

	Contents
	1 Motivation
	1.1 Overview
	1.2 Specific Code Changes

	2 Background
	2.1 Overview
	2.2 Why the common reference requirement?

	3 Design
	3.1 Overview
	3.2 Syntactic requirements changes
	3.3 Semantic requirements changes
	3.4 Potential issues with this approach
	3.5 Why is convertible_to<T&&, const C&> insufficient?
	3.6 Could we remove the common reference requirement or move to weak equality?
	3.7 Feature Test Macro

	4 Testing the proposed implementation
	4.1 Full implementation
	4.2 Running concept-specific tests

	5 Intent
	6 Proposed wording

	References

