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Abstract
This document proposes a set of fundamental linear algebra types and functions for the
standard C++ library. The facilities described herein are pure additions, requiring no changes
to existing implementations.

Revision history

R0 Initial version for pre-Kona mailing.

D1 Update for presentation at Kona includes operation traits.

R1 Update for post-Kona mailing; includes feedback from
LEWG(I) and joint SG14/SG19 session.

Feedback:
At the Kona 2019 meeting, draft version D1 of this paper was reviewed by LEWG(I) and a
joint session of SG14 and SG19. Both reviews were generally positive, several good
suggestions were made, and some polls regarding future directions were taken.

LEWG(I) Polls and Feedback
[Wednesday 2019-02-20]
(http://wiki.edg.com/bin/view/Wg21kona2019/P1385)
1. We want 0-based indexing as opposed to 1-based indexing.

(unanimous: 20)
2. We like having separate row_vector and column_vector types in addition to matrix.

SF F N A SA (21 present)
3 0 5 4  4

3. We want explicitly named operations (e.g., dot and outer) in addition to operators.
SF F N A SA (21 present)



8 5 2 1  0
4. Define engine/matrix classes in terms of mdspan + storage and  mdspan concepts (e.g.,
extents), and expose an mdspan-esque. This implies that fs_ and dyn_ are combined into
one template parameterized on extents (which are either static or dynamic).

SF F N A SA (22 present)
6 2 7 0  0

There were some additional requests:
+ Provide some implementation and usage experience.
+ Provide a comparison with prior art.
+ Explore the re-usability of `mdspan` and `common_type`.
+ Be careful of allowing specializations of traits types that are part of namespace `std`; be
consistent with other traits.

Joint SG14/SG19 Session Feedback
[Friday 2019-02-22]
(http://wiki.edg.com/bin/view/Wg21kona2019/SG14MinutesP1385)
+ Stick to 0-based indexing, for compatibility with current practice, and also for performance
reasons.
+ Provide a fixed-size engine whose memory is dynamically allocated.
+ In this session, there was very broad agreement that the one-vector approach advocated
by LEWG(I) was the way to proceed.
+ Outer product computation is rare in practice, so, the vector-vector multiplication operator
should return the inner product, and the outer product should be a named function.

Other Suggestions Gathered at the Meeting
+ Experiment with executors for concurrent operations.
+ Include an "audience table" (see [P1362R0](http://wg21.link/p1362r0), Section 4.4)
showing feature levels and anticipated user sophistication for each.
+ Include tutorial material on how the library can be used and extended, with several
illustrative examples.

R2 Update for Cologne meeting; includes feedback from Kona
and monthly SIG conference calls.
— Emphasized proposed std::math namespace
— Replaced row_vector and column_vector types with a single vector type to represent
both.
— Removed discussion regarding 0-based or 1-based indexing in favor of 0-based.
— Reduced number of customization points within namespace std to two.

D3 Last-minute update for Cologne meeting.
— Remove erroneous references to row_vector and column_vector in the R2 text.



Feedback:
At the Cologne 2019 meeting, a joint session of SG14, SG19, and SG6 was held on Friday
20-Jul-2019 and version R2 of this paper was presented.  A vote was held in the afternoon,
and the room reached consensus to forward P1385 to LEWG subject to reconciling
implementation with P1673.

Joint SG14/SG6 Session Feedback
[Friday 2019-07-20]
(http://wiki.edg.com/bin/view/Wg21cologne2019/SG6P1385R2)
[Additional session here]
(http://wiki.edg.com/bin/view/Wg21cologne2019/SG14LA)
Forward P1385 to LEWG subject to reconciling implementation with P1673
SF F N A SA
9 4 9 2  2

In the intervening months, the authors of P1673 put together an initial implementation of the
interface described therein, and provided it to the authors of this proposal. We are currently
endeavoring to implement P1385 in terms of the interface expressed by P1673.

R3 Update for Belfast meeting.
— Remove more erroneous references to row_vector and column_vector.

Feedback:
The paper was reviewed by SG6 briefly and by LEWG(I). SG6 only require further review if a
numeric question arises.

LEWG(I) Polls and Feedback [Wednesday
2020-11-06](http://wiki.edg.com/bin/view/Wg21belfast/P1385)
1. We want to be able to modify elements through `matrix_*_view`s (similar to `span`).

SF F N A SA (20 present)
8 8 0 0  0

2. For matrix types with overloaded operators, we are comfortable with supporting hooks for
expression templates but having no expression templates by default in the standard library.

SF F N A SA (20 present)
2 4 4 2  0

3. Given what we've seen so far, we are comfortable with the customization mechanisms for
overloaded operators on matrices.

SF F N A SA (20 present)
2 4 7 0  2

CONSENSUS: Bring a revision with the guidance below to LEWGI for further design review.
+ These pieces of guidance from Kona seem not to have been addressed. Please address
them in the next revision of the paper.



- Define engine/matrix classes in terms of mdspan & storage and mdspan concepts (e.g.
extents), and expose an mdspan-esque interface. This implies that fs_ and dyn_ are
combined into one template parameterized on extents (which are either static or dynamic).
- Add explicitly named operations (e.g. dot, outer) in addition to operators.

+ Ask SG6 to formulate a precise definition of `is_field`, `is_nc_ring` and `is_ring`, and
consider what the answers should be for builtin types (e.g. signed integers, unsigned
integers, and floating point types).
+ Make `numeric_traits` non-implementation-defined; for non-builtin/non-`std` types, assume
the properties are false.
+ Separate `is_complex` or `is_specialization_of` into a separate paper.
+ Remove the `numeric_traits` helper traits (`is_field`, `is_nc_ring`, etc).
+ Make `matrix_*_view`'s copy constructor and copy assignment methods `noexcept`.
+ Add non-const `begin` and `end` to `matrix_*_view`.
+ Remove `assign` method from `matrix_*_view`.
+ Provide a way to modify elements through `matrix_*_view` types: one option is to add
`matrix_*_ref` types that allow modification of the underlying elements.
+ Explore adding a submatrix view.
+ Make `index_type` `ptrdiff_t` and `size_type` `size_t`.
+ Develop a clear plan for `is_rectangular == false`.
+ Add `data` to engine types.
+ `is_fixed_size` and `is_resizable` are inverses of each other; explore combining.
+ Explore different designs for `numeric_traits`: either looking for embedded type aliases in
the classes instead of a trait, or granular traits a la P1370.

R4 Update to R3 for post-Belfast mailing.
— Include feedback from reviews in Belfast.

R5 Update for pre-Prague mailing, based on feedback from
Belfast.
— Removed element type predicate traits from the public interface.
— Removed is_complex from the public interface.
— Added mutating row, column, transpose, and submatrix “views” (in addition to the
corresponding const “views”).
— Changed type of NTTPs for sizes to size_t.
— Changed index_type to size_type for indexing.
— Changed names formerly *_view to *_engine.
— Removed matrix_ prefix from non-owning engine names.
— Removed nested boolean attributes from engines and math objects.
— Renamed const_*_tag and mutable_*_tag tag types to readable_*_tag and
writable_*_tag, respectively.

Feedback:
The paper was reviewed by SG6/SG14/SG19 briefly and by LEWG(I).



LEWG(I) Polls and Feedback [Wednesday
2020-11-06](http://wiki.edg.com/bin/view/Wg21prague/P1385)
1. We want `operator*(std::math::vector, std::math::vector)` in the standard library, even
though some believe it is ambiguous.

SF F N A SA (25 present)
5 6 2 1  6 (no consensus)

2. We want `operator*(matrix, vector)` `operator*(matrix, matrix)` in the standard library even
if we won't have `operator*(vector, vector)`.

SF F N A SA (25 present)
10 4 2 3  2 (consensus)

3. We want overloaded operators (e.g. `operator*`, `operator+`, etc) for matrix/vector
operations in the standard library.

SF F N A SA (25 present)
10 4 3 2  2 (consensus)

4. Assuming we have overloaded operators (e.g. `operator*`, `operator+`, etc) for
matrix/vector operations in the standard library, we want their semantics to be customizable
by users.

SF F N A SA (25 present)
5 4 8 1  3 (no consensus)

5. We are okay with only providing submatrices/slices with non-owning semantics in the first
version we ship.

SF F N A SA (17 present)
8 4 2 2  0 (consensus)

CONSENSUS: Bring a revision of D1385R6 (DSL Linear Algebra Library), with the guidance
below, to LEWGI for further design review.

+ Add further justification for why matrix operations need to be customizable by users; this
should be a focus of the next discussion in an effort to increase consensus.
+ Remove `operator*(std::math::vector, std::math::vector)`.
+ `swap` on engines should be `noexcept`.
+ Bikeshed "view" in this paper on the LEWG mailing list.
+ Bikeshed the `t` and `h` member functions on the LEWG mailing list.
+ Make `is_resizable` a constexpr inline variable instead of a constepxr static function.
+ Use `extents` instead of `size_tuple`.
+ Explore alternatives to `initializer_list<initializer_list<>>` that enforce that the dimensions of
all the inner lists are identical (follow-up with Eric Fiselier).
+ Demonstrate and clarify how the engine categories work and how you could use them to
write generic functions that accept matrices of certain categories (follow up with Gašper
Ažman).

R6 Update for post-Prague mailing, incorporating remaining
feedback from Belfast.
— Added initable_*_tag to specify engine types for which construction and assignment
from an initializer_list are acceptable.
— Removed iteration from the public interfaces of vector and all vector engines.



— Added free function templates begin(), end(), etc. to provide iteration over the elements
of a vector object.
— Added support for basic_mdspan for the engine types, vector, and matrix.
— Reduced the number of non-owning, view-style engine types to two: vector_view_engine
and matrix_view_engine (and consequently removed row_engine, column_engine, and
transpose_engine).
— Added function templates inner_product() and outer_product().

R7 Update for 2022-10 mailing
— Expanded motivation to highlight the difference between an array and a matrix.
— Reduced design to withdraw the vector class and unify around a single matrix class.

Open issues
— Develop tutorial materials and examples (including examples demonstrating how to build
engines and traits based on expression engines).
— Add wording and requirements tables.
— Add an audience table.
— Integrate BLAS interface from P1673 into reference implementation.

Introduction
Linear algebra is a mathematical discipline of ever-increasing importance, with direct
application to a wide variety of problem domains, such as signal processing, computer
graphics, medical imaging, scientific simulations, machine learning, analytics, financial
modeling, and high-performance computing. And yet, despite the relevance of linear algebra
to so many aspects of modern computing, the C++ standard library does not include any
linear algebra facilities. This paper proposes to remedy this deficit for C++26.

This paper should be read after P1166, in which we describe a high-level set of expectations
for what a linear algebra library should contain.

Goals
We expect that typical users of a standard linear algebra library are likely to value two
features above all else: ease-of-use (including expressiveness), and high performance out of
the box. This set of users will expect the ability to compose arithmetical expressions of linear
algebra objects similar to what one might find in a textbook; indeed, this has been deemed a
"must-have" feature by several participants in SG14 Linear Algebra SIG conference calls.
And for a given arithmetical expression, they will expect run-time computational performance
that is close to what they could obtain with an equivalent sequence of function calls to a
more "traditional" linear algebra library, such as LAPACK, Blaze, Eigen, etc.

There also exists a set of linear algebra “super-users” who will value most highly a third
feature – the ability to customize underlying infrastructure in order to maximize performance



for specific problems and computing platforms. These users seek the highest possible
run-time performance, and to achieve it, require the ability to customize any and every
portion of the library’s computational infrastructure.

With these high-level user requirements in mind, in this paper we propose an interface
specification intended to achieve the following goals:

1. To provide a matrix vocabulary types for representing the mathematical objects and
fundamental operations relevant to linear algebra;

2. To provide a public interface for linear algebra expressions that is intuitive, teachable, and
mimics the expressiveness of traditional mathematical notation to the greatest reasonable
extent;

3. To exhibit out-of-the-box performance in the neighborhood of that of that exhibited by an
equivalent sequence of function calls to a more traditional linear algebra library, such as
LAPACK, Blaze, Eigen, etc.;

4. To provide a set of building blocks that manage the source, ownership, lifetime, layout,
and access of the memory required to represent the linear algebra vocabulary types;

5. To provide straightforward facilities and techniques for customization that enable users to
optimize performance for their specific problem domain on their specific hardware; and,

6. To provide a reasonable level of granularity for customization so that developers only have
to implement a minimum set of types and functions to integrate their performance
enhancements with the rest of the linear algebra facilities described here.

Definitions
When discussing linear algebra and related topics for a proposal such as this, it is important
to note that there are several overloaded terms (such as *matrix*, *vector*, *dimension*, and
*rank*) which must be defined and disambiguated if such discussions are to be productive.
These terms have specific meanings in mathematics, as well as different, but confusingly
similar, meanings to C++ programmers.

In the following sections we provide definitions for relevant mathematical concepts, C++ type
design concepts, and describe how this proposal employs those overloaded terms in various
contexts.

Mathematical terms
In order to facilitate subsequent discussion, we first provide the following *informal* set of
definitions for important mathematical concepts:

1.  A vector space is a collection of vectors, where vectors are objects that may be added
together and multiplied by scalars. Euclidean vectors are an example of a vector space,



typically used to represent displacements, as well as physical quantities such as force or
momentum. Linear algebra is concerned primarily with the study of vector spaces.

2.  The dimension of a vector space is the minimum number of coordinates required to
specify any point within the space.

3.  A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows
and columns. A matrix having m rows and n columns is said to have size m x n. Although
matrices can be used to solve systems of simultaneous linear equations, they are most
commonly used to represent linear transformations, solve linear least squares problems, and
to explore and/or manipulate the properties of vector spaces.

4.  A vector is a matrix with only one row or one column. Although the vector is traditionally
introduced as a tuple of scalars, and a matrix as a tuple of vectors, as far as theorems of
linear algebra are concerned there is no difference between a single column matrix and a
column vector, nor a single row matrix and a row vector.

5.  The rank of a matrix is the dimension of the vector space spanned by its columns, which
is equal to the dimension of the vector space spanned by its rows. The rank is also equal to
the maximum number of linearly-independent columns and rows.

6.  An element of a matrix is an individual member (number, symbol, expression) of the
rectangular array comprising the matrix, lying at the intersection of a single row and a single
column. In traditional mathematical notation, row and column indexing is 1-based, where
rows are indexed from 1 to m and columns are indexed from 1 to n. Given some matrix A,
element a11 refers to the element in the upper left-hand corner of the array and element amn

refers to the element in the lower right-hand corner.

7.  A row vector is a matrix containing a single row; in other words, a matrix of size 1 x n. In
many applications of linear algebra, row vectors represent spatial vectors.

8.  A column vector is a matrix containing a single column; in other words, a matrix of size
m x 1. In many applications of linear algebra, column vectors represent spatial vectors.

9. Element transforms are non-arithmetical operations that modify the relative positions of
elements in a matrix, such as transpose, column exchange, and row exchange.

10. Element arithmetic refers to arithmetical operations that read or modify the values of
individual elements independently of other elements, such as assigning a value to a specific
element or multiplying a row by some value.

11. Matrix arithmetic refers to the assignment, addition, subtraction, negation,
multiplication, and determinant operations defined for matrices, row vectors, and column
vectors as wholes.

12. A rectangular matrix is a matrix requiring a full m x n representation; that is, a matrix
not possessing a special form, such as identity, triangular, band, etc.



13. A square matrix is a matrix where the number of rows equals the number of columns.

14. The identity matrix is a square matrix where all elements on the diagonal are equal to
one and all off-diagonal elements are equal to zero.

15. A triangular matrix is a matrix where all elements above or below the diagonal are zero;
those with non-zero elements above the diagonal are called upper triangular, while those
with non-zero elements below the diagonal are called lower triangular.

16. A band matrix is a sparse matrix whose non-zero entries are confined to a diagonal
band, lying on the main diagonal and zero or more diagonals on either side.

17. Decompositions are complex sequences of arithmetic operations, element arithmetic,
and element transforms performed upon a matrix that expose important mathematical
properties of that matrix. Several types of decomposition are often performed in solving
least-squares problems.

18. Eigen-decompositions are decompositions performed upon a symmetric matrix in order
to compute the eigenvalues and eigenvectors of that matrix; this is often performed when
solving problems involving linear dynamic systems.

Product

The operations on a matrix of addition and subtraction, along with scalar multiplication, are
carried out element-wise and are commutative. The product operation is not carried out
element-wise and is therefore not commutative.

Given a product A.B=C, the result C can only be calculated where the number of columns in
matrix A is the same as the number of rows in matrix B. To calculate the product requires the
use of the dot product.

The dot product is calculated by memberwise multiplication of the elements of a row vector
by the elements of a column vector, and summing the results.

(Sum i = 1-c, AiBi)

Each element of the result matrix is the dot product of the corresponding row and column
vectors of the operands, thus:

A = a11 a12 a13    B = b11 b12 b13    C = ar1.bc1 ar1.bc2 ar1.bc3
a21 a22 a23        b21 b22 b23        ar2.bc1 ar2.bc2 ar2.bc3
a31 a32 a33        b31 b32 b33        ar3.bc1 ar3.bc2 ar3.bc3

When a matrix consisting of a single row is multiplied by a matrix consisting of a single
column, this is called an inner product, thus:

A = a11 a12 a13    B = b11            C = ar1.bc1



b21
b31

The result is a matrix with a single row and a single column, which is a scalar value. When a
matrix consisting of a single column is multiplied by a matrix consisting of a single row, this is
called an outer product, thus:

A = a11            B = b11 b12 b13    C = ar1.bc1 ar1.bc2 ar1.bc3
a21                                   ar2.bc1 ar2.bc2 ar2.bc3
a31                                   ar3.bc1 ar3.bc2 ar3.bc3

The result is a matrix whose row count is that of matrix A, and whose column count is that of
matrix B. The dot product used to calculate the value of each element is a single
memberwise multiplication; no summation is required.

Terms pertaining to C++ types
The following are terms used in this proposal that describe various aspects of how the
mathematical concepts described above in Section 3.1 might be implemented:

1.  An array is a data structure representing an indexable collection of objects (elements)
such that each element is identified by at least one index. An array is said to be
one-dimensional if its elements are accessible with a single index; a multi-dimensional array
is an array for which more than one index is required to access its elements.

2.  The dimension of an array refers to the number of indices required to access an element
of that array. The rank of an array is a synonym for its dimension.

3.  This proposal uses the term MathObj to refer generically to one of the C++ types
described herein representing matrices (i.e.,`matrix`). These are the public-facing types
developers will use in their code.

4.  An engine is an implementation type that manages the resources associated with a
MathObj instance.  This includes, at a minimum, the storage-related aspects of, and access
to, the elements of a MathObj. It could also include execution-related aspects, such as an
execution context. In this proposal, an engine object is a private member of a MathObj.
Other than as a template parameter, engines are not part of a MathObj’s public interface.

5.  The adjective dense refers to a MathObj representation where storage is allocated for
every element.

6.  The adjective sparse refers to a MathObj representation where storage is allocated only
for non-zero elements;

7. Storage is used by this proposal as a synonym for memory.

8. Traits refers to a stateless class template that provides some set of services, normalizing
those services over its set of template parameters.



9. Row size and column size refer to the number of rows and columns, respectively, that a
MathObj represents, which must be less than or equal to its row and column capacities,
defined below.

10. Row capacity and column capacity refer to the maximum number of rows and
columns, respectively, that a MathObj can possibly represent.

11. Fixed-size (FS) refers to an engine type whose row and column sizes are fixed at
instantiation time and constant thereafter.

12. Fixed-capacity (FC) refers to an engine type whose row and column capacities are fixed
at instantiation time and constant thereafter.

13. Dynamically re-sizable (DR) refers to an engine type whose row and column sizes and
capacities may be changed at run time.

Overloaded terms
This section describes how we use certain overloaded terms in this proposal and in future
works.

Matrix
The term matrix is frequently used by C++ programmers to mean a general-purpose array of
arbitrary size. For example, one of the authors worked at a company where it was common
practice to refer to 4x4 arrays as “4-dimensional matrices.”

In this proposal, we use the word array only to mean a data structure whose elements are
accessible using one or more indices, and which has no invariants pertaining to higher-level
or mathematical meaning.

We use matrix to mean the mathematical object as defined above in Section 3.1, and
`matrix` (in monospaced font) to mean the C++ class template that implements the
mathematical object. We sometimes use `MathObj` (in monospaced font) in some of the
component interface code and text below to generically refer to a `matrix` object.

Vector
Likewise, many C++ programmers incorrectly use the term vector as a synonym for
“dynamically re-sizable array.” This bad habit is reinforced by the unfortunate naming of
std::vector.

This proposal uses the term vector to mean an element of a vector space, per Section 3.1
above. Further, we also mean vector generically to have both of the meanings set out in 3.1



Dimension

In linear algebra, a vector space V is said to be of dimension n, or be n-dimensional, if there
exist n linearly independent vectors which span V. This is another way of saying that n is the
minimum number of coordinates required to specify any point in V. However, in common
programming parlance, dimension refers to the number of indices used to access an
element in an array.

We use the term dimension both ways in this proposal, but try to do so consistently and in a
way that is clear from the context. For example, a rotation matrix used by a game engine is a
two-dimensional data structure composed of three-dimensional row and column vectors. A
vector describing an electric field is an example of a one-dimensional data structure that
could be implemented as a three-dimensional column vector.

Rank

The rank of a matrix is the dimension of the vector space spanned by its columns (or rows),
which corresponds to the maximal number of linearly independent columns (or rows) of that
matrix. Rank also has another meaning in tensor analysis, where it is commonly used as a
synonym for a tensor’s order.

However, rank also has a meaning in computer science where it is used as a synonym for
dimension. In the C++ standard at [meta.unary.prop.query], rank is described as the number
of dimensions of `T` if `T` names an array, otherwise it is zero.

We avoid using the term rank in this proposal in the context of linear algebra, except as a
quantity that might result from performing certain decompositions wherein the mathematical
rank of a matrix is computed.

Scope
We contend that the best approach for standardizing a set of linear algebra components for
C++23 will be one that is layered, iterative, and incremental. This paper is quite deliberately
a “basic linear algebra-only” proposal; it describes what we believe is a foundational layer
providing the minimum set of components and arithmetic operations necessary to provide a
reasonable, basic level of functionality.

Higher-level functionality can be specified in terms of the interfaces described here, and we
encourage succession papers to explore this possibility.

Functional requirements
The foundational layer, as described here, should include the minimal set of types and
functions required to perform matrix arithmetic in finite dimensional spaces. This includes:

+ A matrix class template;



+ Arithmetic operations for addition, subtraction, negation, and multiplication of matrices;

+ Arithmetic operations for scalar multiplication of matrices;

+ Well-defined facilities for integrating new element types;

+ Well-defined facilities for creating and integrating custom engines; and,

+ Well-defined facilities for creating and integrating custom arithmetic operations.

Considered but excluded
Tensors
There has been a great deal of interest expressed in specifying an interface for
general-purpose tensor processing in which linear algebra facilities fall out as a special case.
We exclude this idea from this proposal for two reasons. First, given the practical realities of
standardization work, the enormous scope of such an effort would very likely delay
introduction of linear algebra facilities until C++29 or later.

Second, and more importantly, implementing matrices as derived types or specializations of
a general-purpose tensor type is bad type design. Consider the following: a tensor is
(informally) an array of mathematical objects (numbers or functions) such that its elements
transform according to certain rules under a coordinate system change. In a p-dimensional
space, a tensor of rank n will have pn elements. In particular, a rank-2 tensor in a
p-dimensional space may be represented by a p x p matrix having certain invariants related
to coordinate transformation not possessed by all p x p matrices.

These defining characteristics of a tensor lead us to the crux of the issue: every rank-2
tensor can be represented by a square matrix, but not every square matrix represents a
tensor. As one quickly realizes, only a small fraction of all possible matrices are
representations of rank-2 tensors.

All of this is a long way of saying that the class invariants governing a matrix type are quite
different from those governing a tensor type, and as such, the public interfaces of such types
will also differ substantially.

From this we conclude that matrices are not Liskov-substitutable for rank-2 tensors, and
therefore as matter of good type design, matrices and tensors should be implemented as
distinct types, perhaps with appropriate inter-conversion operations.

This situation is analogous to the age-old object-oriented design question: when designing a
group of classes that represent geometric shapes, is a square a kind of rectangle? In other
words, should class square be publicly derived from class rectangle? Mathematically,
yes, a square is a rectangle. But from the perspective of good interface design, class
square is not substitutable for class rectangle and is usually best implemented as a
distinct type having no IS-A relationship with rectangle.



Quaternions and octonions

There has also been interest expressed in including other useful mathematical objects, such
as quaternions and octonions, as part of a standard linear algebra library. Although element
storage for these types might be implemented using the engines described in this proposal,
quaternions and octonions represent mathematical concepts that are fundamentally different
from those of matrices and vectors.

As with tensors, the class invariants and public interfaces for quaternions and octonions
would be substantially different from that of the linear algebra components. Liskov
substitutability would not be possible, and therefore quaternions and octonions should be
implemented as types distinct from the linear algebra types.

Design aspects
The following describe several important aspects of the problem domain affecting the design
of the proposed interface. Importantly, these aspects are orthogonal, and are addressable
through judicious combinations of template parameters and implementation type design.

Memory source
Perhaps the first question to be answered is that of the source of memory in which elements
will reside. One can easily imagine multiple sources of memory:

+ Elements reside in an external buffer allocated from the global heap.

+ Elements reside in an external buffer allocated by a custom allocator and/or specialized
heap.

+ Elements reside in an external fixed-size buffer that exists independently of the MathObj,
not allocated from a heap, and which has a lifetime greater than that of the MathObj.

+ Elements reside in a fixed-size buffer that is a member of the MathObj itself.

+ Elements reside collectively in a set of buffers distributed across multiple machines.

Addressing model
It is also possible that the memory used by a MathObj might be addressed using what the
standard calls a pointer-like type, also known as a fancy pointer.

For example, consider an element buffer existing in a shared memory segment managed by
a custom allocator. In this case, the allocator might employ a fancy pointer type that
performs location-independent addressing based on a segment index and an offset into that
segment.



One can also imagine a fancy pointer that is a handle to a memory resource existing
somewhere on a network, and addressing operations require first mapping that resource into
the local address space, perhaps by copying over the network or by some magic sequence
of RPC invocations.

Memory ownership
The next important questions pertain to memory ownership. Should the memory in which
elements reside be deallocated, and if so, what object is responsible for performing the
deallocation?

A MathObj might own the memory in which it stores its elements, or it might employ some
non-owning view type, like mdspan, to manipulate elements owned by some other object.

Capacity and resizability
As with std::string and std::vector, it is occasionally useful for a MathObj to have
excess storage capacity in order to reduce the number of re-allocations required by
anticipated future resizing operations. Some linear algebra libraries, like LAPACK, account
for the fact that a MathObj’s capacity may be different than its size. This capability was of
critical importance to the success of one author’s prior work in functional MRI image
analysis.

In other problem domains, like Cartesian geometry, MathObjs are small and always of the
same size. In this case, the size and capacity are equal, and there is no need for a MathObj
to maintain or manage excess capacity.

Element layout
There are many ways to arrange the elements of a matrix in memory, the most common in
C++ being row-major dense rectangular. In Fortran-based libraries, the two-dimensional
arrays used to represent matrices are usually column-major. There are also special
arrangements of elements for upper/lower triangular and banded diagonal matrices that are
both row-major and column-major. These arrangements of elements have been well-known
for many years, and libraries like LAPACK in the hands of a knowledgeable user can use
them to implement code that is optimal in both time and space.

Element access and indexing
In keeping with the goal of supporting a natural syntax, and in analogy with the indexing
operations provided by the random-access standard library containers, it seems reasonable
to provide both const and non-const indexing for reading and writing individual elements.

Element type
C++ supports a relatively narrow range of arithmetic types, lacking direct support for arbitrary
precision numbers and fixed-point numbers, among others. Libraries exist to implement



these types, and they should not be precluded from use in a standard linear algebra library.
It is possible that individual elements of a MathObj may allocate memory, and therefore an
implementation cannot assume that element types have trivial constructors or destructors.

Mixed-element-type expressions
In general, when multiple built-in arithmetic types are present in an arithmetical expression,
the resulting type will have a precision greater than or equal to that of the type with greatest
precision in the expression. In other words, to the greatest reasonable extent, information is
preserved.

We contend that a similar principle should apply to expressions involving MathObjs where
more than one element type is present. Arithmetic operations involving MathObjs should, to
the greatest reasonable extent, preserve element-wise information.

For example, just as the result of multiplying a float by a double is a double, the result
multiplying a matrix-of-float by a matrix-of-double should be a matrix-of-double. We call
the process of determining the resulting element type element promotion.

Mixed-engine expressions
In analogy with element type, MathObj expressions may include mixed storage management
strategies, as implemented by their corresponding engine types. For example, consider the
case of a fixed-size matrix multiplied by a dynamically-resizable matrix. What is the engine
type of the resulting matrix?

Expression involving mixed engine types should not limit the availability of basic arithmetic
operations. This means that there should be a mechanism for determining the engine type of
the result of such expressions. We call the process of determining the resulting engine type
engine promotion.

We contend that in most cases, the resulting engine type should be at least as "general" as
the most "general" of the two engine types. For example, one could make the argument that
a dynamically-resizable engine is more general than a fixed-size engine, and therefore the
resulting engine type in an expression involving both these engine types should be a
dynamically-resizable engine.

However, there are cases in which it may be possible to choose a more performant engine at
compile time. For example, consider the case adding a fixed-size matrix and a
dynamically-resizable matrix.  Although size checking must be performed at run time, the
resulting engine might be specified as fixed-size.

Arithmetic customization
In pursuit of optimal performance, developers may want to customize specific arithmetic
operations, such as matrix-matrix or matrix-vector multiplication.  Customization might be



based on things like element layout in memory, fixed-size -vs- dynamically resizable, special
hardware capabilities, etc.

One such possible optimization is the use of multiple cores, perhaps distributed across a
network, to carry out multiplication on very large pairs of matrices, particularly in situations
where the operation is used to produce a third matrix rather than modify one of the
operands; the matrix multiplication operation is particularly amenable to this approach.

Developers may also wish to make use of SIMD intrinsics to enable parallel evaluation of
matrix multiplication. This is common in game development environments where programs
are written for very specific platforms, where the make and model of processor is well
defined. This would impact on element layout and storage. Such work has already been
demonstrated in paper N4454.

It is possible that two operands may be associated with different arithmetic customizations.
We call the process of determining which of those two  customizations to employ when
performing the actual arithmetic operations operation traits promotion.

Linear algebra and `constexpr`
The fundamental set of operations for linear algebra can all be implemented in terms of a
subset of the algorithms defined in the <algorithm> header, all of which are marked
constexpr since C++20. Matrix and vector initialization is of course also possible at
compile time for objects whose sizes are known at compile time.

Interface description
In this section, we describe the various types, operators, and functions comprising the
proposed interface. The reader should note that the descriptions below are by no means
ready for wording; rather, they are intended to foster further discussions and refinements,
and to serve as a guide for hardy souls attempting to build implementations from this
specification.

Overview
At the highest level, the interface is divided into four broad categories:

1. Engines, which are implementation types that manage the resources associated with a
MathObj instance, including memory ownership and lifetime, as well as element access;
and,

2. MathObjs, which provide a unified interface intended to model a corresponding
mathematical abstraction (i.e. matrix);

3. Operators, which provide the desired mathematical syntax and carry out the promised
arithmetic.



4. Operation traits act as a "container" for element promotion, engine promotion, and
arithmetic traits (described below) and provide the "glue" that connects the engines,
MathObjs, and the operators.  This traits type is a template parameter to the MathObj types,
and provides a way to inform an operator of the set of available arithmetic traits to be used
when deciding how to perform an arithmetic operation.

At a lower level are a number of supporting traits types employed by the operation traits to
determine the return type of the operator and perform the corresponding arithmetic
operation.  There are several such traits types:

+ Element promotion traits determine the resulting element type of an arithmetic operation
involving two elements.

+ Engine promotion traits determine the resulting engine type of an arithmetic operation
involving matrix objects.  As part of that process, this traits type uses the element promotion
traits to determine the element type of the resulting engine.

+ Arithmetic traits determine the type and value of a MathObj resulting from an arithmetical
operation.  As part of that process, this traits type uses the engine promotion traits to
determine the engine type of the resulting MathObj. Having determined the result type, the
arithmetic traits also have a member function that carries out the actual computations.

And finally, operation selector traits provide the means by which an arithmetic operator
selects the operation traits that will perform the arithmetic. In the case where each operand
has the same operation traits, the decision is simple.  However, it is possible that the
operands may be instantiated with different operation traits types, and so the operator uses
the operation selector traits to decide which operation traits type to use for computing its
result.  The proposed traits class std::matrix_operation_traits is a library
customization point.

Template parameter nomenclature
In order to avoid excessive visual noise in the code displayed in subsequent sections of this
paper, we use the following abbreviation-based naming conventions for template
parameters:

+ Parameter names `T`, `T1`, `T2`, `U`, `U1`, and `U2` represent element types.

+ Parameter names `ET`, `ET1`, and `ET2` represent engine types.

+ Parameter names `OT`, `OT1`, and `OT2` represent operation traits types.

+ Parameter names `OP`, `OP1`, and `OP2` represent the operand types deduced by an
arithmetic operator.

+ Parameter names `AT`, `AT1`, and `AT2` represent allocator types.



+ Parameter names `C`, `C1`, and `C2` represent the number of columns in a fixed-size
matrix or matrix engine.

+ Parameter names `R`, `R1`, and `R2` represent the number of rows in a fixed-size matrix
or matrix engine.

+ Parameter name `MCT` represents a matrix engine's category tag type.

+ Parameter name `VFT` represents a view engine's functionality type (e.g., row, column,
submatrix, etc.).

Header <linear_algebra> synopsis
#include <cstdint>
#include <complex>
#include <initializer_list>
#include <mdspan>
#include <tuple>
#include <type_traits>

namespace std {
//- Tags that describe engines and their capabilities.
//
struct scalar_engine_tag;

struct readable_matrix_engine_tag;
struct writable_matrix_engine_tag;
struct initable_matrix_engine_tag;
struct resizable_matrix_engine_tag;

//- A trivial engine that represents a scalar operand.
//
template<class T>
struct scalar_engine;

//- Owning engines with fixed-size internal storage.
//
template<class T, size_t R, size_t C>
class fs_matrix_engine;

//- Owning engines with dynamically-allocated external storage.
//
template<class T, class AT = allocator<T>>
class dr_matrix_engine;

//- Non-owning, view-style engine; tag to distinguish partial
specializations
//  of them; and related alias templates.



//
template<class ET, class MCT, class VFT>
class matrix_view_engine;

struct subvector_view_tag;
struct column_view_tag;
struct row_view_tag;
struct submatrix_view_tag;
struct transpose_view_tag;

template<class ET, class VCT>
using column_engine = matrix_view_engine<ET, MCT,
column_view_tag>;

template<class ET, class VCT>
using row_engine = matrix_view_engine<ET, MCT, row_view_tag>;

template<class ET, class MCT>
using submatrix_engine = matrix_view_engine<ET, MCT,
submatrix_view_tag>;

template<class ET, class MCT>
using transpose_engine = matrix_view_engine<ET, MCT,
transpose_view_tag>;

//- The default element promotion, engine promotion, and
arithmetic operation
//  traits for the four basic arithmetic operations.
//
struct matrix_operation_traits;

//- The primary math object type, matrix.
//
template<class ET, class OT=matrix_operation_traits>
class matrix;

//- Math object element promotion traits, per arithmetical
operation.
//
template<class T1>
struct matrix_negation_element_traits;
template<class T1, class T2>
struct matrix_addition_element_traits;
template<class T1, class T2>
struct matrix_subtraction_element_traits;
template<class T1, class T2>
struct matrix_multiplication_element_traits;



//- Math object engine promotion traits, per arithmetical
operation.
//
template<class OT, class ET1>
struct matrix_negation_engine_traits;
template<class OT, class ET1, class ET2>
struct matrix_addition_engine_traits;
template<class OT, class ET1, class ET2>
struct matrix_subtraction_engine_traits;
template<class OT, class ET1, class ET2>
struct matrix_multiplication_engine_traits;

//- Math object arithmetic traits, per arithmetical operation.
//
template<class OT, class OP1>
struct matrix_negation_traits;
template<class OT, class OP1, class OP2>
struct matrix_addition_traits;
template<class OT, class OP1, class OP2>
struct matrix_subtraction_traits;
template<class OT, class OP1, class OP2>
struct matrix_multiplication_traits;

//- A traits type that chooses between two operation traits types
in the binary
//  arithmetic operators and free functions that act like binary
operators.
//  This traits class is a customization point.
//
template<class OT1, class OT2>
struct matrix_operation_traits_selector;

//- Addition operator
//
template<class ET1, class OT1, class ET2, class OT2>
auto  operator +(matrix<ET1, OT1> const& m1, matrix<ET2, OT2>
const& m2);

//- Subtraction operator
//
template<class ET1, class OT1, class ET2, class OT2>
auto  operator -(matrix<ET1, OT1> const& m1, matrix<ET2, OT2>
const& m2);

//- Negation operator
//
template<class ET1, class OT1, class ET2, class OT2>
auto  operator -(matrix<ET1, OT1> const& m1);



//- Matrix*Scalar multiplication operators
//
template<class ET1, class OT1, class S2>
auto  operator *(matrix<ET1, OT1> const& m1, S2 const& s2);

template<class S1, class ET2, class OT2>
auto  operator *(S1 const& s1, matrix<ET2, OT2> const& m2);

//- Matrix*Matrix multiplication operator
//
template<class ET1, class OT1, class ET2, class OT2>
auto  operator *(matrix<ET1, OT1> const& m1, matrix<ET2, OT2>
const& m2);

//- Convenience aliases for matrix objects based on
//  dynamically-resizable engines.
//
template<class T, class AT = allocator<T>>
using dyn_matrix = matrix<dr_matrix_engine<T, AT>,
matrix_operation_traits>;

//- Convenience aliases for matrix objects based on fixed-size
engines.
//
template<class T, int32_t R, int32_t C>
using fs_matrix = matrix<fs_matrix_engine<T, R, C>,
matrix_operation_traits>;

}   //- namespace std

Engine Types
The over-arching purpose of the engine types is to perform resource management on behalf
of an associated MathObj instance that owns the engine. At a minimum, all of the engine
types provide a basic interface for const element indexing, determining row and column
sizes, and determining row and column capacities. They also export public type aliases
which specify their element type, whether or not they are dense, whether or not they are
rectangular, whether or not they are resizable, whether or not their memory layout is
row-major, and a 2-tuple for describing sizes and capacities.

It is important to note that an engine's resource management duties are primarily related to
storage.  To that end, an engine may own the storage it manages and control its lifetime, or it
may be non-owning and represent a view of storage owned by some other object.

One can also imagine engines that manage resources related to execution. This is an area
of ongoing work and not yet addressed in this proposal.



fs_matrix_engine<T, R, C>

Class template fs_matrix_engine<T, R, C> implements a fixed-size, fixed-capacity
engine for matrices having R rows and C columns. In addition to the basic engine interface, it
provides member functions for mutable element indexing, swapping engine contents,
swapping columns, and swapping rows.

template<class T, size_t R, size_t C>
class fs_matrix_engine
{

public:
//- Types
//
using engine_category = initable_matrix_engine_tag;
using element_type    = T;
using value_type      = remove_cv_t<T>;
using pointer         = element_type*;
using const_pointer   = element_type const*;
using reference       = element_type&;
using const_reference = element_type const&;
using difference_type = ptrdiff_t;
using size_type       = size_t;
using size_tuple      = tuple<size_type, size_type>;
using span_type       = mdspan<element_type, R, C>;
using const_span_type = mdspan<element_type const, R, C>;

//- Construct/copy/destroy
//
~fs_matrix_engine() noexcept = default;

constexpr fs_matrix_engine();
constexpr fs_matrix_engine(fs_matrix_engine&&) noexcept =

default;
constexpr fs_matrix_engine(fs_matrix_engine const&) = default;

template<class T2, size_t R2, size_t C2>        @(_see note_)@
constexpr fs_matrix_engine(fs_matrix_engine<T2, R2, C2> const&

rhs);
template<class ET2>                             @(_see note_)@
constexpr fs_matrix_engine(ET2 const& rhs);
template<class T2>                              @(_see note_)@
constexpr

fs_matrix_engine(initializer_list<initializer_list<T2>> rhs);

constexpr fs_matrix_engine&     operator =(fs_matrix_engine&&)
noexcept

= default;
constexpr fs_matrix_engine&     operator =(fs_matrix_engine

const&)



= default;

template<class T2, size_t R2, size_t C2>        @(_see note_)@
constexpr fs_matrix_engine&     operator =

(fs_matrix_engine<T2, R2, C2> const& rhs);
template<class ET2>                             @(_see note_)@
constexpr fs_matrix_engine&     operator =(ET2 const& rhs);
template<class T2>                              @(_see note_)@
constexpr fs_matrix_engine&     operator =

(initializer_list<initializer_list<T2>> rhs);

//- Capacity
//
constexpr size_type     columns() const noexcept;
constexpr size_type     rows() const noexcept;
constexpr size_tuple    size() const noexcept;

constexpr size_type     column_capacity() const noexcept;
constexpr size_type     row_capacity() const noexcept;
constexpr size_tuple    capacity() const noexcept;

//- Element access
//
constexpr reference         operator ()(size_type i, size_type

j);
constexpr const_reference   operator ()(size_type i, size_type

j) const;

//- Data access
//
constexpr span_type         span() noexcept;
constexpr const_span_type   span() const noexcept;

//- Modifiers
//
constexpr void      swap(fs_matrix_engine& rhs) noexcept;
constexpr void      swap_columns(size_type j1, size_type j2)

noexcept;
constexpr void      swap_rows(size_type i1, size_type i2)

noexcept;
};

dr_matrix_engine<T, AT>

Class template dr_matrix_engine<T, AT> implements an engine for matrices whose
sizes and capacities can be changed at runtime.  In addition to the basic engine interface, it
provides member functions for mutable element indexing, swapping engine contents,
swapping columns, swapping rows, and resizing.



template<class T, class AT>
class dr_matrix_engine
{

public:
//- Types
//
using engine_category = resizable_matrix_engine_tag;
using element_type    = T;
using value_type      = remove_cv_t<T>;
using allocator_type  = AT;
using pointer         = typename

allocator_traits<AT>::pointer;
using const_pointer   = typename

allocator_traits<AT>::const_pointer;
using reference       = element_type&;
using const_reference = element_type const&;
using difference_type = ptrdiff_t;
using size_type       = size_t;
using size_tuple      = tuple<size_type, size_type>;
using span_type       = basic_mdspan<T,

@_implementation-define_@>;
using const_span_type = basic_mdspan<T const,

@_implementation-define_@>;

//- Construct/copy/destroy
//
~dr_matrix_engine() noexcept;

dr_matrix_engine();
dr_matrix_engine(dr_matrix_engine&& rhs) noexcept;
dr_matrix_engine(dr_matrix_engine const& rhs);
dr_matrix_engine(size_type rows, size_type cols);
dr_matrix_engine(size_type rows, size_type cols, size_type

rowcap, size_type colcap);

template<class ET2>                     @(_see note_)@
dr_matrix_engine(ET2 const& rhs);
template<class T2>                      @(_see note_)@
dr_matrix_engine(initializer_list<initializer_list<T2>> rhs);

dr_matrix_engine&   operator =(dr_matrix_engine&&) noexcept;
dr_matrix_engine&   operator =(dr_matrix_engine const&);

template<class ET2>                     @(_see note_)@
dr_matrix_engine&   operator =(ET2 const& rhs);
template<class T2>                      @(_see note_)@
dr_matrix_engine&   operator =

(initializer_list<initializer_list<T2>> rhs);



//- Capacity
//
size_type   columns() const noexcept;
size_type   rows() const noexcept;
size_tuple  size() const noexcept;

size_type   column_capacity() const noexcept;
size_type   row_capacity() const noexcept;
size_tuple  capacity() const noexcept;

void        reserve(size_type rowcap, size_type colcap);
void        resize(size_type rows, size_type cols);
void        resize(size_type rows, size_type cols, size_type

rowcap, size_type colcap);

//- Element access
//
reference       operator ()(size_type i, size_type j);
const_reference operator ()(size_type i, size_type j) const;

//- Data access
//
span_type       span() noexcept;
const_span_type span() const noexcept;

//- Modifiers
//
void    swap(dr_matrix_engine& other) noexcept;
void    swap_columns(size_type c1, size_type c2) noexcept;
void    swap_rows(size_type r1, size_type r2) noexcept;

};

matrix_view_engine<ET, MCT, VFT>

Class template matrix_view_engine<ET, MCT, VFT> implements a non-owning
engine that implements at least the readable matrix engine interface, and possibly the
writable matrix engine interface, depending on the underlying engine type ET and the tag
type MCT.  Its purpose is to provide a transpose view of a matrix (when template parameter
VFT is transpose_view_tag), or some contiguous range of rows and columns from
some matrix object (when template parameter MFT is submatrix_view_tag).

template<class ET, class MCT>
class matrix_view_engine<ET, MCT, submatrix_view_tag>
{

static_assert(is_matrix_engine_v<ET>);
static_assert(is_matrix_engine_tag<MCT>);



public:
//- Types
//
using engine_category = MCT;
using element_type    = typename ET::element_type;
using value_type      = typename ET::value_type;
using pointer         = @_implementation-defined_@;
using const_pointer   = typename ET::const_pointer;
using reference       = @_implementation-defined_@;
using const_reference = typename ET::const_reference;
using difference_type = typename ET::difference_type;
using size_type       = typename ET::size_type;
using size_tuple      = typename ET::size_tuple;
using span_type       = @_implementation-defined_@;     (@_see

note_@)
using const_span_type = @_implementation-defined_@;     (@_see

note_@)

//- Construct/copy/destroy
//
~matrix_view_engine() noexcept = default;

constexpr matrix_view_engine();
constexpr matrix_view_engine(matrix_view_engine&&) noexcept

= default;
constexpr matrix_view_engine(matrix_view_engine const&)

noexcept
= default;

constexpr matrix_view_engine&     operator =
(matrix_view_engine&&)

noexcept = default;
constexpr matrix_view_engine&     operator

=(matrix_view_engine const&)
noexcept = default;

template<class ET2                      (@_see note_@)
constexpr matrix_view_engine&     operator =(ET2 const& rhs);
template<class U>                       (@_see note_@)
constexpr matrix_view_engine&     operator =

(initializer_list<initializer_list<U>> list);

//- Capacity
//
constexpr size_type     columns() const noexcept;
constexpr size_type     rows() const noexcept;
constexpr size_tuple    size() const noexcept;



constexpr size_type     column_capacity() const noexcept;
constexpr size_type     row_capacity() const noexcept;
constexpr size_tuple    capacity() const noexcept;

//- Element access
//
constexpr reference     operator ()(size_type i, size_type j)

const;

//- Data access
//
constexpr span_type     span() const noexcept;      (@_see

note_@)

//- Modifiers
//
constexpr void          swap(matrix_view_engine& rhs);

};

If the matrix engine category tag MCT is readable_vector_engine_tag, then nested
type aliases pointer and reference are equivalent to const_pointer and
const_reference, respectively.

If the matrix engine category tag MCT is writable_vector_engine_tag, then nested
type aliases pointer and reference are equivalent to typename ET::pointer and
typename ET::reference, respectively.

Math object types

matrix<ET, OT>

Class template matrix<ET, OT> represents a matrix, with element type and resource
management implemented by the engine type ET, and arithmetic operations specified by the
operation traits type OT.  If the underlying engine type provides dynamic resizing, then this
class will as well.

template<class ET, class OT>
class matrix
{

public:
//- Types
//
using engine_type          = ET;
using element_type         = typename

engine_type::element_type;
using value_type           = typename engine_type::value_type;



using reference            = typename engine_type::reference;
using const_reference      = typename

engine_type::const_reference;
using difference_type      = typename

engine_type::difference_type;
using size_type            = typename engine_type::size_type;
using size_tuple           = typename engine_type::size_tuple;

using column_type          =
matrix<column_engine<engine_type, @_see note_@>, OT>;

using const_column_type    =
matrix<column_engine<engine_type,

readable_matrix_engine_tag>, OT>;

using row_type             =
matrix<row_engine<engine_type, @_see note_@>, OT>;

using const_row_type       =
matrix<row_engine<engine_type,

readable_matrix_engine_tag>, OT>;

using submatrix_type       =
matrix<submatrix_engine<engine_type, @_see note_@>, OT>;

using const_submatrix_type =
matrix<submatrix_engine<engine_type,

readable_matrix_engine_tag>, OT>;

using transpose_type       =
matrix<transpose_engine<engine_type, @_see note_@>, OT>;

using const_transpose_type =
matrix<transpose_engine<engine_type,

readable_matrix_engine_tag>, OT>;

using hermitian_type       =
conditional_t<@_see note_@, matrix, transpose_type>;

using const_hermitian_type =
conditional_t<@_see note_@, matrix, const_transpose_type>;

using span_type            = @_implementation-defined_@;
(@_see note_@)

using const_span_type      = @_implementation-defined_@;
(@_see note_@)

//- Construct/copy/destroy
//
~matrix() noexcept = default;

constexpr matrix() = default;
constexpr matrix(matrix&&) noexcept = default;



constexpr matrix(matrix const&) = default;

template<class ET2, class OT2>
constexpr matrix(matrix<ET2, OT2> const& src);
template<class U>                                       (@_see

note_@)
constexpr matrix(initializer_list<initializer_list<U>> rhs);

constexpr matrix(size_tuple size);                      (@_see
note_@)

constexpr matrix(size_type rows, size_type cols);       (@_see
note_@)

constexpr matrix(size_tuple size, size_tuple cap);      (@_see
note_@)

constexpr matrix(size_type rows, size_type cols,
size_type rowcap, size_type colcap);   (@_see

note_@)

constexpr matrix&   operator =(matrix&&) noexcept = default;
constexpr matrix&   operator =(matrix const&) = default;
template<class ET2, class OT2>
constexpr matrix&   operator =(matrix<ET2, OT2> const& rhs);
template<class U>                                       (@_see

note_@)
constexpr matrix&   operator

=(initializer_list<initializer_list<U>> rhs);

//- Capacity
//
static constexpr bool   is_resizable() noexcept;
constexpr size_type     columns() const noexcept;
constexpr size_type     rows() const noexcept;
constexpr size_tuple    size() const noexcept;

constexpr size_type     column_capacity() const noexcept;
constexpr size_type     row_capacity() const noexcept;
constexpr size_tuple    capacity() const noexcept;

constexpr void      reserve(size_tuple cap);
(@_see note_@)

constexpr void      reserve(size_type rowcap, size_type
colcap);

(@_see note_@)

constexpr void      resize(size_tuple size);
(@_see note_@)

constexpr void      resize(size_type rows, size_type cols);
(@_see note_@)



constexpr void      resize(size_tuple size, size_tuple
cap);(@_see note_@)

constexpr void      resize(size_type rows, size_type cols,
size_type rowcap, size_type

colcap);
(@_see note_@)

//- Element access
//
constexpr reference             operator ()(size_type i,

size_type j);
constexpr const_reference       operator ()(size_type i,

size_type j) const;

constexpr column_type           column(size_type j) noexcept;
constexpr const_column_type     column(size_type j) const

noexcept;
constexpr row_type              row(size_type i) noexcept;
constexpr const_row_type        row(size_type i) const

noexcept;
constexpr submatrix_type        submatrix(size_type ri,

size_type rn,
size_type ci,

size_type cn)
noexcept;

constexpr const_submatrix_type  submatrix(size_type ri,
size_type rn,

size_type ci,
size_type cn)

const noexcept;
constexpr transpose_type        t() noexcept;
constexpr const_transpose_type  t() const noexcept;
constexpr hermitian_type        h();
constexpr const_hermitian_type  h() const;

//- Data access
//
constexpr engine_type&          engine() noexcept;
constexpr engine_type const&    engine() const noexcept;

constexpr span_type             span() noexcept;        (@_see
note_@)

constexpr const_span_type       span() const noexcept;  (@_see
note_@)

//- Modifiers
//



constexpr void      swap(matrix& rhs) noexcept;
constexpr void      swap_columns(size_type i, size_type j)

noexcept;
(@_see note_@)

constexpr void      swap_rows(size_type i, size_type j)
noexcept;

(@_see note_@)
};

For the nested type aliases column_type and row_type: if typename
ET::engine_category is equal to readable_matrix_engine_tag, then the matrix
engine tag type to be used as a template argument to column_engine and row_engine,
respectively, is readable_vector_engine_tag. Otherwise, it is
writable_vector_engine_tag.

For nested type aliases transpose_type and submatrix_type: if typename
ET::engine_category is equal to readable_matrix_engine_tag, then the matrix
engine tag type to be used as a template argument to transpose_engine and
submatrix_engine, respectively, is readable_matrix_engine_tag. Otherwise, it is
writable_vector_engine_tag.

Operation traits

matrix_operation_traits

Class matrix_operation_traits is a traits-style template parameter to matrix.  Its
purpose is to associate sets of element promotion traits, engine promotion traits, and
arithmetic traits with a MathObj so that those traits may be conveyed into an arithmetic
operator.

struct matrix_operation_traits
{

//- Default element promotion traits.
//
template<class T1>
using element_negation_traits =

matrix_negation_element_traits<T1>;

template<class T1, class T2>
using element_addition_traits =

matrix_addition_element_traits<T1, T2>;

template<class T1, class T2>
using element_subtraction_traits =

matrix_subtraction_element_traits<T1, T2>;



template<class T1, class T2>
using element_multiplication_traits =

matrix_multiplication_element_traits<T1, T2>;

//- Default engine promotion traits.
//
template<class OTR, class ET1>
using engine_negation_traits =

matrix_negation_engine_traits<OTR, ET1>;

template<class OTR, class ET1, class ET2>
using engine_addition_traits =

matrix_addition_engine_traits<OTR, ET1, ET2>;

template<class OTR, class ET1, class ET2>
using engine_subtraction_traits =

matrix_subtraction_engine_traits<OTR, ET1, ET2>;

template<class OTR, class ET1, class ET2>
using engine_multiplication_traits =

matrix_multiplication_engine_traits<OTR, ET1, ET2>;

//- Default arithmetic operation traits.
//
template<class OP1, class OTR>
using negation_traits = matrix_negation_traits<OP1, OTR>;

template<class OTR, class OP1, class OP2>
using addition_traits = matrix_addition_traits<OTR, OP1, OP2>;

template<class OTR, class OP1, class OP2>
using subtraction_traits = matrix_subtraction_traits<OTR, OP1,

OP2>;

template<class OTR, class OP1, class OP2>
using multiplication_traits =

matrix_multiplication_traits<OTR, OP1, OP2>;
};

This traits type is a customization point.  Users may override the default functionality it
provides by creating a custom operation traits class in their own namespace, and defining
only those members necessary to implement the desired custom behavior.

matrix_operation_traits_selector<OT1, OT2>

Class template matrix_operation_traits_selector<OT1, OT2> is used by the
binary arithmetic operators to select the operation traits type to be used in performing an



arithmetic operation.  The selection is based on the operation traits types of the two
operands.

//- Primary template and expected specializations.
//
template<class T1, class T2>
struct matrix_operation_traits_selector;

template<class T1>
struct matrix_operation_traits_selector<T1, T1>
{

using traits_type = T1;
};

template<class T1>
struct matrix_operation_traits_selector<T1,
matrix_operation_traits>
{

using traits_type = T1;
};

template<class T1>
struct matrix_operation_traits_selector<matrix_operation_traits,
T1>
{

using traits_type = T1;
};

template<>
struct matrix_operation_traits_selector<matrix_operation_traits,
matrix_operation_traits>
{

using traits_type = matrix_operation_traits;
};

//- Convenience alias.
//
template<class T1, class T2>
using matrix_operation_traits_selector_t =

typename matrix_operation_traits_selector<T1,
T2>::traits_type;

Element promotion traits
Element promotion traits are used by the library to determine the resulting
element type of an arithmetical expression having one or two *MathObj* operands.



matrix_negation_element_traits<T1>

Class template matrix_negation_element_traits<T1> implements the default traits
type for determining the element type of the MathObj instance resulting from negating a
given MathObj instance.

Alias template matrix_negation_element_t<OT, T1, T2> is used by the library to
return the nested type OT::element_negation_traits<T1>.

template<class T1>
struct matrix_negation_element_traits
{

using element_type = decltype(-declval<T1>());
};

template<class OT, class T1>
using matrix_negation_element_t = ...;          //-
Implementation-defined

matrix_addition_element_traits<T1, T2>

Class template matrix_addition_element_traits<T1, T2> implements the default
traits type for determining the element type of a MathObj instance resulting from the addition
of two other MathObj instances.

Alias template matrix_addition_element_t<OT, T1, T2> is used by the library to
obtain the nested type OT::element_addition_traits<T1, T2>.

template<class T1, class T2>
struct matrix_addition_element_traits
{

using element_type = decltype(declval<T1>() + declval<T2>());
};

template<class OT, class T1, class T2>
using matrix_addition_element_t = ...;          //-
Implementation-defined

matrix_subtraction_element_traits<T1, T2>

Class template matrix_subtraction_element_traits<T1, T2> implements the
default traits type for determining the element type of a MathObj instance resulting from the
subtraction of two other MathObj instances.

Alias template matrix_subtraction_element_t<OT, T1, T2> is used by the library
to obtain the nested type OT::element_subtraction_traits<T1, T2>.



template<class T1, class T2>
struct matrix_subtraction_element_traits
{

using element_type = decltype(declval<T1>() - declval<T2>());
};

template<class OT, class T1, class T2>
using matrix_subtraction_element_t = ...;       //-
Implementation-defined

matrix_multiplication_element_traits<T1, T2>

Class template matrix_multiplication_element_traits<T1, T2> implements the
default traits type for determining the element type of a MathObj instance resulting from the
multiplication of two other MathObj instances.

Alias template matrix_multiplication_element_t<OT, T1, T2> is used by the
library to obtain the nested type OT::element_multiplication_traits<T1, T2>.

template<class T1, class T2>
struct matrix_multiplication_element_traits
{

using element_type = decltype(declval<T1>() * declval<T2>());
};

template<class OT, class T1, class T2>
using matrix_multiplication_element_t = ...;    //-
Implementation-defined

Engine promotion traits
Engine promotion traits are used by the arithmetic traits to determine
the resulting engine types in an arithmetical expression.

matrix_negation_engine_traits<OT, ET1>

Class template matrix_negation_engine_traits<OT, ET1> implements a traits
type that determines the resulting engine type when negating a MathObj.

Alias template matrix_negation_engine_t<OT, ET1> is used by the library to obtain
the nested type OT::engine_negation_traits<ET1>.

template<class OT, class ET1>
struct matrix_negation_engine_traits
{

using element_type =
matrix_negation_element_t<OT, typename ET1::element_type>;



using engine_type  = ...;                   //-
Implementation-defined
};

template<class OT, class ET1>
using matrix_negation_engine_t = ...;           //-
Implementation-defined

matrix_addition_engine_traits<OT, ET1, ET2>

Class template matrix_addition_engine_traits<OT, ET1, ET2> implements a
traits type that determines the resulting engine type when adding two compatible MathObjs.

Alias template matrix_addition_engine_t<OT, ET1, ET2> is used by the library to
obtain the nested type OT::element_addition_traits<ET1, ET2>.

template<class OT, class ET1, class ET2>
struct matrix_addition_engine_traits
{

using element_type =
matrix_addition_element_t<OT,

typename ET1::element_type,
typename ET2::element_type>;

using engine_type  = ...;                   //-
Implementation-defined
};

template<class OT, class ET1, class ET2>
using matrix_addition_engine_t = detail::engine_add_type_t<OT,
ET1, ET2>;

matrix_subtraction_engine_traits<OT, ET1, ET2>

Class template matrix_subtraction_engine_traits<OT, ET1, ET2> implements
a traits type that determines the resulting engine type when subtracting two compatible
MathObjs.

Alias template matrix_subtraction_engine_t<OT, ET1, ET2> is used by the
library to obtain the nested type OT::element_subtraction_traits<ET1, ET2>.

template<class OT, class ET1, class ET2>
struct matrix_subtraction_engine_traits
{

using element_type =
matrix_subtraction_element_t<OT,

typename ET1::element_type,
typename ET2::element_type>;



using engine_type  = ...;                   //-
Implementation-defined
};

template<class OT, class ET1, class ET2>
using matrix_subtraction_engine_t = ...;        //-
Implementation-defined

matrix_multiplication_engine_traits<OT, ET1, ET2>

Class template matrix_multiplication_engine_traits<OT, ET1, ET2>
implements a traits type that determines the resulting engine type when multiplying two
compatible MathObjs.

Alias template matrix_multiplication_engine_t<OT, ET1, ET2> is used by the
library to obtain the nested type OT::element_multiplication_traits<ET1, ET2>.

template<class OT, class ET1, class ET2>
struct matrix_multiplication_engine_traits
{

using element_type =
matrix_multiplication_element_t<OT,

typename
ET1::element_type,

typename
ET2::element_type>;

using engine_type  = ...;                   //-
Implementation-defined.
};

template<class OT, class ET1, class ET2>
using matrix_multiplication_engine_t = ...;     //-
Implementation-defined

Arithmetic traits
This section defines a set of arithmetic traits types for negation,
addition, subtraction, and multiplication. The purpose of each of these
traits types is threefold:

1. to determine the element type of the resulting *MathObj*;

2. to determine the engine type of the resulting *MathObj*; and

3. to carry out the arithmetical operation and return its result.



The idea here is that arithmetic operators (described below) simply forward
to the appropriate traits type, which does the heavy lifting.

matrix_negation_traits<OT, OP1>

Class template matrix_negation_traits<OT, OP1> is an arithmetic traits type that
performs the negation of a MathObj and returns the result in another MathObj having an
implementation-defined engine type. There are two partial specializations to support the two
overloaded negation operators described below.

Alias template matrix_negation_traits_t<OT, OP1> is used by the library to obtain
the nested type OT::negation_traits<OP1>.

template<class OT, class ET1, class OT1>
struct matrix_negation_traits<OT, matrix<ET1, OT1>>
{

using engine_type = matrix_negation_engine_t<OT, ET1>;
using op_traits   = OT;
using result_type = matrix<engine_type, op_traits>;

static result_type  negate(matrix<ET1, OT1> const& v1);
};

template<class OT, class OP1>
using matrix_negation_traits_t = ...;       //-
Implementation-defined

matrix_addition_traits<OT, OP1, OP2>

Class template matrix_addition_traits<OT, OP1, OP2> is an arithmetic traits type
that performs the addition of two compatible MathObjs and returns the result in a MathObj
having an implementation-defined engine type. There are two partial specializations to
support the two overloaded addition operators described below.

Alias template matrix_addition_traits_t<OT, OP1, OP2> is used by the library to
obtain the nested type OT::addition_traits<OP1, OP2>.

template<class OT, class ET1, class OT1, class ET2, class OT2>
struct matrix_addition_traits<OT, matrix<ET1, OT1>, matrix<ET2,
OT2>>
{

using engine_type = matrix_addition_engine_t<OT, ET1, ET2>;
using op_traits   = OT;
using result_type = matrix<engine_type, op_traits>;

static result_type  add
(matrix<ET1, OT1> const& m1, matrix<ET2, OT2> const& m2);

};



template<class OT, class OP1, class OP2>
using matrix_addition_traits_t = ...;       //-
Implementation-defined

matrix_subtraction_traits<OT, OP1, OP2>

Class template matrix_subtraction_traits<OT, OP1, OP2> is an arithmetic traits
type that performs the subtraction of two compatible MathObjs and returns the result in a
MathObj having an implementation-defined engine type. There are two partial
specializations to support the two overloaded subtraction operators described below.

Alias template matrix_subtraction_traits_t<OT, OP1, OP2> is used by the
library to obtain the nested type OT::subtraction_traits<OP1, OP2>.

template<class OT, class ET1, class OT1, class ET2, class OT2>
struct matrix_subtraction_traits<OT, matrix<ET1, OT1>, matrix<ET2,
OT2>>
{

using engine_type = matrix_subtraction_engine_t<OT, ET1, ET2>;
using op_traits   = OT;
using result_type = matrix<engine_type, op_traits>;

static result_type  subtract
(matrix<ET1, OT1> const& m1, matrix<ET2, OT2> const& m2);

};

template<class OT, class OP1, class OP2>
using matrix_subtraction_traits_t = ...;        //-
Implementation-defined

matrix_multiplication_traits<OT, OP1, OP2>

Class template matrix_multiplication_traits<OT, OP1, OP2> is an arithmetic
traits type that performs the multiplication of two compatible MathObjs and returns the result
in a MathObj having an implementation-defined engine type.  There are eight partial
specializations to support the eight binary multiplication operators described below.

Alias template matrix_multiplication_traits_t<OT, OP1, OP2> is used by the
library to obtain the nested type OT::multiplication_traits<OP1, OP2>.

//- matrix*scalar
//
template<class OT, class ET1, class OT1, class T2>
struct matrix_multiplication_traits<OT, matrix<ET1, OT1>, T2>
{

using scalar_type = detail::element_tag<T2>;



using engine_type = matrix_multiplication_engine_t<OT, ET1,
scalar_type>;

using op_traits   = OT;
using result_type = matrix<engine_type, op_traits>;

static result_type  multiply(matrix<ET1, OT1> const& m1, T2
const& s2);
};

//- scalar*matrix
//
template<class OT, class T1, class ET2, class OT2>
struct matrix_multiplication_traits<OT, T1, matrix<ET2, OT2>>
{

using scalar_type = detail::element_tag<T1>;
using engine_type = matrix_multiplication_engine_t<OT,

scalar_type, ET2>;
using op_traits   = OT;
using result_type = matrix<engine_type, op_traits>;

static result_type  multiply(T1 const& s1, matrix<ET2, OT2>
const& m2);
};

template<class OT, class ET1, class OT1, class ET2, class OT2>
struct matrix_multiplication_traits<OT, matrix<ET1, OT1>,
matrix<ET2, OT2>>
{

using engine_type = matrix_multiplication_engine_t<OT, ET1,
ET2>;

using op_traits   = OT;
using result_type = matrix<engine_type, op_traits>;

static result_type  multiply
(matrix<ET1, OT1> const& m1, matrix<ET2, OT2> const& m2);

};

template<class OT, class OP1, class OP2>
using matrix_multiplication_traits_t = ...;     //-
Implementation-defined

Arithmetic operators
The arithmetic operators provide syntax that mimics common mathematical notation, with
computation executed by an arithmetic traits type specified by one of the operands'
operation traits template parameters.



Readers will note that the return types of the overloaded operators described below are left
unspecified.  This is a deliberate choice so that implementers have the freedom to choose
whatever default technique for evaluating expressions they desire; for example, by returning
temporary objects, or by using expression templates, or perhaps by some hybrid technique.

//- Negation
//
template<class ET1, class OT1>
inline auto
operator -(matrix<ET1, OT1> const& m1)
{

using op1_type   = matrix<ET1, OT1>;
using op_traits  = OT1;
using neg_traits = matrix_negation_traits_t<op_traits,

op1_type>;

return neg_traits::negate(m1);
}

//- Addition
//
template<class ET1, class OT1, class ET2, class OT2>
inline auto
operator +(matrix<ET1, OT1> const& m1, matrix<ET2, OT2> const& m2)
{

using op_traits  = matrix_operation_traits_selector_t<OT1,
OT2>;

using op1_type   = matrix<ET1, OT1>;
using op2_type   = matrix<ET2, OT2>;
using add_traits =

matrix_addition_traits_t<op_traits, op1_type, op2_type>;

return add_traits::add(m1, m2);
}

//- Subtraction
//
template<class ET1, class OT1, class ET2, class OT2>
inline auto
operator -(matrix<ET1, OT1> const& m1, matrix<ET2, OT2> const& m2)
{

using op_traits  = matrix_operation_traits_selector_t<OT1,
OT2>;

using op1_type   = matrix<ET1, OT1>;
using op2_type   = matrix<ET2, OT2>;
using sub_traits =

matrix_subtraction_traits_t<op_traits, op1_type,
op2_type>;



return sub_traits::subtract(m1, m2);
}

//- Multiplication
//- matrix*scalar and scalar*matrix
//
template<class ET1, class OT1, class S2>
inline auto
operator *(matrix<ET1, OT1> const& m1, S2 const& s2)
{

static_assert(is_matrix_element_v<S2>);

using op_traits  = OT1;
using op1_type   = matrix<ET1, OT1>;
using op2_type   = S2;
using mul_traits =

matrix_multiplication_traits_t<op_traits, op1_type,
op2_type>;

return mul_traits::multiply(m1, s2);
}

template<class S1, class ET2, class OT2>
inline auto
operator *(S1 const& s1, matrix<ET2, OT2> const& m2)
{

static_assert(is_matrix_element_v<S1>);

using op_traits  = OT2;
using op1_type   = S1;
using op2_type   = matrix<ET2, OT2>;
using mul_traits =

matrix_multiplication_traits_t<op_traits, op1_type,
op2_type>;

return mul_traits::multiply(s1, m2);
}

//- matrix*matrix
//
template<class ET1, class OT1, class ET2, class OT2>
inline auto
operator *(matrix<ET1, OT1> const& m1, matrix<ET2, OT2> const& m2)
{

using op_traits  = matrix_operation_traits_selector_t<OT1,
OT2>;

using op1_type   = matrix<ET1, OT1>;



using op2_type   = matrix<ET2, OT2>;
using mul_traits =

matrix_multiplication_traits_t<op_traits, op1_type,
op2_type>;

return mul_traits::multiply(m1, m2);
}

Customization
The library provides for several forms of customization: custom element types, custom
element promotion, custom engines, and custom arithmetical operations. The following
sections show examples of each.

Integrating a new element type
Suppose that you have created a new type that models a real number in some way and you
wish for that type to be used as a matrix element:

class new_num
{

public:
new_num();
new_num(new_num&&) = default;
new_num(new_num const&) = default;
template<class U>   new_num(U other);

new_num&    operator =(new_num&&) = default;
new_num&    operator =(new_num const&) = default;
template<class U>   new_num&    operator =(U rhs);

new_num     operator -() const;
new_num     operator +() const;

new_num&    operator +=(new_num rhs);
new_num&    operator -=(new_num rhs);
new_num&    operator *=(new_num rhs);
new_num&    operator /=(new_num rhs);

template<class U>   new_num&    operator +=(U rhs);
template<class U>   new_num&    operator -=(U rhs);
template<class U>   new_num&    operator *=(U rhs);
template<class U>   new_num&    operator /=(U rhs);

...
};



inline bool operator ==(NewNum lhs, NewNum rhs);
template<class U> inline bool operator ==(NewNum lhs, U rhs);
template<class U> inline bool operator ==(U lhs, NewNum rhs);
...
//- other comparison operators...
...
//- other arithmetic operators...
...

inline new_num operator *(new_num lhs, new_num
rhs);
template<class U> inline new_num operator *(new_num lhs, U rhs);
template<class U> inline new_num operator *(U lhs, new_num rhs);

Assuming that this type works as intended, and that all arithmetic interactions with other
types are handled the set of operator overloads that you provide, then all that is required for
the library to accept new_num as an element type is to create a specialization of
number_traits:

template<>
struct std::math::number_traits<new_num>
{

using is_field    = true_type;
using is_nc_ring  = true_type;
using is_ring     = true_type;

};

By stating that `new_num` models at least a non-commutative ring, and by ensuring that its
arithmetic operators functions as promised, the library's traits types will allow compiliation to
succeed.

Custom element promotion
Suppose that you want the result of adding two float elements to be double. Then you
would create the following custom types in your namespace:

//- Base template for custom element promotion
//
template<class T1, class T2>
struct element_add_traits_tst;

//- Promote any float/float addition to double.
//
template<>
struct element_add_traits_tst<float, float>
{

using element_type = double;
};



//- Custom operation traits.
//
struct test_add_op_traits_tst
{

template<class T1, class T2>
using element_addition_traits = element_add_traits_tst<T1,

T2>;
};

The new operation traits could be used like this:

matrix<fs_matrix_engine<float, 2, 3>, add_op_traits_tst>
m1;
matrix<dr_matrix_engine<float, allocator<float>>,
add_op_traits_tst>        m2(2, 3);
matrix<dr_matrix_engine<float, allocator<float>>,
matrix_operation_traits>  m3(2, 3);

//- mr1 --> matrix<fs_matrix_engine<double, 2, 3>,
add_op_traits_tst>
//
auto mr1 = m1 + m1;

//- mr2 --> matrix<dr_matrix_engine<double, allocator<double>>,
add_op_traits_tst>
//
auto mr2 = m1 + m2;

//- mr3 --> matrix<dr_matrix_engine<double, allocator<double>>,
add_op_traits_tst>
//
auto mr3 = m1 + m3;

Note that this example assumes that an addition operation involving a fixed-size matrix and
a dynamically-resizable matrix, or two dynamically-resizable matrices results in a
dynamically-resizable matrix.

Integrating a new engine type
Suppose that you want to add a custom fixed-size matrix engine that is somehow different
from fs_matrix_engine; perhaps it is instrumented in some way for debugging, or uses
fixed-size storage that is external to the engine object.  It might look like this:

template<class T, int32_t R, int32_t C>
class fs_matrix_engine_tst
{

public:
using engine_category = std::math::mutable_matrix_engine_tag;



using element_type    = T;
using value_type      = T;
using reference       = T&;
using pointer         = T*;
using const_reference = T const&;
using const_pointer   = T const*;
using difference_type = std::ptrdiff_t;
using index_type      = std::int_fast32_t;
using size_type       = std::int_fast32_t;
using size_tuple      = std::tuple<size_type, size_type>;

using is_fixed_size   = std::true_type;
using is_resizable    = std::false_type;

using is_column_major = std::false_type;
using is_dense        = std::true_type;
using is_rectangular  = std::true_type;
using is_row_major    = std::true_type;

using column_view_type    =
std::math::column_engine<fs_matrix_engine_tst>;

using row_view_type       =
std::math::row_engine<fs_matrix_engine_tst>;

using transpose_view_type =
std::math::transpose_engine<fs_matrix_engine_tst>;

public:
constexpr fs_matrix_engine_tst();
constexpr fs_matrix_engine_tst(fs_matrix_engine_tst&&) =

default;
constexpr fs_matrix_engine_tst(fs_matrix_engine_tst const&) =

default;

constexpr fs_matrix_engine_tst&     operator =
(fs_matrix_engine_tst&&) = default;

constexpr fs_matrix_engine_tst&     operator =
(fs_matrix_engine_tst const&) = default;

constexpr const_reference   operator ()(index_type i,
index_type j) const;

constexpr index_type    columns() const noexcept;
constexpr index_type    rows() const noexcept;
constexpr size_tuple    size() const noexcept;

constexpr size_type     column_capacity() const noexcept;
constexpr size_type     row_capacity() const noexcept;
constexpr size_tuple    capacity() const noexcept;



constexpr reference     operator ()(index_type i, index_type
j);

constexpr void      assign(fs_matrix_engine_tst const& rhs);
template<class ET2>
constexpr void      assign(ET2 const& rhs);

constexpr void      swap(fs_matrix_engine_tst& rhs) noexcept;
constexpr void      swap_columns(index_type j1, index_type

j2);
constexpr void      swap_rows(index_type i1, index_type i2);

private:
...         //- Implementation stuff

};

For each arithmetic operation in which you expect the new engine type to be involved, you
will need to provide a specialization of the engine promotion traits for that operation.  For
example, let's assume that you're only interested in addition operations involving two
operands having the new engine type, or where one operand has the standard fixed-size
engine and the other has the new engine.  Then your engine promotion traits might look like
this:

//- Goal: Create a new fixed-size engine type and use it in
arithmetical expressions.
//
template<class OT, class ET1, class ET2>
struct engine_add_traits_tst;

template<class OT, class T1, int32_t R1, int32_t C1, class T2,
int32_t R2, int32_t C2>
struct engine_add_traits_tst<OT,

fs_matrix_engine_tst<T1, R1, C1>,
fs_matrix_engine_tst<T2, R2, C2>>

{
using element_type = std::math::matrix_addition_element_t<OT,

T1, T2>;
using engine_type  = fs_matrix_engine_tst<element_type, R1,

C1>;
};

template<class OT,
class T1, int32_t R1, int32_t C1,
class T2, int32_t R2, int32_t C2>

struct engine_add_traits_tst<OT,
fs_matrix_engine_tst<T1, R1, C1>,



std::math::fs_matrix_engine<T2, R2,
C2>>
{

using element_type = std::math::matrix_addition_element_t<OT,
T1, T2>;

using engine_type  = fs_matrix_engine_tst<element_type, R1,
C1>;
};

template<class OT,
class T1, int32_t R1, int32_t C1,
class T2, int32_t R2, int32_t C2>

struct engine_add_traits_tst<OT,
std::math::fs_matrix_engine<T1, R1,

C1>,
fs_matrix_engine_tst<T2, R2, C2>>

{
using element_type = std::math::matrix_addition_element_t<OT,

T1, T2>;
using engine_type   = fs_matrix_engine_tst<element_type, R1,

C1>;
};

//- This is a custom operation traits type!
//
struct add_op_traits_tst
{

template<class T1, class T2>
using element_addition_traits = element_add_traits_tst<T1,

T2>;

template<class T1, class T2>
using engine_addition_traits = engine_add_traits_tst<T1, T2>;

};

As we can see, these custom promotion traits dictate the resulting engine type for these
particular cases.  Resulting usage might look like this:

matrix<fs_matrix_engine<float, 2, 3>, matrix_operation_traits>
m1;
matrix<fs_matrix_engine_tst<float, 2, 3>, add_op_traits_tst>
m2;
matrix<dr_matrix_engine<float, allocator<float>>,
matrix_operation_traits>  m3(2, 3);

//- mr1 --> matrix<fs_matrix_engine<float, 2, 3>,
matrix_operation_traits>
//



auto    mr1 = m1 + m1;

//- mr2 --> matrix<fs_matrix_engine_tst<double, 2, 3>,
add_op_traits_tst>
//
auto    mr2 = m2 + m2;

//- mr3 --> matrix<fs_matrix_engine_tst<double, 2, 3>,
add_op_traits_tst>
//
auto    mr3 = m1 + m2;

//- mr4 --> matrix<dr_matrix_engine<double, allocator<double>>,
add_op_traits_tst>
//
auto    mr4 = m1 + m3;

Note that this example also assumes that an addition operation involving a fixed-size matrix
and a dynamically-resizable matrix, or two dynamically-resizable matrices results in a
dynamically-resizable matrix.

Customizing an arithmetic operation
Suppose that you want to specialize the addition function for the addition of two matrices that
employ the custom engine above and whose sizes happen to be 3x4.

//- Goal: Call a specialized addition function for addition of
fixed-size matrix objects
// using the fixed-size test engine and having size 3x4.
//
template<class OT, class OP1, class OP2>
struct addition_traits_tst;

template<class OT>
struct addition_traits_tst<OT,

matrix<fs_matrix_engine_tst<double, 3,
4>, OT>,

matrix<fs_matrix_engine_tst<double, 3,
4>, OT>>
{

using op_traits = OT;
using engine_type = fs_matrix_engine_tst<double, 3, 4>;
using result_type = matrix<engine_type, op_traits>;

static result_type  add
(matrix<fs_matrix_engine_tst<double, 3, 4>, OT> const& m1,
matrix<fs_matrix_engine_tst<double, 3, 4>, OT> const&

m2);



};

//- This is a custom operation traits type!
//
struct test_add_op_traits_tst
{

template<class T1, class T2>
using element_addition_traits = element_add_traits_tst<T1,

T2>;

template<class OT, class ET1, class ET2>
using engine_addition_traits = engine_add_traits_tst<OT, ET1,

ET2>;

template<class OT, class OP1, class OP2>
using addition_traits = addition_traits_tst<OT, OP1, OP2>;

};

Actual usage might look like this:

matrix<fs_matrix_engine_tst<float, 3, 4>, add_op_traits_tst>
m1;
matrix<fs_matrix_engine_tst<double, 3, 4>, add_op_traits_tst>
m2;

//- mr1 --> matrix<fs_matrix_engine_tst<double, 3, 4>,
add_op_traits_tst>
//
auto    mr1 = m1 + m1;    //- Calls matrix_addition_traits::add()

//- mr2 --> matrix<fs_matrix_engine_tst<double, 3, 4>,
add_op_traits_tst>
//
auto    mr2 = m1 + m2;    //- Calls matrix_addition_traits::add()

//- mr3 --> matrix<fs_matrix_engine_tst<double, 3, 4>,
add_op_traits_tst>
//
auto    mr3 = m2 + m2;    //- Calls
matrix_addition_traits_tst::add()


