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1 History 

1.1 Changes from P0957R6 

- Replaced proxy::type() and proxy::cast() with proxy::reflect() for general-purpose static 

reflection. 

- Removed the specifications of bad_proxy_cast. 

- Revised the exception specifications of proxy::operator= overloads. 

- Revised the specifications of named requirements BasicFacade. 

1.2 Changes from P0957R5 

- Redesigned the syntax of dispatch declaration to prevent users from ODR violation. 

- Revised the specifications of dispatch and the overload of swap. 

- Revised the specification of named requirements BasicDispatch and Dispatch. 

1.3 Changes from P0957R4 

- Renamed the proposed design from "PFA" into "proxy". 
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- Redesigned the "facade" from a language feature to a library feature per feedback from SG7; 

- Replaced the abstraction of "Addresser" with C++ pointers. 

- Revise the specifications of proxy. 

- Added specifications of constraint_level, dispatch, facade, bad_proxy_cast, proxiable, 

make_proxy, swap. 

- Removed the specifications of qualification_type, reference_type, add_qualification_t, 

qualification_of_v, add_reference_t, erased_reference, erased_value_selector, 

value_addresser, reference_addresser, proxy_meta, value_proxy, reference_proxy. 

1.4 Changes from P0957R3 

- Remove dependency from the concept of "Sink Argument" proposal [P1648R2]; 

- Remove support for allocators due to ambiguous semantics; 

- Replace the member function assign with emplace to stay in the naming style with std::any; 

- Remove the class template null_value_addresser_error per feedback from EWGI. 

1.5 Changes from P0957R2 

- Remove dependency from the concept of "Memory Allocator" proposal [P1172R1]; 

- Remove inheritance hierarchy among different instantiation of the class template proxy_meta; 

- Remove convertibility among different instantiation of the class template reference_addresser and 

proxy; 

- Remove the disambiguation tag delegated_tag_t and its value delegated_tag; 

- Remove the class template allocated_value; 

- Change the semantics of the delegated assignment reflecting to the assignment of the addresser, rather than the 

assign expression; 

- Remove the assign member function from the class template reference_addresser. 

1.6 Changes from P0957R1 

- Reorganize the motivation part; 

- Split static_addresser into value_addresser and reference_addresser; 

- Add support for the "Extending Argument" [P1648R0], "Memory Allocator" [P1172R1] and configurable SOO 

for value semantics polymorphism; 

- Add support for reference semantics in facade definitions; 

- Add qualification type and reference type enumerations and corresponding type traits; 

- Add the concept for "Erased Handles"; 

- Add exception support for value addresser; 

- Change the semantics for the Addresser requirements; 

- Revise the semantics for the proxy. 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1648r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1172r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1648r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1172r1.pdf
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1.7 Changes from P0957R0 

- Replace the "class template" in the declaration of the proxy with a "class"; 

- Remove the class template shared_addresser temporarily; 

- Replace the class template direct_addresser and the class template unique_addresser with a 

uniform class template static_addresser; 

- Replace the type aliases direct_proxy, unique_proxy and shared_proxy with a uniform alias 

static_proxy; 

- Add support for "volatile" semantics. 

2 Introduction 

Since there are architecting and performance limitations in existing mechanisms of polymorphism, the "proxy" is 

proposed as a generic, extendable, and efficient template library solution of polymorphic programming. The "proxy" 

combines the idea of OOP (Object-oriented Programming) and FP (Functional Programming). Meanwhile, eliminating 

some of their known defects. Compared with traditional OOP, the "proxy" can largely replace the existing "virtual 

mechanism" and have no intrusion on existing code or runtime memory layout, without reducing performance. Compared 

with FP, the "proxy" is not only applicable to single dimensional requirements, but also can be applied to 

multi-dimensional ones, and could carry richer semantics. 

With the template meta programming mechanism, the "proxy" is well-compatible with the C++ programming language 

and makes C++ easier to use. The "proxy" can be applied in almost every case that relates to virtual functions more 

elegantly. Components defined in the standard that related to polymorphism can be easily implemented with the "proxy", 

e.g., std::function and std::any. 

The rest of the paper is organized as follows: section 3 illustrates the motivation and scope of the "proxy"; section 4 

includes the pivotal decisions in the design; section 5 illustrates the technical specification; the last sections summarize 

the paper. 

3 Motivation and scope 

Polymorphism is widely required in large-scale programming to decouple components and increase extendibility at a 

cost of reducing runtime performance. Currently, there are two types of mechanisms for polymorphism in the standard: 

inheritance with virtual functions and polymorphic wrappers. Because the existing polymorphic wrappers in the standard, 

such as std::function, std::any, std::pmr::polymorphic_allocator, etc., have limited extendibility 

with regard to a variety of polymorphic requirements, inheritance-based polymorphism is usually inevitable in large 

systems nowadays. 

The "proxy" is designed to help users build extendable and efficient polymorphic programs. To make implementations 

efficient in C++, it is helpful to collect requirements and generate high-quality code at compile-time as possible. The 

basic goal of the "proxy" is to eliminate the usability and performance limitations in traditional OOP and FP. 

This following section illustrates the implantation status of the proposed library, the limitations in inheritance-based 

polymorphism with concrete system design requirements and how the proposed library could help. 
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3.1 Implementation status 

As proof of concept, we have fully implemented the technical specifications as a single-header template library, 

meeting the C++20 standard. The implementation could be found here. The sample code, including the implementation 

of the motivating examples in later sections, could be found here. 

As we tested, the implementation compiles with the latest releases of gcc, clang and MSVC, as the language standard is 

set to C++20. We did not notice a bug when testing with gcc or MSVC, but clang will fail to compile if the 

minimum_destructibility is set to constraint_level::trivial in a facade definition. The root cause of 

this failure is that the implementation requires the language feature defined in P0848R3: Conditionally Trivial Special 

Member Functions, but it has not been implemented in clang, according to its documentation, by the time this paper was 

written. 

3.2 An example of system design 

Before discussing the limitations in inheritance-based polymorphism, it would be helpful to show the basic usage of the 

proposed library in concrete system design requirements compared to others. Here are the original requirements: 

There are 3 "drawable" entities in a system: rectangle, circle, and point. Specifically. 

- Rectangles have width, height, transparency, and area, and 

- Circles have radius, transparency, and area, and 

- Points do not have any property; its area is always zero. 

A library function DoSomethingWithDrawable shall be defined with some algorithm. It shall not be a function 

template to avoid code bloat and increase testability. It may "draw" any of the 3 "drawable" entities in its implementation. 

3.2.1 Architecting with inheritance-based polymorphism 

With the keywork virtual, a base class could be defined: 

class IDrawable { 

 public: 

  virtual void Draw() const = 0; 

}; 

 

3 "drawable" entities could be defined as 3 derived classes: 

class Rectangle : public IDrawable { 

 public: 

  void Draw() const override; 

  void SetWidth(double width); 

  void SetHeight(double height); 

  void SetTransparency(double); 

  double Area() const; 

}; 

class Circle : public IDrawable { 

 public: 

https://github.com/mingxwa/my-stl/tree/30287a70fba24a181af8903e8cb2545070548b1b/main/p0957
https://github.com/mingxwa/my-stl/tree/30287a70fba24a181af8903e8cb2545070548b1b/demo/p0957
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0848r3.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0848r3.html
https://clang.llvm.org/cxx_status.html
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  void Draw() const override; 

  void SetRadius(double radius); 

  void SetTransparency(double transparency); 

  double Area() const; 

}; 

class Point : public IDrawable { 

 public: 

  void Draw() const override; 

  constexpr double Area() const { return 0; } 

}; 

 

The function could be defined as: 

void DoSomethingWithDrawable(IDrawable* p); 

3.2.2 Architecting with the "proxy" 

To define an abstraction of "drawable", we need to define the dispatch "Draw" as a type with the following syntax: 

struct Draw : std::dispatch<void()> { 

  template <class T> 

  void operator()(const T& self) { self.Draw(); } 

}; 

 

Draw is defined as a "dispatch", which is a callable type tagged with the signature in absence of the operand. 

std::dispatch is one of the proposed class templates to help define polymorphic expressions. After defining Draw, 

the next step is to define the "facade" with the following syntax: 

struct FDrawable : std::facade<Draw> {}; 

 

FDrawable is defined as a "facade", which is another empty type serves at compile-time. std::facade is another 

proposed class template to help specify the proxy.  

 

The required 3 types could be implemented as normal types without any virtual function or inheritance: 

class Rectangle { 

 public: 

  void Draw() const; 

  void SetWidth(double width); 

  void SetHeight(double height); 

  void SetTransparency(double); 

  double Area() const; 

}; 

class Circle { 

 public: 

  void Draw() const; 

  void SetRadius(double radius); 

  void SetTransparency(double transparency); 
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  double Area() const; 

}; 

class Point { 

 public: 

  void Draw() const; 

  constexpr double Area() const { return 0; } 

}; 

 

With the defined facade, the function could be defined as: 

void DoSomethingWithDrawable(std::proxy<FDrawable> p); 

 

std::proxy is another proposed class template that implements runtime polymorphism. It could be specified by any 

well-formed facade type like FDrawable. It is implicitly convertible from pointer types of specific requirements. The 

syntax to invoke the Draw expression is: p.invoke<Draw>(). It is also allowed to omit the expression Draw since it 

is the only one defined in the facade, i.e., p.invoke(). 

3.3 Requirements change 1: More polymorphic expressions 

As the system evolves, we may need to update the code to meet new requirements. For example, what if 

DoSomethingWithDrawable needs to call Area()? 

3.3.1 Inheritance-based polymorphism 

For inheritance-based polymorphism, based on the design in 3.2.1, all the base and derived classes need to be updated: 

1. Another new pure virtual function needs to be added in the base class: 

class IDrawable { 

 public: 

  virtual void Draw() const = 0; 

  virtual double Area() const = 0; 

}; 

 

2. The "override" keyword shall be added in the 3 derived classes. Although it's optional, it should usually be 

recommended to avoid ambiguity: 

class Rectangle : IDrawable { 

 public: 

  ... 

  double Area() const override; 

}; 

class Circle : IDrawable { 

 public: 

  ... 

  double Area() const override; 

}; 
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class Point : IDrawable { 

 public: 

  ... 

  double Area() const override { return 0; } 

}; 

3.3.2 The "proxy" 

For the "proxy", based on the design in 3.2.2, only the definition of the "facade" needs to be updated, while no change 

is required in the implementation of the 3 entities. Specifically, another "dispatch" should be defined and added to the 

definition of the "facade": 

struct Area : std::dispatch<double()> { 

  template <class T> 

  double operator()(const T& self) { return self.Area(); } 

}; 

struct FDrawable : std::facade<Draw, Area> {}; 

3.3.3 Comparison 

When more polymorphic expressions are required in a well-designed system, inheritance-based polymorphism always 

changes the semantics of all the base and derived classes, while the "proxy" has less impact on the existing code. 

We can also use other types in the standard library polymorphically with the "proxy" if needed. For example, if we 

want to abstract a mapping data structure from indices to strings for localization, we may define the following facade: 

struct at : std::dispatch<std::string(int)> { 

  template <class T> 

  auto operator()(T& self, int key) { return self.at(key); } 

}; 

struct FResourceDictionary : std::facade<at> {}; 

 

It could proxy any potential mapping data structure, including but not limited to std::map<int, std::string>, 

std::unordered_map<int, std::string>, std::vector<std::string>, etc. 

3.4 Requirements change 2: Simple factory 

What if a simple factory function of "drawable" is needed? For instance, parsing the command line to create a 

"drawable" instance. 

3.4.1 Inheritance-based polymorphism 

For inheritance-based polymorphism, based on the design in 3.3.1, the new factory function could be designed as 

follows: 

IDrawable* MakeDrawableFromCommand(const std::string& s); 
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However, the semantics of the return type is ambiguous because it is a raw pointer type and does not indicate the 

lifetime of the object. For instance, it could be allocated via operator new, from a memory pool or even a global 

object. To make it the semantics cleaner, an experienced engineer may use smart pointers and change the return type to 

std::unique_ptr<IDrawable>: 

std::unique_ptr<IDrawable> MakeDrawableFromCommand(const std::string& s); 

 

Although the code compiles, unfortunately, it introduces a bug: the destructor of 

std::unique_ptr<IDrawable> will call the destructor of IDrawable, but won't call the destructor of its derived 

classes and may result in resource leak. It is necessary to add a virtual destructor with empty implementation to 

IDrawable to avoid such leak: 

class IDrawable { 

 public: 

  virtual void Draw() const = 0; 

  virtual double Area() const = 0; 

  virtual ~IDrawable() {} 

}; 

 

Some types like Point are stateless and theoretically don't need to be created every time when needed. Is it possible 

to optimize the performance in this case? Because std::unique_ptr<IDrawable> is not copyable, this may 

require further API change, for example, using std::shared_ptr instead: 

std::shared_ptr<IDrawable> MakeDrawableFromCommand(const std::string& s); 

 

If we decided to change one API from std::unique_ptr into std::shared_ptr, other APIs needs to be 

changed to stay compatible as well, every polymorphic type needs to inherit std::enable_shared_from_this, 

which may be significantly expensive in a large system. 

3.4.2 The "proxy" 

For the "proxy", based on the design in 3.3.2, we can define the factory function directly without further concern: 

std::proxy<FDrawable> MakeDrawableFromCommand(const std::string& s); 

 

In the implementation, std::proxy<FDrawable> could be instantiated from all kinds of pointers with potentially 

different lifetime management strategy. For example, Rectangle may be created every time when requested from a 

memory pool, while the value of Point could be cached throughout the lifetime of the program: 

std::proxy<FDrawable> MakeDrawableFromCommand(const std::string& s) { 

  std::vector<std::string> parsed = ParseCommand(s); 

  if (!parsed.empty()) { 

    if (parsed[0u] == "Rectangle") { 

      if (parsed.size() == 3u) { 

        static std::pmr::unsynchronized_pool_resource rectangle_memory_pool; 

        std::pmr::polymorphic_allocator<> alloc{&rectangle_memory_pool}; 

        auto deleter = [alloc](Rectangle* ptr) mutable 

            { alloc.delete_object<Rectangle>(ptr); }; 
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        Rectangle* instance = alloc.new_object<Rectangle>(); 

        std::unique_ptr<Rectangle, decltype(deleter)> p{instance, deleter}; 

        p->SetWidth(std::stod(parsed[1u])); 

        p->SetHeight(std::stod(parsed[2u])); 

        return p;  // Implicit conversion happens 

      } 

    } else if (parsed[0u] == "Circle") { 

      if (parsed.size() == 2u) { 

        Circle circle; 

        circle.SetRadius(std::stod(parsed[1u])); 

        return std::make_proxy<FDrawable>(circle);  // SBO may apply 

      } 

    } else if (parsed[0u] == "Point") { 

      if (parsed.size() == 1u) { 

        static Point instance;  // Global singleton 

        return &instance; 

      } 

    } 

  } 

  throw std::runtime_error{"Invalid command"}; 

} 

 

No change to existing code is needed. 

3.4.3 Comparison 

Lifetime management with inheritance-based polymorphism is error-prone and inflexible, while the "proxy" allows 

easy customization of any lifetime management strategy, including but not limited to raw pointers and various smart 

pointers with potentially pooled memory management. 

Specifically, SBO (Small Buffer Optimization, aka., SOO, Small Object Optimization) is a common technique to avoid 

unnecessary memory allocation. However, for inheritance-based polymorphism, there is little facilities in the standard 

that support SBO; for other standard polymorphic wrappers, implementations may support SBO, but there is no standard 

way to configure so far. For example, if the size of std::any is n, it is theoretically impossible to store the concrete 

value whose size is larger than n without external storage. 

3.5 Conclusion 

Prior research for future polymorphic usage is usually required when designing polymorphic types with inheritance. 

However, if the design research is inadequate in earlier phase, the semantics of the components may become overly 

complex when there are too much virtual functions, or the extendibility of the system may be insufficient when 

polymorphic types are coupled too closely. Anyway, the engineering cost may dramatically increase due to imperfect 

architecting. On the other hand, along with the evolution of the requirements, polymorphic usage may change, additional 

effort is usually necessary to keep the definition of polymorphic types consistent with their usage, staying good 
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maintainability of the system. Moreover, some libraries (including the standard library) may not have proper 

polymorphic semantics even if they, by definition, satisfy same specific constraints. In such scenarios, users have no 

alternative but to design and maintain extra middleware themselves to add polymorphism support to existing 

implementations. 

Overall, inheritance-based polymorphism has limitations both in architecting and performance. As Sean Parent 

commented on NDC 2017: The requirements of a polymorphic type, by definition, comes from its use, and there are no 

polymorphic types, only polymorphic use of similar types. Inheritance is the base class of evil. 

4 Considerations and design decisions 

Considerations and design decisions have been made in the following aspects. 

4.1 Pointer semantics 

We decided to design the "proxy" based on pointer semantics for both usability and performance considerations. To 

allow balancing between extensibility and performance in specific cases, an abstraction of constraints is proposed with 

preferred defaults. 

4.1.1 Motivation 

Currently, the standard polymorphic wrapper types, including std::function and std::any, are based-on value 

semantics. Polymorphic wrappers based on value semantics has certain limitations in lifetime management comparing to 

pointer semantics. Designing the "proxy" library based on pointer semantics decouples the responsibility of lifetime 

management from the "proxy", which provides more flexibility and helps consistency in API design without reducing 

runtime performance. 

For example, in cases where allocator customization is required for performance considerations, std::function 

and std::any are not supported. Back to C++14, std::function used to have several constructors that take an 

allocator argument, but these constructors were removed per discussion in P0302R1 (Removing Allocator Support in 

std::function), because "the semantics are unclear, and there are technical issues with storing an allocator in a type-erased 

context and then recovering that allocator later for any allocations needed during copy assignment". Similarly, 

std::any, introduced in C++17, does not allows customization in allocator at all. With the proposed "proxy" library, it 

becomes easy to implement such requirements with customized pointers, even in hybrid lifetime management scenarios, 

as demonstrated earlier in 3.4.2. 

4.1.2 Constraints 

To allow implementation balance between extendibility and performance, a set of constraints to a pointer is introduced, 

including maximum size, maximum alignment, minimum copyability, minimum relocatability and minimum 

destructibility. The term "relocatability" was introduced in P1144R5, "equivalent to a move and a destroy". This paper 

uses the term "relocatability" but does not depend on the technical specifications of P1144R5. 

 

https://www.youtube.com/watch?v=QGcVXgEVMJg
https://www.youtube.com/watch?v=QGcVXgEVMJg
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1144r5
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Constraints Defaults 

Maximum size No less than the size of two pointers 

Maximum alignment No less than the alignment of a pointer 

Minimum copyability None 

Minimum relocatability Nothrow 

Minimum destructibility Nothrow 

Table 1 – Default constraints of pointer types 

 

While the size and alignment could be described with std::size_t, there is no direct primitive in the standard to 

describe the constraint level of copyability, relocatability or destructibility. Thus, 4 levels of constraints, matching the 

standard wording, are defined in this paper: none, nontrivial, nothrow and trivial. The proposed defaults are listed in 

Table 1 to try to meet the requirements of various implementations of (smart) pointers. It is encouraged to set the default 

maximum size and maximum alignment greater than or equal to the implementation of raw pointers, 

std::unique_ptr with default deleters, std::unique_ptr with any one-pointer-size of deleters (for pooling) 

and std::shared_ptr of any type. 

4.1.3 Implementation 

Inheritance-based polymorphism or standard polymorphic wrappers are all based on value semantics. For inheritance, 

although polymorphism is expressed with pointer or reference of a base type, the VTABLE is bound to the value itself. 

For other standard polymorphic wrappers, like std::function or std::any, the lifetime of the stored values are 

bound to these polymorphic wrappers without allocator customization. These limitations make it difficult to implement 

requirements like 3.4 without extra considerations in the code design or performance decrement. 

 

Figure 1 – Expected memory layout of inheritance-based polymorphism 
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Figure 2 – Expected memory layout of std::proxy 

 

Because of pointer semantics, the expected memory layout of std::proxy is also different from traditional 

inheritance. For instance, Figure 1 and Figure 2 shows their expected memory layout, respectively. 

 The "proxy" Inheritance-based polymorphism 

Abstraction 
struct Draw : std::dispatch<void()> { 

  template <class T> 

  void operator()(const T& self) { self.Draw(); } 

}; 

struct Area : std::dispatch<double()> { 

  template <class T> 

  double operator()(const T& self) { return self.Area(); } 

}; 

struct FDrawable : std::facade<Draw, Area> {}; 

 

struct IDrawable { 

  virtual void Draw() const = 0; 

  virtual double Area() const = 0; 

  virtual ~IDrawable() {} 

}; 

 

Implementation 
class Rectangle { 

 public: 

  void Draw() const { 

    printf("{Rectangle: width = %f, height = %f}", width_, height_); 

  } 

  double Area() const { return width_ * height_; } 

 

 private: 

  double width_; 

  double height_; 

}; 

 

class Rectangle : public IDrawable { 

 public: 

  void Draw() const override { 

    printf("{Rectangle: width = %f, height = %f}", width_, height_); 

  } 

  double Area() const override 

      { return width_ * height_; } 

 

 private: 

  double width_; 

  double height_; 

}; 

 

Invocation 
void DoSomethingWithDrawable(std::proxy<FDrawable> p) { 

  p.invoke<op::Draw>(); 

} 

 

void DoSomethingWithDrawable(std::unique_ptr<IDrawable> p) { 

  p->Draw(); 

} 

 

Table 2 – Sample code to compile 

 

Processor architecture Compiler family Version Compiler flags 

x86-64 (AMD64) clang 13.0.0 -std=c++20 -O3 

ARM64 gcc 11.2 -std=c++20 -O3 

RISC-V RV64 clang 13.0.0 -std=c++20 -O3 

Table 3 – Sample compiler configurations 

 

To evaluate the quality of code generation, we tried to compile the "Drawable" example from section 3 with various 

compilers and compare the generated assembly between the sample implementation of the "proxy" and traditional 

inheritance-based polymorphism. Specifically, the sample code to compile is listed in Table 2, the sample compiler 

configurations for different processor architectures are listed in Table 3. 

 

 The "proxy" Inheritance-based polymorphism 

Library side mov     rax, qword ptr [rdi] 

add     rdi, 8 

jmp     qword ptr [rax + 24] 

mov     rdi, qword ptr [rdi] 

mov     rax, qword ptr [rdi] 

jmp     qword ptr [rax] 

Client side mov     rax, qword ptr [rdi + 8] 

movsd   xmm0, qword ptr [rax] 

movsd   xmm1, qword ptr [rax + 8] 

mov     edi, offset .L.str.18 

mov     al, 2 

jmp     printf 

movsd   xmm0, qword ptr [rdi + 8] 

movsd   xmm1, qword ptr [rdi + 16] 

mov     edi, offset .L.str 

mov     al, 2 

jmp     printf 

Table 4 – Generated code from clang 13.0.0 (x86-64) 
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 The "proxy" Inheritance-based polymorphism 

Library side ldr     x1, [x0], 8 

ldr     x1, [x1, 24] 

mov     x16, x1 

br      x16 

ldr     x0, [x0] 

ldr     x1, [x0] 

ldr     x1, [x1] 

mov     x16, x1 

br      x16 

Client side mov     x1, x0 

adrp    x0, .LC3 

add     x0, x0, :lo12:.LC3 

ldr     d0, [x1] 

b       printf 

mov     x1, x0 

adrp    x2, .LC0 

add     x0, x2, :lo12:.LC0 

ldp     d0, d1, [x1, 8] 

b       printf 

Table 5 – Generated code from gcc 11.2 (ARM64) 

 

 The "proxy" Inheritance-based polymorphism 

Library side ld      a1, 0(a0) 

ld      a5, 24(a1) 

addi    a0, a0, 8 

jr      a5 

ld      a0, 0(a0) 

ld      a1, 0(a0) 

ld      a5, 0(a1) 

jr      a5 

Client side ld      a0, 8(a0) 

ld      a2, 8(a0) 

ld      a1, 0(a0) 

lui     a0, %hi(.L.str.18) 

addi    a0, a0, %lo(.L.str.18) 

tail    printf 

ld      a2, 16(a0) 

ld      a1, 8(a0) 

lui     a0, %hi(.L.str) 

addi    a0, a0, %lo(.L.str) 

tail    printf 

Table 6 – Generated code from clang 13.0.0 (RISC-V RV64) 

 

Trying to compile the two pieces of sample code with 3 different compilers, the generated assembly are shown in Table 

4, Table 5 and Table 6. From the instructions we can see: 

1. Invocations from std::proxy could be properly inlined, except for the virtual dispatch on the client side, similar 

to inheritance-based polymorphism. 

2. Because std::proxy is based on pointer semantics, the "dereference" operation may happen inside the virtual 

dispatch, which generates different instructions. 

3. With "clang 13.0.0 (x86-64)" and " clang 13.0.0 (RISC-V RV64)", std::proxy generates one more instruction than 

inheritance-based polymorphism, while the situation is reversed with "gcc 11.2 (ARM64)". This may infer that 

std::proxy could have similar runtime performance in invocation with inheritance-based polymorphism on the 

3 processor architectures. 

4.2 The "proxy" 

To provide a unified API to improve ease of use and reduce learning costs, the design of the "proxy" consults the 

"proxy" and "facade" design pattern from "Design Patterns: Abstraction and Reuse of Object-Oriented Design". In the 

proposed library, the "facade" is a compile-time tag type that helps specify a proxy; the "proxy" could represent a pointer 

https://link.springer.com/chapter/10.1007/3-540-47910-4_21
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of different types and performs runtime polymorphism. 

4.2.1 Abstraction of "facade" 

Before revision 5 of this paper, the "facade" was proposed as a core language feature, but there was no consensus in the 

committee to "have a core language mechanism, such as "facade" for expressing a type-erased interface", per straw poll 

in Belfast. From revision 5, the "Facade" is proposed as named requirements of type to specify the proxy with required 

metadata. 

The dispatches are also designed as named requirements. To support reuse of declaration of expression sets, like 

inheritance of virtual base classes, the "facade" allows combination of different dispatches with std::tuple, while 

duplication is allowed. For example, 

struct D1; struct D2; struct D3; 

struct FA : std::facade<D1, D2, D3> {}; 

struct FB : std::facade<D1, std::tuple<D3, D2>> {}; 

struct FC : std::facade<std::tuple<D1, D2, D3>, D1, std::tuple<D2, D3>> {}; 

 

As demonstrated earlier, class template std::facade and std::dispatch are proposed facilities to simplify the 

syntax to define well-formed types meeting the proposed requirements. In the sample code above, given D1, D2 and D3 

are well-formed dispatch types, FA, FB and FC are equivalent. This allows "diamond inheritance" of abstraction without 

any syntax ambiguity, coding techniques like "virtual inheritance", or runtime overhead. 

Dispatches are not limited to member functions, but all valid expressions in C++. For example, we can define an 

FIterable to add polymorphism to the global function template for_each on any container: 

template <class T> struct Call; 

struct Call<R(Args...)> : std::dispatch<R(Args&&...)> { 

  template <class T> 

  auto operator()(T& self, Args&&... args) 

      { return self(std::forward<Args>(args)...); } 

}; 

template <class T> 

struct FCallable : std::facade<Call<T>> {}; 

 

template <class T> 

struct ForEach : std::dispatch<void(std::proxy<FCallable<void(T&)>>)> { 

  template <class U> 

  void operator()(U& self, std::proxy<FCallable<void(T&)>>&& func) { 

    std::ranges::for_each(self, [&func](T& value) { func.invoke(value); }); 

  } 

}; 

template <class T> 

struct FIterable : std::facade<ForEach<T>> {}; 

 

With the definition of FIterable, the following library function implementation is well-formed: 

void MyPrintLibrary(std::proxy<FIterable<int>> p) { 

  auto f = [](double value) { printf("%f", value); }; 

https://wiki.edg.com/bin/view/Wg21belfast/P0957
https://wiki.edg.com/bin/view/Wg21belfast/P0957
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  p.invoke(&f); 

  puts(""); 

} 

 

While the caller side only need to provide any pointer to a well-formed container type without considering any 

polymorphic use in the implementation of the library, e.g.: 

std::forward_list<int> a{1, 2, 3, 4, 5}; 

std::deque<int> b{6, 7, 8, 9, 10}; 

MyPrintLibrary(&a); 

MyPrintLibrary(&b); 

 

To support recursive declaration of a facade, i.e., using a facade while declaring dispatch with the name of the facade, 

the "BasicFacade" requirements is proposed. It is weaker than the "Facade" requirements, allowing underlying dispatches 

to be incomplete type. For example, 

struct Self; 

struct Print : std::dispatch<void()> { 

  template <class T> 

  void operator()(T& self) { std::cout << self << std::endl; } 

}; 

 

struct FPrintable : std::facade<Self, Print> {}; 

 

struct Self : std::dispatch<std::proxy<FPrintable>(std::proxy<FPrintable>)> { 

  template <class T> 

  auto operator()(T& self, std::proxy<FPrintable> p) { return std::move(p); } 

}; 

 

The implementation of Self could be delayed, before the specified proxy, i.e., std::proxy<FPrint> is 

initialized with a concrete pointer. 

4.2.2 Copy/move constructions and assignments 

To ensure the quality of code generation, the semantics of copy/move constructions and assignments are aligned with 

the constraints of pointers illustrated in 4.1.2. For example, std::proxy<FDrawable>, demonstrated in 3.3.2, is not 

copy constructible, because the default copyability constraints to a pointer is "None". However, user can specify different 

constraint level if needed, e.g., 

struct MyFacade : std::facade</* Omitted */> { 

  static constexpr std::constraint_level minimum_copyability = 

      std::constraint_level::nontrivial; 

}; 

 

This requires the pointer at least to be copyable, regardless of whether it is nothrow or trivial. In the meantime, 

std::proxy<MyFacade> becomes copyable with both copy constructor and copy assignment. 



17 

 

4.2.3 Construction from a value 

To simplify construction from a value, like other standard polymorphic wrapper types, the function template overloads 

std::make_proxy are proposed. With std::make_proxy, SBO may implicitly apply, depending on the 

implementation. The proposed syntax of std::make_proxy is similar to the constructor of std::any. 

4.2.4 Reflection 

Reflection is an essential requirement in type erasure, and the proposed class template std::proxy welcomes 

general-purpose static (compile-time) reflection other than std::type_info. 

Before revision 7 of this paper, std::proxy supports and only supports acquiring the corresponding 

std::type_info of a given type, similar to std::function::target_type of std::function and 

std::any_cast of std::any. However, std::type_info is usually not adequate to carry enough useful 

information of a type to inspect at runtime. In other languages like C# or Java, users are allowed to acquire detailed 

metadata of a type-erased type at runtime with simple APIs, but this is not true for std::function, std::any or 

inheritance-based polymorphism in C++. Although these reflection facilities add certain runtime overhead to these 

languages, they do help users write simple code in certain scenarios. In C++, as the reflection TS keeps evolving, there 

will be more static reflection facilities in the standard with more specific type information deduced at compile-time than 

std::type_info. It becomes possible for general-purpose reflection to become zero-overhead in C++ 

polymorphism. 

As a result, we decided to make std::proxy support general-purpose static reflection. It's off by default, and 

theoretically won't impact runtime performance other than the target binary size if turned on. Here is an example to 

reflect the given types to MyReflectionInfo: 

class MyReflectionInfo { 

 public: 

  template <class P> 

  constexpr explicit MyReflectionInfo(std::in_place_type_t<P>) : type_(typeid(P)) {} 

  const char* GetName() const noexcept { return type_.name(); } 

 

 private: 

  const std::type_info& type_; 

}; 

 

struct MyFacade : std::facade</* Omitted */> { 

  using reflection_type = MyReflectionInfo; 

}; 

 

Users may call MyReflectionInfo::GetName() to get the implementation-defined name of a type at runtime: 

std::proxy<MyFacade> p; 

puts(p.reflect().GetName()); 
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4.3 Compared to other solutions 

This section summarizes the design of several other C++ libraries and typical programming languages in 

polymorphism. They all have certain limitations in usability or performance, which are resolved in the proposed "proxy" 

library. 

4.3.1 The "dyno" library 

The "dyno" is an open-source C++ library that also aims to "solve the problem of runtime polymorphism better than 

vanilla C++ does". Here is a sample usage copied from its documentation: 

using namespace dyno::literals; 

 

// Define the interface of something that can be drawn 

struct Drawable : decltype(dyno::requires_( 

  "draw"_s = dyno::method<void (std::ostream&) const> 

)) { }; 

 

// Define how concrete types can fulfill that interface 

template <typename T> 

auto const dyno::default_concept_map<Drawable, T> = dyno::make_concept_map( 

  "draw"_s = [](T const& self, std::ostream& out) { self.draw(out); } 

); 

 

// Define an object that can hold anything that can be drawn. 

struct drawable { 

  template <typename T> 

  drawable(T x) : poly_{x} { } 

 

  void draw(std::ostream& out) const 

  { poly_.virtual_("draw"_s)(out); } 

 

private: 

  dyno::poly<Drawable> poly_; 

}; 

 

The "dyno" library also provides some macros to simplify the definition above, which will not be discussed in this 

paper. As illustrated in its documentation, the "goodies" we get from the "dyno" library are: 

Non-intrusive 

An interface can be fulfilled by a type without requiring any modification to that type. Heck, a type can even fulfill the 

same interface in different ways! With Dyno, you can kiss ridiculous class hierarchies goodbye. 

 

100% based on value semantics 

Polymorphic objects can be passed as-is, with their natural value semantics. You need to copy your polymorphic objects? 

https://github.com/ldionne/dyno/tree/56ced251f5751ef4e3fe66d4f28ccbc75b902d70
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Sure, just make sure they have a copy constructor. You want to make sure they don't get copied? Sure, mark it as deleted. 

With Dyno, silly clone() methods and the proliferation of pointers in APIs are things of the past. 

 

Not coupled with any specific storage strategy 

The way a polymorphic object is stored is really an implementation detail, and it should not interfere with the way you 

use that object. Dyno gives you complete control over the way your objects are stored. You have a lot of small 

polymorphic objects? Sure, let's store them in a local buffer and avoid any allocation. Or maybe it makes sense for you to 

store things on the heap? Sure, go ahead. 

 

Flexible dispatch mechanism to achieve best possible performance 

Storing a pointer to a vtable is just one of many different implementation strategies for performing dynamic dispatch. 

Dyno gives you complete control over how dynamic dispatch happens, and can in fact beat vtables in some cases. If you 

have a function that's called in a hot loop, you can for example store it directly in the object and skip the vtable 

indirection. You can also use application-specific knowledge the compiler could never have to optimize some dynamic 

calls — library-level devirtualization. 

 

For "non-intrusive", the design direction also applies to the proposed "proxy" library. 

For "100% based on value semantics", the design direction is different from the proposed "proxy" library, while the 

"proxy" is based on pointer semantics, as discussed in 4.1.1, value semantics has certain limitations in lifetime 

management. 

For "Not coupled with any specific storage strategy", I don't think the statement is accurate for the "dyno" library. 

Looking at the definition of the class template "dyno::poly": 

template < 

  typename Concept, 

  typename Storage = dyno::remote_storage, 

  typename VTablePolicy = dyno::vtable<dyno::remote<dyno::everything>> 

> 

struct poly; 

 

Since the Storage is defined on the template, even we can specify different storage strategies at compile-time, one 

instantiation of poly is always bound to a specific storage strategy. Such limitation makes it difficult to have different 

lifetime management strategies at runtime without additional overhead. The "simple factory" mentioned in 3.4 is a good 

example of such requirements. As mentioned earlier, the proposed "proxy" library allows different lifetime management 

strategies of one instantiation of proxy and thus does not have such limitation. 

Taking a closer look at the implementation of "dyno::sbo_storage", which is designed to eliminate heap allocation, we 

can see a runtime conditional logic when getting the pointer of the underlying object, which is a "hot" expression each 

time a polymorphic expression is performed: 

return static_cast<T*>(uses_heap() ? ptr_ : &sb_); 

 

Such overhead could be eliminated in the proposed "proxy" library, as discussed in 4.1.3. 

For "Flexible dispatch mechanism to achieve best possible performance", I don't think de-virtualization is a major 

requirement of runtime polymorphism. 

https://github.com/ldionne/dyno/blob/56ced251f5751ef4e3fe66d4f28ccbc75b902d70/include/dyno/poly.hpp#L62-L67
https://github.com/ldionne/dyno/blob/56ced251f5751ef4e3fe66d4f28ccbc75b902d70/include/dyno/storage.hpp#L236-L244
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4.3.2 The "DGPVC" library 

Although the Concepts can define "how should concrete implementations look like", not all the information that could 

be represented by a concept is suitable for polymorphism. For example, we could declare an inner type of a type in a 

concept definition, like: 

template <class T> 

concept bool Foo() { 

  return requires { 

    typename T::bar; 

  }; 

} 

 

But it is unnecessary to make this piece of information polymorphic because this expression makes no sense at runtime. 

Some feedback suggests that it is acceptable to restrict the definition of a concept from anything not suitable for 

polymorphism, including but not limited to inner types, friend functions, constructors, etc. This solution does not seem to 

be compatible with the C++ type system because: 

1. There is no such mechanism to verify whether a definition of a concept is suitable for polymorphism, and 

2. There is no such mechanism to specify a type by a concept, like some_class_template<SomeConcept>, 

because a concept is not a type. 

The "Dynamic Generic Programming with Virtual Concepts" (DGPVC) is a solution that adopts this. However, on the 

one hand, it introduces some syntax, mixing the "concepts" with the "virtual qualifier", which makes the types 

ambiguous. From the code snippets included in the paper, we can tell that "virtual concept" is an "auto-generated" type. 

Comparing to introducing new syntax, I prefer to make it a "magic class template", which at least "looks like a type" and 

much easier to understand. On the other hand, there seems not to be enough description about how to implement the 

entire solution introduced in the paper, and it remains hard for us to imagine how are we supposed to implement for the 

expressions that cannot be declared virtual, e.g., friend functions that take values of the concrete type as parameters. 

4.4 Impact on the standard 

Because the components defined in the standard that related to polymorphism can be easily implemented with the 

"proxy" without performance loss, the following features in the standard may gradually be deprecated in the future: 

1. Virtual functions (except in some cases requiring casting based on inheritance hierarchy, e.g., exception handling); 

2. Class template std::function and related components, e.g. std::bad_function_call; 

3. Class std::any and related components, e.g. std::make_any, std::any_cast; 

4. Other related proposals, including P0288R9 (move_only_function), P0792R5 (function_ref: a non-owning reference 

to a Callable). 

No language feature change is required. 

https://github.com/andyprowl/virtual-concepts/blob/ed3a5690c353b6998abcd3368a9b448f1bb2aa19/draft/Dynamic%20Generic%20Programming%20with%20Virtual%20Concepts.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p0288r9.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0792r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p0792r5.html
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5 Technical specifications 

5.1 Header <proxy> synopsis 

namespace std { 

  enum class constraint_level { none, nontrivial, nothrow, trivial }; 

 

  template <class T> struct dispatch;  // not defined 

 

  template <class R, class... Args> 

    struct dispatch<R(Args...)>; 

 

  template <class... Ds> 

    struct facade; 

 

  template <class P, class F> 

    concept proxiable = see below; 

 

  template <class F> requires(see below) 

    class proxy; 

 

  template <class F, class T, class... Args> 

    proxy<F> make_proxy(Args&&... args); 

  template <class F, class T, class U, class... Args> 

    proxy<F> make_proxy(initializer_list<U> il, Args&&... args); 

  template <class F, class T> 

    proxy<F> make_proxy(T&& value); 

 

  template <class F> 

    void swap(proxy<F>& a, proxy<F>& b) noexcept(see below); 

} 

5.2 Facade 

5.2.1 Requirements 

5.2.1.1 BasicDispatch Requirements 

A type D meets the BasicDispatch requirements if D is default-constructible and the following expressions are 

well-formed and have the specific semantics: 
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typename D::return_type 

Note: This type indicates the return type of the dispatch. 

 

typename D::argument_types 

Note: This type shall be an instantiation of std::tuple, indicating the argument types of the dispatch in the 

given order. 

5.2.1.2 Dispatch Requirements 

A type D meets the Dispatch requirements of type T if it meets the BasicDispatch requirements and the 

following expressions are well-formed and have the specific semantics (d denotes a value of D, v denotes a value of type 

T, args... denotes values of argument types defined by typename D::argument_types): 

 

std::forward<D>(d)(std::forward<T>(v), std::forward<Args>(args)...) 

Note: The return value shall be convertible to typename D::return_type. 

5.2.1.3 BasicFacade Requirements 

A type F meets the BasicFacade requirements if the following expressions are well-formed and have the specific 

semantics: 

 

typename F::dispatch_types 

Note: This type indicates the dispatch types and is not required to be a complete type. 

 

typename F::reflection_type 

Note: This type indicates compile-time reflection. 

 

F::maximum_size 

Note: This expression shall be a constant expression, convertible to size_t, indicating the allowed maximum size 

of pointers to instantiate std::proxy<F>. 

 

F::maximum_alignment 

Note: This expression shall be a constant expression, convertible to size_t, indicating the allowed maximum 

alignment of pointers to instantiate std::proxy<F>. 

 

F::minimum_copyability 

Note: This expression shall be a constant expression, convertible to constraint_level, indicating the 

minimum copyability requirements of pointers to instantiate std::proxy<F>. 

 

F::minimum_relocatability 

Note: This expression shall be a constant expression, convertible to constraint_level, indicating the 

minimum relocatability requirements of pointers to instantiate std::proxy<F>. 
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F::minimum_destructibility 

Note: This expression shall be a constant expression, convertible to constraint_level, indicating the 

minimum destructibility requirements of pointers to instantiate std::proxy<F>. 

5.2.1.4 Facade Requirements 

A type F meets the Facade requirements if it meets the BasicFacade requirements and the following expressions 

are well-formed and have the specific semantics: 

 

typename F::dispatch_types 

Note: This type indicates the dispatch set, organized by std::tuple. Specifically, a dispatch set could be 

- a complete type meeting the BasicDispatch requirements, or 

- an instantiation of std::tuple of any number of dispatch sets. 

5.2.2 Help classes 

5.2.2.1 Class template dispatch 

namespace std { 

  template <class T> struct dispatch;  // not defined 

 

  template <class R, class... Args> 

    struct dispatch<R(Args...)> { 

      using return_type = R; 

      using argument_types = tuple<Args...>; 

  }; 

} 

5.2.2.2 Class template facade 

namespace std { 

  template <class... Ds> 

    struct facade { 

      using dispatch_types = tuple<Ds...>; 

      static constexpr size_t maximum_size = see below; 

      static constexpr size_t maximum_alignment = see below; 

      static constexpr constraint_level minimum_copyability = 

          constraint_level::none; 

      static constexpr constraint_level minimum_relocatability = 

          constraint_level::nothrow; 
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      static constexpr constraint_level minimum_destructibility = 

          constraint_level::nothrow; 

      facade() = delete; 

  }; 

} 

 

The value of maximum_size shall be greater than or equal to (2 * sizeof(void*)). The value of 

maximum_alignment shall be greater than or equal to alignof(void(*)). It is encouraged to define their value 

large enough to satisfy the implementation of std::unique_ptr of any type with default deleters, 

std::unique_ptr of any type with any one-pointer-size of deleters and std::shared_ptr of any type. 

5.3 Proxy 

5.3.1 Concept proxiable 

namespace std { 

  template <class P, class F> 

    concept proxiable = see below; 

} 

 

A pointer type P is proxiable with F (p denotes a value of P) if 

- Expression *p is well-formed, and 

- F meets the Facade requirements, and 

- sizeof(P) <= F::maximum_size is true, and 

- alignof(P) <= F::maximum_alignment is true, and 

- P meets the minimum copyability requirements defined by F::minimum_copyability, and 

- P meets the minimum relocatability requirements defined by F::minimum_relocatability, and 

- P meets the minimum destructibility requirements defined by F::minimum_destructibility, and 

- For each dispatch type D defined by typename F::dispatch_types, D meets the Dispatch 

requirements of type decltype(*p), and 

- If typename F::reflection_type is not void, it shall be constructible from 

std::in_place_type_t<P> in a constant expression. 

5.3.2 Class template proxy 

5.3.2.1 General 

namespace std { 

  template <class F> requires(see below) 

  class proxy { 

  public: 
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    proxy() noexcept; 

    proxy(nullptr_t) noexcept; 

    proxy(const proxy& rhs) noexcept(see below) requires(see below); 

    proxy(proxy&& rhs) noexcept(see below) requires(see below); 

    template <class P> 

      proxy(P&& ptr) noexcept(see below) requires(see below); 

    template <class P, class... Args> 

      explicit proxy(in_place_type_t<P>, Args&&... args) 

          noexcept(see below) requires(see below); 

    template <class P, class U, class... Args> 

      explicit proxy(in_place_type_t<P>, initializer_list<U> il, Args&&... args) 

          noexcept(see below) requires(see below); 

    proxy& operator=(nullptr_t) noexcept(see below) requires(see below); 

    proxy& operator=(const proxy& rhs) noexcept(see below) requires(see below); 

    proxy& operator=(proxy&& rhs) noexcept(see below) requires(see below); 

    template <class P> 

      proxy& operator=(P&& ptr) noexcept(see below) requires(see below); 

    ~proxy() noexcept(see below) requires(see below); 

 

    bool has_value() const noexcept; 

    see below reflect() const noexcept requires(see below); 

    void reset() noexcept(see below) requires(see below); 

    void swap(proxy& rhs) noexcept(see below) requires(see below); 

    template <class P, class... Args> 

      P& emplace(Args&&... args) noexcept(see below) requires(see below); 

    template <class P, class U, class... Args> 

      P& emplace(initializer_list<U> il, Args&&... args) 

          noexcept(see below) requires(see below); 

 

    template <class D = see below, class... Args> 

      see below invoke(Args&&... args) requires(see below); 

  }; 

} 

 

As the constraint of the class template, the expression inside requires is equivalent to that F meets the 

BasicFacade requirements. 

Any instance of proxy<F> at any given time either proxies a pointer or does not proxy a pointer. When an instance of 

proxy<F> proxies a pointer, it means that an object of some pointer type P, referred to as the proxy's contained value, 

where proxiable<P, F> is true, is allocated within the storage of the proxy object. Implementations are not permitted 

to use additional storage, such as dynamic memory, to allocate its contained value. The contained value shall be allocated 

in a region of the proxy<F> storage suitably aligned for the type P. 

The following constants are defined for exposition only: 

Name Value 

template <class P, class... Args> conditional_t<proxiable<P, F>, 
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HasNothrowPolyConstructor<P, Args...> is_nothrow_constructible<P, Args...>, 

false_type>::value 

template <class P, class... Args> 

HasPolyConstructor<P, Args...> 

conditional_t<proxiable<P, F>, 

is_constructible<P, Args...>, 

false_type>::value 

HasTrivialCopyConstructor F::minimum_copyability == 

constraint_level::trivial 

HasNothrowCopyConstructor F::minimum_copyability >= 

constraint_level::nothrow 

HasCopyConstructor F::minimum_copyability >= 

constraint_level::nontrivial 

HasNothrowMoveConstructor F::minimum_relocatability >= 

constraint_level::nothrow 

HasMoveConstructor F::minimum_relocatability >= 

constraint_level::nontrivial 

HasTrivialDestructor F::minimum_destructibility == 

constraint_level::trivial 

HasNothrowDestructor F::minimum_destructibility >= 

constraint_level::nothrow 

HasDestructor F::minimum_destructibility >= 

constraint_level::nontrivial 

template <class P, class... Args> 

HasNothrowPolyAssignment 

HasNothrowPolyConstructor<P, Args...> && 

HasNothrowDestructor 

template <class P, class... Args> 

HasPolyAssignment 

HasPolyConstructor<P, Args...> && 

HasDestructor 

HasTrivialCopyAssignment HasTrivialCopyConstructor && 

HasTrivialDestructor 

HasNothrowCopyAssignment HasNothrowCopyConstructor && 

HasNothrowDestructor 

HasCopyAssignment HasNothrowCopyAssignment || 

(HasCopyConstructor && HasMoveConstructor 

&& HasDestructor) 

HasNothrowMoveAssignment HasNothrowMoveConstructor && 

HasNothrowDestructor 

HasMoveAssignment HasMoveConstructor && HasDestructor 

 

5.3.2.2 Construction and destruction 

proxy() noexcept; 

proxy(nullptr_t) noexcept; 

Postconditions: *this does not contain a value. 

Remarks: No contained value is initialized. 
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proxy(const proxy& rhs) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasCopyConstructor. 

Effects: If rhs.has_value() is false, constructs an object that has no value. Otherwise, equivalent to 

proxy(in_place_type<P>, rhs.cast<P>()) where P is the type of the contained value of rhs. 

Postconditions: has_value() == rhs.has_value(). 

Throws: Any exception thrown by the selected constructor of P. 

Remarks: The expression inside noexcept is equivalent to HasNothrowCopyConstructor. Specifically, 

- if the constraints are not satisfied, the constructor is deleted, or 

- if HasTrivialCopyConstructor is true, the constructor is trivial. 

 

proxy(proxy&& rhs) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasMoveConstructor. 

Effects: If rhs.has_value() is false, constructs an object that has no value. Otherwise, equivalent to 

(proxy(in_place_type<P>, move(rhs.cast<P>())), rhs.reset()), where P is the type of the 

contained value of rhs. 

Postconditions: rhs does not contain a value. 

Throws: Any exception thrown by the selected constructor of P. 

Remarks: The expression inside noexcept is equivalent to HasNothrowMoveConstructor. If the constraints 

are not satisfied, the constructor is deleted. 

 

template <class P> 

  proxy(P&& ptr) noexcept(see below) requires(see below); 

Let VP be decay_t<P>. 

Constraints: The expression inside requires is equivalent to HasPolyConstructor<VP, P>. 

Effects: Initializes the contained value as if direct-initializing an object of type VP with forward<P>(ptr). 

Postconditions: *this contains a value of type VP. 

Throws: Any exception thrown by the selected constructor of VP. 

Remarks: The expression inside noexcept is equivalent to HasNothrowPolyConstructor<VP, P>. 

 

template <class P, class... Args> 

  explicit proxy(in_place_type_t<P>, Args&&... args) 

      noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasPolyConstructor<P, Args...>. 

Effects: Initializes the contained value as if direct-non-list-initializing an object of type P with the arguments 

forward<Args>(args).... 

Postconditions: *this contains a value of type P. 

Throws: Any exception thrown by the selected constructor of P. 

Remarks: The expression inside noexcept is equivalent to HasNothrowPolyConstructor <P, 

Args...>. 

 

template <class P, class U, class... Args> 

  explicit proxy(in_place_type_t<P>, initializer_list<U> il, Args&&... args) 

      noexcept(see below) requires(see below); 
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Constraints: The expression inside requires is equivalent to HasPolyConstructor<P, 

initializer_list<U>&, Args...>. 

Effects: Initializes the contained value as if direct-non-list-initializing an object of type P with the arguments il, 

forward<Args>(args).... 

Postconditions: *this contains a value of type P. 

Throws: Any exception thrown by the selected constructor of P. 

Remarks: The expression inside noexcept is equivalent to HasNothrowPolyConstructor<P, 

initializer_list<U>&, Args...>. 

 

~proxy() noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasDestructor. 

Effects: As if by reset(). 

Throws: Any exception thrown by the destructor of the contained value. 

Remarks: The expression inside noexcept is equivalent to HasNothrowDestructor. Specifically, 

- if the constraints are not satisfied, the destructor is deleted, or 

- if HasTrivialDestructor is true, the destructor is trivial. 

5.3.2.3 Assignment 

proxy& operator=(nullptr_t) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasDestructor. 

Effects: If has_value() is true, destroys the contained value. 

Postconditions: *this does not contain a value. 

Remarks: The expression inside noexcept is equivalent to HasNothrowDestructor. 

 

proxy& operator=(const proxy& rhs) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasCopyAssignment. 

Effects: As if by proxy(rhs).swap(*this). No effects if an exception is thrown. 

Returns: *this. 

Throws: Any exception thrown during copy construction, relocation, or destruction of the contained value. 

Remarks: The expression inside noexcept is equivalent to HasNothrowCopyAssignment. Specifically, 

- if the constraints are not satisfied, the assignment operator is deleted, or 

- if HasTrivialCopyAssignment is true, the assignment operator is trivial. 

 

proxy& operator=(proxy&& rhs) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasMoveAssignment. 

Effects: As if by proxy(move(rhs)).swap(*this). 

Returns: *this. 

Throws: Any exception thrown during relocation, destruction, or swap of the contained value. 

Remarks: The expression inside noexcept is equivalent to HasNothrowMoveAssignment. If the constraints 

are not satisfied, the assignment operator is deleted. 

 

template <class P> 

  proxy& operator=(P&& ptr) noexcept(see below) requires(see below); 
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Let VP be decay_t<P>. 

Constraints: The expression inside requires is equivalent to HasPolyAssignment<VP, P>. 

Effects: As if by proxy(forward<P>(p)).swap(*this). 

Returns: *this. 

Throws: Any exception thrown during construction, destruction, or swap of the contained value. 

Remarks: The expression inside noexcept is equivalent to HasNothrowPolyAssignment<VP, P>. 

 

template <class P, class... Args> 

  P& emplace(Args&&... args) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasPolyAssignment<P, Args...>. 

Effects: Calls *this = nullptr. Then initializes the contained value as if direct-non-list-initializing an object of 

type P with the arguments std::forward<Args>(args).... 

Postconditions: *this contains a value of type P. 

Returns: A reference to the new contained value. 

Throws: Any exception thrown during the destruction of the previous contained value or by the selected constructor 

of P. 

Remarks: The expression inside noexcept is equivalent to HasNothrowPolyAssignment<P, Args...>. 

If an exception is thrown during the call to P's constructor, *this does not contain a value, and the previous 

contained value (if any) has been destroyed. 

 

template <class P, class U, class... Args> 

  P& emplace(initializer_list<U> il, Args&&... args) 

      noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasPolyAssignment<P, 

initializer_list<U>&, Args...>. 

Effects: Calls *this = nullptr. Then initializes the contained value as if direct-non-list-initializing an object of 

type P with the arguments il, std::forward<Args>(args).... 

Postconditions: *this contains a value of type P. 

Returns: A reference to the new contained value. 

Throws: Any exception thrown during the destruction of the previous contained value or by the selected constructor 

of P. 

Remarks: The expression inside noexcept is equivalent to HasNothrowPolyAssignment<P, 

initializer_list<U>&, Args...>. If an exception is thrown during the call to P's constructor, *this 

does not contain a value, and the previous contained value (if any) has been destroyed. 

5.3.2.4 Swap 

void swap(proxy& rhs) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasMoveConstructor. 

Effects: See the table below: 

 *this contains a value *this does not contain a value 

rhs contains a value Swap the contained values of *this and 

rhs with a temporary storage. If an 

Equivalent to (*this = move(rhs)); 

post condition is that *this contains a 
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exception is thrown, each of *this and 

rhs is in a valid state with unspecified 

value. 

value and rhs does not contain a value. 

rhs does not contain 

a value 

Equivalent to (rhs = move(*this)); 

post condition is that *this does not 

contain a value and rhs contains a value. 

no effect 

 

Remarks: The expression inside noexcept is equivalent to HasNothrowMoveConstructor. 

5.3.2.5 Observers 

bool has_value() const noexcept; 

Returns: true if and only if *this contains a value. 

 

see below reflect() const noexcept requires(see below); 

Constraints: The expression inside requires is equivalent to !is_void_v<typename 

F::reflection_type>. 

Return type: const typename F::reflection_type&. 

Returns: A const reference of typename F::reflection_type constructed from in_place_type_t<P> 

and has static storage duration, where P is the type of the contained value. 

Remarks: If *this does not contain a value, the behavior is undefined. 

5.3.2.6 Modifiers 

void reset() noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasDestructor. 

Effects: If *this contains a value, destroys the contained value; otherwise, no effect. 

Postconditions: *this does not contain a value. 

Remarks: The expression inside noexcept is equivalent to HasNothrowDestructor. If an exception is 

thrown during the call to P's destructor, *this is in a valid state with unspecified value. 

5.3.2.7 Invocation 

template <class D = see below, class... Args> 

  see below invoke(Args&&... args) requires(see below); 

Constraints: The expression inside requires is equivalent to that F meets the Facade requirements, and D is a valid 

dispatch defined by F, and each of the argument type in Args... is convertible to the argument types defined by 

typename D::argument_types, respectively. 

Preconditions: *this contains a value. 

Effects: Equivalent to return D{}(*cast<P>(), static_cast<_Args>(args)...), where P is the 

type of the contained value, _Args... are the argument types defined by D. 

Throws: Any exception thrown from the equivalent expression. 
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Remarks: The default type of D applies if and only if F defines exactly one dispatch. If *this does not contain a 

value, the behavior is undefined. 

5.3.3 Creation 

template <class F, class T, class... Args> 

  proxy<F> make_proxy(Args&&... args); 

Effects: Creates an instance of proxy<F> with an unspecified pointer type of T, where the value of T is 

direct-non-list-initialized with the arguments forward<Args>(args).... 

Remarks: Implementations are not permitted to use additional storage, such as dynamic memory, to allocate the 

value of T if the following conditions apply: 

- sizeof(T) <= F::maximum_size is true, and 

- alignof(T) <= F::maximum_alignment is true, and 

- T meets the minimum copyability requirements defined by F::minimum_copyability, and 

- T meets the minimum relocatability requirements defined by F::minimum_relocatability, and 

- T meets the minimum destructibility requirements defined by F::minimum_destructibility, and 

 

template <class F, class T, class U, class... Args> 

  proxy<F> make_proxy(initializer_list<U> il, Args&&... args); 

Effects: Equivalent to return make_proxy<F, T>(il, forward<Args>(args)...). 

 

template <class F, class T> 

  proxy<F> make_proxy(T&& value); 

Effects: Equivalent to return make_proxy<F, decay_t<T>>(forward<T>(value)). 

5.3.4 Specialized algorithms 

template <class F> 

  void swap(proxy<F>& a, proxy<F>& b) noexcept(see below); 

Effects: Equivalent to a.swap(b). 

Remarks: The expression inside noexcept is equivalent to (noexcept(a.swap(b))). 
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7 Summary 

The "proxy" library is an extendable and efficient solution for polymorphism. We believe this feature will largely 

improve the usability of the C++ programming language, especially in large-scale programming. 


