
ISO/IEC JTC1 SC22 WG21 P2416R1
Author: Jens Maurer
Target audience: LWG
2021-12-15

P2416R1: Presentation of requirements in the
standard library

Introduction

This paper suggests a change in presentation of the requirements tables in the standard library.

The existing tables are awkward and frequently do not use established best practice for presenting
requirements.

The following pages present the container and regular expression requirements in a new format for comment.
No semantic changes are intended.

Changes vs. R0

• LWG feedback: Presented member typedef requirements with typename, but otherwise the same as
member function requirements.

• Add "Result" to [structure.specification].

Acknowledgements

Thanks to the project (co)editors for review and assistance.

P2416R1: Presentation of requirements in the standard library file:///home/jmaurer/C++/ISO/2021/d2416r1-head.html

1 of 1 15/12/2021, 23.50

© ISO/IEC Dxxxx

—(3.1) Constraints: the conditions for the function’s participation in overload resolution (12.2).
[Note 1 : Failure to meet such a condition results in the function’s silent non-viability. —end note]
[Example 1 : An implementation can express such a condition via a constraint-expression (13.5.3). —end
example]

—(3.2) Mandates: the conditions that, if not met, render the program ill-formed.
[Example 2 : An implementation can express such a condition via the constant-expression in a static_assert-
declaration (9.1). If the diagnostic is to be emitted only after the function has been selected by overload
resolution, an implementation can express such a condition via a constraint-expression (13.5.3) and also define
the function as deleted. —end example]

—(3.3) Preconditions: the conditions that the function assumes to hold whenever it is called; violation of any
preconditions results in undefined behavior.

—(3.4) Effects: the actions performed by the function.
—(3.5) Synchronization: the synchronization operations (6.9.2) applicable to the function.
—(3.6) Postconditions: the conditions (sometimes termed observable results) established by the function.
—(3.7) Result: for a typename-specifier , a description of the named type; for an expression, a description of the

type and value category of the expression.
—(3.8) Returns: a description of the value(s) returned by the function.
—(3.9) Throws: any exceptions thrown by the function, and the conditions that would cause the exception.
—(3.10) Complexity: the time and/or space complexity of the function.
—(3.11) Remarks: additional semantic constraints on the function.
—(3.12) Error conditions: the error conditions for error codes reported by the function.

4 Whenever the Effects element specifies that the semantics of some function F are Equivalent to some code
sequence, then the various elements are interpreted as follows. If F’s semantics specifies any Constraints or
Mandates elements, then those requirements are logically imposed prior to the equivalent-to semantics. Next,
the semantics of the code sequence are determined by the Constraints, Mandates, Preconditions, Effects,
Synchronization, Postconditions, Returns, Throws, Complexity, Remarks, and Error conditions specified
for the function invocations contained in the code sequence. The value returned from F is specified by
F’s Returns element, or if F has no Returns element, a non-void return from F is specified by the return
statements (8.7.4) in the code sequence. If F’s semantics contains a Throws, Postconditions, or Complexity
element, then that supersedes any occurrences of that element in the code sequence.

5 For non-reserved replacement and handler functions, Clause 17 specifies two behaviors for the functions in
question: their required and default behavior. The default behavior describes a function definition provided
by the implementation. The required behavior describes the semantics of a function definition provided by
either the implementation or a C++ program. Where no distinction is explicitly made in the description, the
behavior described is the required behavior.

6 If the formulation of a complexity requirement calls for a negative number of operations, the actual requirement
is zero operations.147

7 Complexity requirements specified in the library clauses are upper bounds, and implementations that provide
better complexity guarantees meet the requirements.

8 Error conditions specify conditions where a function may fail. The conditions are listed, together with a
suitable explanation, as the enum class errc constants (19.5).

16.3.2.5 C library [structure.see.also]
1 Paragraphs labeled “See also” contain cross-references to the relevant portions of other standards (Clause

2).

16.3.3 Other conventions [conventions]
16.3.3.1 General [conventions.general]

1 Subclause 16.3.3 describes several editorial conventions used to describe the contents of the C++ standard
library. These conventions are for describing implementation-defined types (16.3.3.3), and member functions
(16.3.3.4).
147) This simplifies the presentation of complexity requirements in some cases.

§ 16.3.3.1 468

© ISO/IEC Dxxxx

22 Containers library [containers]
22.1 General [containers.general]

1 This Clause describes components that C++ programs may use to organize collections of information.
2 The following subclauses describe container requirements, and components for sequence containers and

associative containers, as summarized in Table 76.

Table 76: Containers library summary [tab:containers.summary]

Subclause Header
22.2 Requirements
22.3 Sequence containers <array>, <deque>, <forward_list>, <list>, <vector>
22.4 Associative containers <map>, <set>
22.5 Unordered associative containers <unordered_map>, <unordered_set>
22.6 Container adaptors <queue>, <stack>
22.7 Views

22.2 Requirements [container.requirements]
22.2.1 Preamble [container.requirements.pre]

1 Containers are objects that store other objects. They control allocation and deallocation of these objects
through constructors, destructors, insert and erase operations.

2 All of the complexity requirements in this Clause are stated solely in terms of the number of operations on
the contained objects.
[Example 1 : The copy constructor of type vector<vector<int>> has linear complexity, even though the complexity
of copying each contained vector<int> is itself linear. —end example]

3 Allocator-aware containers (22.2.2.5) other than basic_string construct elements using the function
allocator_traits<allocator_type>::rebind_traits<U>::construct and destroy elements using the
function allocator_traits<allocator_type>::rebind_traits<U>::destroy (20.10.8.3), where U is ei-
ther allocator_type::value_type or an internal type used by the container. These functions are called
only for the container’s element type, not for internal types used by the container.
[Note 1 : This means, for example, that a node-based container would need to construct nodes containing aligned
buffers and call construct to place the element into the buffer. —end note]

22.2.2 General containers [container.gen.reqmts]
22.2.2.1 General [container.requirements.general]

1 In subclause 22.2.2,
—(1.1) X denotes a container class containing objects of type T,
—(1.2) a and b denote values of type X,
—(1.3) i and j denote values of type (possibly const) X::iterator,
—(1.4) u denotes an identifier,
—(1.5) r denotes a non-const value of type X, and
—(1.6) rv denotes a non-const rvalue of type X.

22.2.2.2 Containers [container.reqmts]
1 A type X meets the container requirements if the following types, statements, and expressions are well-formed

and have the specified semantics.

typename X::value_type

2 Result: T

§ 22.2.2.2 816

© ISO/IEC Dxxxx

3 Preconditions: T is Cpp17Erasable from X (see 22.2.2.5, below).

typename X::reference

4 Result: T&

typename X::const_reference

5 Result: const T&

typename X::iterator

6 Result: A type that meets the forward iterator requirements (23.3.5.5) with value type T. The type
X::iterator is convertible to X::const_iterator.

typename X::const_iterator

7 Result: A type that meets the requirements of a constant iterator and those of a forward iterator with
value type T.

typename X::difference_type

8 Result: A signed integer type, identical to the difference type of X::iterator and X::const_iterator.

typename X::size_type

9 Result: An unsigned integer type that can represent any non-negative value of X::difference_type.

X u;
X u = X();

10 Postconditions: u.empty()
11 Complexity: Constant.

X u(a);
X u = a;

12 Preconditions: T is Cpp17CopyInsertable into X (see below).
13 Postconditions: u == a
14 Complexity: Linear.

X u(rv);
X u = rv;

15 Postconditions: u is equal to the value that rv had before this construction.
16 Complexity: Linear for array and constant for all other standard containers.

a = rv

17 Result: An lvalue of type X.
18 Effects: All existing elements of a are either move assigned to or destroyed.
19 Postconditions: If a and rv do not refer to the same object, a is equal to the value that rv had before

this assignment.
20 Complexity: Linear.

a.~X()

21 Result: void
22 Effects: Destroys every element of a; any memory obtained is deallocated.
23 Complexity: Linear.

a.begin()

24 Result: A prvalue of type iterator; const_iterator for constant a.
25 Value: An iterator referring to the first element in the container.
26 Complexity: Constant.

§ 22.2.2.2 817

© ISO/IEC Dxxxx

a.end()

27 Result: A prvalue of type iterator; const_iterator for constant a.
28 Value: An iterator which is the past-the-end value for the container.
29 Complexity: Constant.

a.cbegin()

30 Result: A prvalue of type const_iterator.
31 Value: const_cast<X const&>(a).begin()
32 Complexity: Constant.

a.cend()

33 Result: A prvalue of type const_iterator.
34 Value: const_cast<X const&>(a).end()
35 Complexity: Constant.

i <=> j

36 Result: A prvalue of type strong_ordering.
37 Constraints: X::iterator meets the random access iterator requirements.
38 Complexity: Constant.

a == b

39 Preconditions: T meets the Cpp17EqualityComparable requirements.
40 Result: Convertible to bool.
41 Value: equal(a.begin(), a.end(), b.begin(), b.end())

[Note 1 : The algorithm equal is defined in 25.6.11. —end note]
42 Complexity: Constant if a.size() != b.size(), linear otherwise.
43 Remarks: == is an equivalence relation.

a != b

44 Effects: Equivalent to !(a == b).

a.swap(b)

45 Result: void
46 Effects: Exchanges the contents of a and b.
47 Complexity: Linear for array and constant for all other standard containers.

swap(a, b)

48 Effects: Equivalent to a.swap(b).

r = a

49 Result: An lvalue of type X.
50 Postconditions: r == a.
51 Complexity: Linear.

a.size()

52 Result: A prvalue of type size_type.
53 Value: distance(a.begin(), a.end()), i.e. the number of elements in the container.
54 Complexity: Constant.
55 Remarks: The number of elements is defined by the rules of constructors, inserts, and erases.

§ 22.2.2.2 818

© ISO/IEC Dxxxx

a.max_size()

56 Result: A prvalue of type size_type.
57 Returns: distance(begin(), end()) for the largest possible container.

Complexity: Constant.

a.empty()

58 Result: Convertible to bool.
59 Value: a.begin() == a.end()
60 Complexity: Constant.
61 Remarks: If the container is empty, then a.empty() is true.
62 In the expressions

i == j
i != j
i < j
i <= j
i >= j
i > j
i <=> j
i - j

where i and j denote objects of a container’s iterator type, either or both may be replaced by an object of
the container’s const_iterator type referring to the same element with no change in semantics.

63 Unless otherwise specified, all containers defined in this Clause obtain memory using an allocator (see 16.4.4.6).
[Note 2 : In particular, containers and iterators do not store references to allocated elements other than through the
allocator’s pointer type, i.e., as objects of type P or pointer_traits<P>::template rebind<unspecified >, where P
is allocator_traits<allocator_type>::pointer. —end note]

Copy constructors for these container types obtain an allocator by calling allocator_traits<allocator_-
type>::select_on_container_copy_construction on the allocator belonging to the container being copied.
Move constructors obtain an allocator by move construction from the allocator belonging to the container
being moved. Such move construction of the allocator shall not exit via an exception. All other constructors
for these container types take a const allocator_type& argument.
[Note 3 : If an invocation of a constructor uses the default value of an optional allocator argument, then the allocator
type must support value-initialization. —end note]

A copy of this allocator is used for any memory allocation and element construction performed, by these
constructors and by all member functions, during the lifetime of each container object or until the allocator is
replaced. The allocator may be replaced only via assignment or swap(). Allocator replacement is performed
by copy assignment, move assignment, or swapping of the allocator only if
—(63.1) allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value,
—(63.2) allocator_traits<allocator_type>::propagate_on_container_move_assignment::value, or
—(63.3) allocator_traits<allocator_type>::propagate_on_container_swap::value

is true within the implementation of the corresponding container operation. In all container types defined in
this Clause, the member get_allocator() returns a copy of the allocator used to construct the container or,
if that allocator has been replaced, a copy of the most recent replacement.

64 The expression a.swap(b), for containers a and b of a standard container type other than array, shall
exchange the values of a and b without invoking any move, copy, or swap operations on the individual container
elements. Lvalues of any Compare, Pred, or Hash types belonging to a and b shall be swappable and shall be
exchanged by calling swap as described in 16.4.4.3. If allocator_traits<allocator_type>::propagate_-
on_container_swap::value is true, then lvalues of type allocator_type shall be swappable and the
allocators of a and b shall also be exchanged by calling swap as described in 16.4.4.3. Otherwise, the
allocators shall not be swapped, and the behavior is undefined unless a.get_allocator() == b.get_-
allocator(). Every iterator referring to an element in one container before the swap shall refer to the same
element in the other container after the swap. It is unspecified whether an iterator with value a.end() before
the swap will have value b.end() after the swap.

§ 22.2.2.2 819

© ISO/IEC Dxxxx

22.2.2.3 Reversible container requirements [container.rev.reqmts]
1 A type X meets the reversible container requirements if X meets the container requirements, the iterator type

of X belongs to the bidirectional or random access iterator categories (23.3), and the following types and
expressions are well-formed and have the specified semantics.

typename X::reverse_iterator

2 Result: The type reverse_iterator<X::iterator>, an iterator type whose value type is T.

typename X::const_reverse_iterator

3 Result: The type reverse_iterator<X::const_iterator>, a constant iterator type whose value type
is T.

a.rbegin()

4 Result: A prvalue of type reverse_iterator; const_reverse_iterator for constant a.
5 Value: reverse_iterator(end())
6 Complexity: Constant.

a.rend()

7 Result: A prvalue of type reverse_iterator; const_reverse_iterator for constant a.
8 Value: reverse_iterator(begin())
9 Complexity: Constant.

a.crbegin()

10 Result: A prvalue of type const_reverse_iterator.
11 Value: const_cast<X const&>(a).rbegin()
12 Complexity: Constant.

a.crend()

13 Result: A prvalue of type const_reverse_iterator.
14 Value: const_cast<X const&>(a).rend()
15 Complexity: Constant.
16 Unless otherwise specified (see 22.2.7.2, 22.2.8.2, 22.3.8.4, and 22.3.11.5) all container types defined in this

Clause meet the following additional requirements:
—(16.1) if an exception is thrown by an insert() or emplace() function while inserting a single element, that

function has no effects.
—(16.2) if an exception is thrown by a push_back(), push_front(), emplace_back(), or emplace_front()

function, that function has no effects.
—(16.3) no erase(), clear(), pop_back() or pop_front() function throws an exception.
—(16.4) no copy constructor or assignment operator of a returned iterator throws an exception.
—(16.5) no swap() function throws an exception.
—(16.6) no swap() function invalidates any references, pointers, or iterators referring to the elements of the

containers being swapped.
[Note 1 : The end() iterator does not refer to any element, so it can be invalidated. —end note]

17 Unless otherwise specified (either explicitly or by defining a function in terms of other functions), invoking a
container member function or passing a container as an argument to a library function shall not invalidate
iterators to, or change the values of, objects within that container.

18 A contiguous container is a container whose member types iterator and const_iterator meet the
Cpp17RandomAccessIterator requirements (23.3.5.7) and model contiguous_iterator (23.3.4.14).

22.2.2.4 Optional container requirements [container.opt.reqmts]
1 The following operations are provided for some types of containers but not others. Those containers for which

the listed operations are provided shall implement the semantics as described unless otherwise stated. If the

§ 22.2.2.4 820

© ISO/IEC Dxxxx

iterators passed to lexicographical_compare_three_way meet the constexpr iterator requirements (23.3.1)
then the operations described below are implemented by constexpr functions.

a <=> b

2 Result: A prvalue of type synth-three-way-result <X::value_type>.
3 Preconditions: Either <=> is defined for values of type (possibly const) T, or < is defined for values of

type (possibly const) T and < is a total ordering relationship.
4 Value: lexicographical_compare_three_way(a.begin(), a.end(), b.begin(), b.end(),

synth-three-way)
[Note 1 : The algorithm lexicographical_compare_three_way is defined in Clause 25. —end note]

5 Complexity: Linear.

22.2.2.5 Allocator-aware containers [container.alloc.reqmts]
1 All of the containers defined in Clause 22 and in 21.3.3 except array meet the additional requirements of an

allocator-aware container, as described below.
2 Given an allocator type A and given a container type X having a value_type identical to T and an allocator_-

type identical to allocator_traits<A>::rebind_alloc<T> and given an lvalue m of type A, a pointer p of
type T*, an expression v of type (possibly const) T, and an rvalue rv of type T, the following terms are
defined. If X is not allocator-aware or is a specialization of basic_string, the terms below are defined as if
A were allocator<T> — no allocator object needs to be created and user specializations of allocator<T>
are not instantiated:
—(2.1) T is Cpp17DefaultInsertable into X means that the following expression is well-formed:

allocator_traits<A>::construct(m, p)

—(2.2) An element of X is default-inserted if it is initialized by evaluation of the expression
allocator_traits<A>::construct(m, p)

where p is the address of the uninitialized storage for the element allocated within X.
—(2.3) T is Cpp17MoveInsertable into X means that the following expression is well-formed:

allocator_traits<A>::construct(m, p, rv)

and its evaluation causes the following postcondition to hold: The value of *p is equivalent to the value
of rv before the evaluation.
[Note 1 : rv remains a valid object. Its state is unspecified —end note]

—(2.4) T is Cpp17CopyInsertable into X means that, in addition to T being Cpp17MoveInsertable into X, the
following expression is well-formed:

allocator_traits<A>::construct(m, p, v)

and its evaluation causes the following postcondition to hold: The value of v is unchanged and is
equivalent to *p.

—(2.5) T is Cpp17EmplaceConstructible into X from args, for zero or more arguments args, means that the
following expression is well-formed:

allocator_traits<A>::construct(m, p, args)

—(2.6) T is Cpp17Erasable from X means that the following expression is well-formed:
allocator_traits<A>::destroy(m, p)

[Note 2 : A container calls allocator_traits<A>::construct(m, p, args) to construct an element at p using
args, with m == get_allocator(). The default construct in allocator will call ::new((void*)p) T(args), but
specialized allocators can choose a different definition. —end note]

3 In this subclause,
—(3.1) X denotes an allocator-aware container class with a value_type of T using an allocator of type A,
—(3.2) u denotes a variable,
—(3.3) a and b denote non-const lvalues of type X,
—(3.4) c denotes an lvalue of type const X,

§ 22.2.2.5 821

© ISO/IEC Dxxxx

—(3.5) t denotes an lvalue or a const rvalue of type X,
—(3.6) rv denotes a non-const rvalue of type X, and
—(3.7) m is a value of type A.

A type X meets the allocator-aware container requirements if X meets the container requirements and the
following types, statements, and expressions are well-formed and have the specified semantics.

typename X::allocator_type

4 Result: A
5 Preconditions: allocator_type::value_type is the same as X::value_type.

c.get_allocator()

6 Result: A
7 Complexity: Constant.

X u;
X u = X();

8 Preconditions: A meets the Cpp17DefaultConstructible requirements.
9 Postconditions: u.empty() returns true, u.get_allocator() == A().

10 Complexity: Constant.

X u(m);

11 Postconditions: u.empty() returns true, u.get_allocator() == m.
12 Complexity: Constant.

X u(t, m);

13 Preconditions: T is Cpp17CopyInsertable into X.
14 Postconditions: u == t, u.get_allocator() == m
15 Complexity: Linear.

X u(rv);

16 Postconditions: u has the same elements as rv had before this construction; the value of u.get_-
allocator() is the same as the value of rv.get_allocator() before this construction.

17 Complexity: Constant.

X u(rv, m);

18 Preconditions: T is Cpp17MoveInsertable into X.
19 Postconditions: u has the same elements, or copies of the elements, that rv had before this construction,

u.get_allocator() == m.
20 Complexity: Constant if m == rv.get_allocator(), otherwise linear.

a = t

21 Result: An lvalue of type X.
22 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
23 Postconditions: a == t is true.
24 Complexity: Linear.

a = rv

25 Result: An lvalue of type X.
26 Preconditions: If allocator_traits<allocator_type>::propagate_on_container_move_assign-

ment::value is false, T is Cpp17MoveInsertable into X and Cpp17MoveAssignable.
27 Effects: All existing elements of a are either move assigned to or destroyed.

§ 22.2.2.5 822

© ISO/IEC Dxxxx

28 Postconditions: If a and rv do not refer to the same object, a is equal to the value that rv had before
this assignment.

29 Complexity: Linear.

a.swap(b)

30 Result: void
31 Effects: Exchanges the contents of a and b.
32 Complexity: Constant.
33 The behavior of certain container member functions and deduction guides depends on whether types qualify

as input iterators or allocators. The extent to which an implementation determines that a type cannot be an
input iterator is unspecified, except that as a minimum integral types shall not qualify as input iterators.
Likewise, the extent to which an implementation determines that a type cannot be an allocator is unspecified,
except that as a minimum a type A shall not qualify as an allocator unless it meets both of the following
conditions:
—(33.1) The qualified-id A::value_type is valid and denotes a type (13.10.3).
—(33.2) The expression declval<A&>().allocate(size_t{}) is well-formed when treated as an unevaluated

operand.

22.2.3 Container data races [container.requirements.dataraces]
1 For purposes of avoiding data races (16.4.6.10), implementations shall consider the following functions to be

const: begin, end, rbegin, rend, front, back, data, find, lower_bound, upper_bound, equal_range, at
and, except in associative or unordered associative containers, operator[].

2 Notwithstanding 16.4.6.10, implementations are required to avoid data races when the contents of the contained
object in different elements in the same container, excepting vector<bool>, are modified concurrently.

3 [Note 1 : For a vector<int> x with a size greater than one, x[1] = 5 and *x.begin() = 10 can be executed
concurrently without a data race, but x[0] = 5 and *x.begin() = 10 executed concurrently can result in a data race.
As an exception to the general rule, for a vector<bool> y, y[0] = true can race with y[1] = true. —end note]

22.2.4 Sequence containers [sequence.reqmts]
1 A sequence container organizes a finite set of objects, all of the same type, into a strictly linear arrangement.

The library provides four basic kinds of sequence containers: vector, forward_list, list, and deque. In
addition, array is provided as a sequence container which provides limited sequence operations because it
has a fixed number of elements. The library also provides container adaptors that make it easy to construct
abstract data types, such as stacks or queues, out of the basic sequence container kinds (or out of other
kinds of sequence containers that the user defines).

2 [Note 1 : The sequence containers offer the programmer different complexity trade-offs. vector is appropriate in most
circumstances. array has a fixed size known during translation. list or forward_list support frequent insertions
and deletions from the middle of the sequence. deque supports efficient insertions and deletions taking place at the
beginning or at the end of the sequence. When choosing a container, remember vector is best; leave a comment to
explain if you choose from the rest! —end note]

3 In this subclause,
—(3.1) X denotes a sequence container class,
—(3.2) a denotes a value of type X containing elements of type T,
—(3.3) u denotes the name of a variable being declared,
—(3.4) A denotes X::allocator_type if the qualified-id X::allocator_type is valid and denotes a type

(13.10.3) and allocator<T> if it doesn’t,
—(3.5) i and j denote iterators that meet the Cpp17InputIterator requirements and refer to elements implicitly

convertible to value_type,
—(3.6) [i, j) denotes a valid range,
—(3.7) il designates an object of type initializer_list<value_type>,
—(3.8) n denotes a value of type X::size_type,
—(3.9) p denotes a valid constant iterator to a,

§ 22.2.4 823

© ISO/IEC Dxxxx

—(3.10) q denotes a valid dereferenceable constant iterator to a,
—(3.11) [q1, q2) denotes a valid range of constant iterators in a,
—(3.12) t denotes an lvalue or a const rvalue of X::value_type, and
—(3.13) rv denotes a non-const rvalue of X::value_type.
—(3.14) Args denotes a template parameter pack;
—(3.15) args denotes a function parameter pack with the pattern Args&&.

4 The complexities of the expressions are sequence dependent.
5 A type X meets the sequence container requirements if X meets the container requirements and the following

statements and expressions are well-formed and have the specified semantics.

X u(n, t);

6 Preconditions: T is Cpp17CopyInsertable into X.
7 Effects: Constructs a sequence container with n copies of t.
8 Postconditions: distance(u.begin(), u.end()) == n is true.

X u(i, j);

9 Preconditions: T is Cpp17EmplaceConstructible into X from *i. For vector, if the iterator does not
meet the Cpp17ForwardIterator requirements (23.3.5.5), T is also Cpp17MoveInsertable into X.

10 Effects: Constructs a sequence container equal to the range [i, j). Each iterator in the range [i, j)
is dereferenced exactly once.

11 Postconditions: distance(u.begin(), u.end()) == distance(i, j) is true.

X(il)

12 Effects: Equivalent to X(il.begin(), il.end()).

a = il

13 Result: An lvalue of type X.
14 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
15 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either

assigned to or destroyed.
16 Returns: *this.

a.emplace(p, args)

17 Result: A prvalue of type iterator.
18 Preconditions: T is Cpp17EmplaceConstructible into X from args. For vector and deque, T is also

Cpp17MoveInsertable into X and Cpp17MoveAssignable.
19 Effects: Inserts an object of type T constructed with std::forward<Args>(args)... before p.

[Note 2 : args can directly or indirectly refer to a value in a. —end note]
20 Returns: An iterator that points to the new element constructed from args into a.

a.insert(p, t)

21 Result: A prvalue of type iterator.
22 Preconditions: T is Cpp17CopyInsertable into X. For vector and deque, T is also Cpp17CopyAssignable.
23 Effects: Inserts a copy of t before p.
24 Returns: An iterator that points to the copy of t inserted into a.

a.insert(p, rv)

25 Result: A prvalue of type iterator.
26 Preconditions: T is Cpp17MoveInsertable into X. For vector and deque, T is also Cpp17MoveAssignable.
27 Effects: Inserts a copy of rv before p.

§ 22.2.4 824

© ISO/IEC Dxxxx

28 Returns: An iterator that points to the copy of rv inserted into a.

a.insert(p, n, t)

29 Result: A prvalue of type iterator.
30 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
31 Effects: Inserts n copies of t before p.
32 Returns: An iterator that points to the copy of the first element inserted into a, or p if n == 0.

a.insert(p, i, j)

33 Result: A prvalue of type iterator.
34 Preconditions: T is Cpp17EmplaceConstructible into X from *i. For vector and deque, T is also

Cpp17MoveInsertable into X, Cpp17MoveConstructible, Cpp17MoveAssignable, and swappable (16.4.4.3).
Neither i nor j are iterators into a.

35 Effects: Inserts copies of elements in [i, j) before p. Each iterator in the range [i, j) shall be
dereferenced exactly once.

36 Returns: An iterator that points to the copy of the first element inserted into a, or p if i == j.

a.insert(p, il)

37 Effects: Equivalent to a.insert(p, il.begin(), il.end()).

a.erase(q)

38 Result: A prvalue of type iterator.
39 Preconditions: For vector and deque, T is Cpp17MoveAssignable.
40 Effects: Erases the element pointed to by q.
41 Returns: An iterator that points to the element immediately following q prior to the element being

erased. If no such element exists, a.end() is returned.

a.erase(q1, q2)

42 Result: A prvalue of type iterator.
43 Preconditions: For vector and deque, T is Cpp17MoveAssignable.
44 Effects: Erases the elements in the range [q1, q2).
45 Returns: An iterator that points to the element pointed to by q2 prior to any elements being erased. If

no such element exists, a.end() is returned.

a.clear()

46 Result: void
47 Effects: Destroys all elements in a. Invalidates all references, pointers, and iterators referring to the

elements of a and may invalidate the past-the-end iterator.
48 Postconditions: a.empty() is true.
49 Complexity: Linear.

a.assign(i, j)

50 Result: void
51 Preconditions: T is Cpp17EmplaceConstructible into X from *i and assignable from *i. For vector, if

the iterator does not meet the forward iterator requirements (23.3.5.5), T is also Cpp17MoveInsertable
into X. Neither i nor j are iterators into a.

52 Effects: Replaces elements in a with a copy of [i, j). Invalidates all references, pointers and iterators
referring to the elements of a. For vector and deque, also invalidates the past-the-end iterator. Each
iterator in the range [i, j) shall be dereferenced exactly once.

a.assign(il)

53 Effects: Equivalent to a.assign(il.begin(), il.end()).

§ 22.2.4 825

© ISO/IEC Dxxxx

a.assign(n, t)

54 Result: void
55 Preconditions: T is Cpp17CopyInsertable into X and Cpp17CopyAssignable. t is not a reference into a.
56 Effects: Replaces elements in a with n copies of t. Invalidates all references, pointers and iterators

referring to the elements of a. For vector and deque, also invalidates the past-the-end iterator.
57 For every sequence container defined in this Clause and in Clause 21:

—(57.1) If the constructor
template<class InputIterator>

X(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type());

is called with a type InputIterator that does not qualify as an input iterator, then the constructor
shall not participate in overload resolution.

—(57.2) If the member functions of the forms:
template<class InputIterator>

return-type F(const_iterator p,
InputIterator first, InputIterator last); // such as insert

template<class InputIterator>
return-type F(InputIterator first, InputIterator last); // such as append, assign

template<class InputIterator>
return-type F(const_iterator i1, const_iterator i2,

InputIterator first, InputIterator last); // such as replace

are called with a type InputIterator that does not qualify as an input iterator, then these functions
shall not participate in overload resolution.

—(57.3) A deduction guide for a sequence container shall not participate in overload resolution if it has an
InputIterator template parameter and a type that does not qualify as an input iterator is deduced
for that parameter, or if it has an Allocator template parameter and a type that does not qualify as
an allocator is deduced for that parameter.

58 The following operations are provided for some types of sequence containers but not others. An implementation
shall implement them so as to take amortized constant time.

a.front()

59 Result: reference; const_reference for constant a.
60 Returns: *a.begin()
61 Remarks: Required for basic_string, array, deque, forward_list, list, and vector.

a.back()

62 Effects: Equivalent to:
auto tmp = a.end();
--tmp;
return *tmp;

63 Remarks: Required for basic_string, array, deque, list, and vector.

a.emplace_front(args)

64 Result: reference
65 Preconditions: T is Cpp17EmplaceConstructible into X from args.
66 Effects: Prepends an object of type T constructed with std::forward<Args>(args)....
67 Returns: a.front().
68 Remarks: Required for deque, forward_list, and list.

a.emplace_back(args)

69 Result: reference

§ 22.2.4 826

© ISO/IEC Dxxxx

70 Preconditions: T is Cpp17EmplaceConstructible into X from args. For vector, T is also Cpp17MoveIn-
sertable into X.

71 Effects: Appends an object of type T constructed with std::forward<Args>(args)....
72 Returns: a.back().
73 Remarks: Required for deque, list, and vector.

a.push_front(t)

74 Result: void
75 Preconditions: T is Cpp17CopyInsertable into X.
76 Effects: Prepends a copy of t.
77 Remarks: Required for deque, forward_list, and list.

a.push_front(rv)

78 Result: void
79 Preconditions: T is Cpp17MoveInsertable into X.
80 Effects: Prepends a copy of rv.
81 Remarks: Required for deque, forward_list, and list.

a.push_back(t)

82 Result: void
83 Preconditions: T is Cpp17CopyInsertable into X.
84 Effects: Appends a copy of t.
85 Remarks: Required for basic_string, deque, list, and vector.

a.push_back(rv)

86 Result: void
87 Preconditions: T is Cpp17MoveInsertable into X.
88 Effects: Appends a copy of rv.
89 Remarks: Required for basic_string, deque, list, and vector.

a.pop_front()

90 Result: void
91 Preconditions: a.empty() is false.
92 Effects: Destroys the first element.
93 Remarks: Required for deque, forward_list, and list.

a.pop_back()

94 Result: void
95 Preconditions: a.empty() is false.
96 Effects: Destroys the last element.
97 Remarks: Required for basic_string, deque, list, and vector.

a[n]

98 Result: reference; const_reference for constant a
99 Returns: *(a.begin() + n)

100 Remarks: Required for basic_string, array, deque, and vector.

a.at(n)

101 Result: reference; const_reference for constant a
102 Returns: *(a.begin() + n)

§ 22.2.4 827

© ISO/IEC Dxxxx

103 Throws: out_of_range if n >= a.size().
104 Remarks: Required for basic_string, array, deque, and vector.

22.2.5 Node handles [container.node]
22.2.5.1 Overview [container.node.overview]

1 A node handle is an object that accepts ownership of a single element from an associative container (22.2.7)
or an unordered associative container (22.2.8). It may be used to transfer that ownership to another container
with compatible nodes. Containers with compatible nodes have the same node handle type. Elements may
be transferred in either direction between container types in the same row of Table 77.

Table 77: Container types with compatible nodes [tab:container.node.compat]

map<K, T, C1, A> map<K, T, C2, A>
map<K, T, C1, A> multimap<K, T, C2, A>
set<K, C1, A> set<K, C2, A>
set<K, C1, A> multiset<K, C2, A>
unordered_map<K, T, H1, E1, A> unordered_map<K, T, H2, E2, A>
unordered_map<K, T, H1, E1, A> unordered_multimap<K, T, H2, E2, A>
unordered_set<K, H1, E1, A> unordered_set<K, H2, E2, A>
unordered_set<K, H1, E1, A> unordered_multiset<K, H2, E2, A>

2 If a node handle is not empty, then it contains an allocator that is equal to the allocator of the container
when the element was extracted. If a node handle is empty, it contains no allocator.

3 Class node-handle is for exposition only.
4 If a user-defined specialization of pair exists for pair<const Key, T> or pair<Key, T>, where Key is the

container’s key_type and T is the container’s mapped_type, the behavior of operations involving node handles
is undefined.

template<unspecified>
class node-handle {
public:

// These type declarations are described in 22.2.7 and 22.2.8.
using value_type = see below; // not present for map containers
using key_type = see below; // not present for set containers
using mapped_type = see below; // not present for set containers
using allocator_type = see below;

private:
using container_node_type = unspecified; // exposition only
using ator_traits = allocator_traits<allocator_type>; // exposition only

typename ator_traits::template
rebind_traits<container_node_type>::pointer ptr_; // exposition only

optional<allocator_type> alloc_; // exposition only

public:
// 22.2.5.2, constructors, copy, and assignment
constexpr node-handle() noexcept : ptr_(), alloc_() {}
node-handle(node-handle&&) noexcept;
node-handle& operator=(node-handle&&);

// 22.2.5.3, destructor
~node-handle();

// 22.2.5.4, observers
value_type& value() const; // not present for map containers
key_type& key() const; // not present for set containers
mapped_type& mapped() const; // not present for set containers

§ 22.2.5.1 828

© ISO/IEC Dxxxx

mapped_type& mapped() const;

8 Preconditions: empty() == false.
9 Returns: A reference to the mapped_type member of the value_type subobject in the container_-

node_type object pointed to by ptr_.
10 Throws: Nothing.

allocator_type get_allocator() const;

11 Preconditions: empty() == false.
12 Returns: *alloc_.
13 Throws: Nothing.

explicit operator bool() const noexcept;

14 Returns: ptr_ != nullptr.

[[nodiscard]] bool empty() const noexcept;

15 Returns: ptr_ == nullptr.

22.2.5.5 Modifiers [container.node.modifiers]

void swap(node-handle& nh)
noexcept(ator_traits::propagate_on_container_swap::value ||

ator_traits::is_always_equal::value);

1 Preconditions: !alloc_, or !nh.alloc_, or ator_traits::propagate_on_container_swap::value
is true, or alloc_ == nh.alloc_.

2 Effects: Calls swap(ptr_, nh.ptr_). If !alloc_, or !nh.alloc_, or ator_traits::propagate_on_-
container_swap::value is true calls swap(alloc_, nh.alloc_).

22.2.6 Insert return type [container.insert.return]
1 The associative containers with unique keys and the unordered containers with unique keys have a member

function insert that returns a nested type insert_return_type. That return type is a specialization of
the template specified in this subclause.

template<class Iterator, class NodeType>
struct insert-return-type
{

Iterator position;
bool inserted;
NodeType node;

};

2 The name insert-return-type is exposition only. insert-return-type has the template parameters,
data members, and special members specified above. It has no base classes or members other than those
specified.

22.2.7 Associative containers [associative.reqmts]
22.2.7.1 General [associative.reqmts.general]

1 Associative containers provide fast retrieval of data based on keys. The library provides four basic kinds of
associative containers: set, multiset, map and multimap.

2 Each associative container is parameterized on Key and an ordering relation Compare that induces a strict
weak ordering (25.8) on elements of Key. In addition, map and multimap associate an arbitrary mapped type
T with the Key. The object of type Compare is called the comparison object of a container.

3 The phrase “equivalence of keys” means the equivalence relation imposed by the comparison object. That
is, two keys k1 and k2 are considered to be equivalent if for the comparison object comp, comp(k1, k2) ==
false && comp(k2, k1) == false.
[Note 1 : This is not necessarily the same as the result of k1 == k2. —end note]

For any two keys k1 and k2 in the same container, calling comp(k1, k2) shall always return the same value.

§ 22.2.7.1 830

© ISO/IEC Dxxxx

4 An associative container supports unique keys if it may contain at most one element for each key. Otherwise,
it supports equivalent keys. The set and map classes support unique keys; the multiset and multimap
classes support equivalent keys. For multiset and multimap, insert, emplace, and erase preserve the
relative ordering of equivalent elements.

5 For set and multiset the value type is the same as the key type. For map and multimap it is equal to
pair<const Key, T>.

6 iterator of an associative container is of the bidirectional iterator category. For associative containers where
the value type is the same as the key type, both iterator and const_iterator are constant iterators. It is
unspecified whether or not iterator and const_iterator are the same type.
[Note 2 : iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_-
iterator. Users can avoid violating the one-definition rule by always using const_iterator in their function
parameter lists. —end note]

7 In this subclause,
—(7.1) X denotes an associative container class,
—(7.2) a denotes a value of type X,
—(7.3) a2 denotes a value of a type with nodes compatible with type X (Table 77),
—(7.4) b denotes a possibly const value of type X,
—(7.5) u denotes the name of a variable being declared,
—(7.6) a_uniq denotes a value of type X when X supports unique keys,
—(7.7) a_eq denotes a value of type X when X supports multiple keys,
—(7.8) a_tran denotes a possibly const value of type X when the qualified-id X::key_compare::is_transpa-

rent is valid and denotes a type (13.10.3),
—(7.9) i and j meet the Cpp17InputIterator requirements and refer to elements implicitly convertible to

value_type,
—(7.10) [i, j) denotes a valid range,
—(7.11) p denotes a valid constant iterator to a,
—(7.12) q denotes a valid dereferenceable constant iterator to a,
—(7.13) r denotes a valid dereferenceable iterator to a,
—(7.14) [q1, q2) denotes a valid range of constant iterators in a,
—(7.15) il designates an object of type initializer_list<value_type>,
—(7.16) t denotes a value of type X::value_type,
—(7.17) k denotes a value of type X::key_type, and
—(7.18) c denotes a possibly const value of type X::key_compare;
—(7.19) kl is a value such that a is partitioned (25.8) with respect to c(r, kl), with r the key value of e and

e in a;
—(7.20) ku is a value such that a is partitioned with respect to !c(ku, r);
—(7.21) ke is a value such that a is partitioned with respect to c(r, ke) and !c(ke, r), with c(r, ke)

implying !c(ke, r);
—(7.22) kx is a value such that

—(7.22.1) a is partitioned with respect to c(r, kx) and !c(kx, r), with c(r, kx) implying !c(kx, r),
and

—(7.22.2) kx is not convertible to either iterator or const_iterator; and
—(7.23) A denotes the storage allocator used by X, if any, or allocator<X::value_type> otherwise,
—(7.24) m denotes an allocator of a type convertible to A, and nh denotes a non-const rvalue of type X::node_-

type.
8 A type X meets the associative container requirements if X meets all the requirements of an allocator-aware

container (22.2.2.1) and the following types, statements, and expressions are well-formed and have the

§ 22.2.7.1 831

© ISO/IEC Dxxxx

specified semantics, except that for map and multimap, the requirements placed on value_type in 22.2.2.5
apply instead to key_type and mapped_type.
[Note 3 : For example, in some cases key_type and mapped_type are required to be Cpp17CopyAssignable even though
the associated value_type, pair<const key_type, mapped_type>, is not Cpp17CopyAssignable. —end note]

typename X::key_type

9 Result: Key.

typename X::mapped_type

10 Result: T.
11 Remarks: For map and multimap only.

typename X::value_type

12 Result: Key for set and multiset only; pair<const Key, T> for map and multimap only.
13 Preconditions: X::value_type is Cpp17Erasable from X.

typename X::key_compare

14 Result: Compare.
15 Preconditions: key_compare is Cpp17CopyConstructible.

typename X::value_compare

16 Result: A binary predicate type. It is the same as key_compare for set and multiset; is an ordering
relation on pairs induced by the first component (i.e., Key) for map and multimap.

typename X::node_type

17 Result: A specialization of the node-handle class template (22.2.5), such that the public nested types
are the same types as the corresponding types in X.

\tcode{X(c)}

18 Effects: Constructs an empty container. Uses a copy of c as a comparison object.
19 Complexity: Constant.

X u = X();
X u;

20 Preconditions: key_compare meets the Cpp17DefaultConstructible requirements.
21 Effects: Constructs an empty container. Uses Compare() as a comparison object.
22 Complexity: Constant.

X(i, j, c)

23 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i.
24 Effects: Constructs an empty container and inserts elements from the range [i, j) into it; uses c as a

comparison object.
25 Complexity: N logN in general, where N has the value distance(i, j); linear if [i, j) is sorted

with value_comp().

X(i, j)

26 Preconditions: key_compare meets the Cpp17DefaultConstructible requirements. value_type is
Cpp17EmplaceConstructible into X from *i.

27 Effects: Constructs an empty container and inserts elements from the range [i, j) into it; uses
Compare() as a comparison object.

28 Complexity: N logN in general, where N has the value distance(i, j); linear if [i, j) is sorted
with value_comp().

X(il, c)

29 Effects: Equivalent to X(il.begin(), il.end(), c).

§ 22.2.7.1 832

© ISO/IEC Dxxxx

X(il)

30 Effects: Equivalent to X(il.begin(), il.end()).

a = il

31 Result: X&
32 Preconditions: value_type is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
33 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either

assigned to or destroyed.
34 Complexity: N logN in general, where N has the value il.size() + a.size(); linear if [il.begin(),

il.end()) is sorted with value_comp().

b.key_comp()

35 Result: X::key_compare
36 Returns: The comparison object out of which b was constructed.
37 Complexity: Constant.

b.value_comp()

38 Result: X::value_compare
39 Returns: An object of value_compare constructed out of the comparison object.
40 Complexity: Constant.

a_uniq.emplace(args)

41 Result: pair<iterator, bool>
42 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
43 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... if and only

if there is no element in the container with key equivalent to the key of t.
44 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and

the iterator component of the pair points to the element with key equivalent to the key of t.
45 Complexity: Logarithmic.

a_eq.emplace(args)

46 Result: iterator
47 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
48 Effects: Inserts a value_type object t constructed with std::forward<Args>(args).... If a range

containing elements equivalent to t exists in a_eq, t is inserted at the end of that range.
49 Returns: An iterator pointing to the newly inserted element.
50 Complexity: Logarithmic.

a.emplace_hint(p, args)

51 Result: iterator
52 Effects: Equivalent to a.emplace(std::forward<Args>(args)...), except that the element is inserted

as close as possible to the position just prior to p.
53 Returns: An iterator pointing to the element with the key equivalent to the newly inserted element.
54 Complexity: Logarithmic in general, but amortized constant if the element is inserted right before p.

a_uniq.insert(t)

55 Result: pair<iterator, bool>
56 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
57 Effects: Inserts t if and only if there is no element in the container with key equivalent to the key of t.

§ 22.2.7.1 833

© ISO/IEC Dxxxx

58 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and
the iterator component of the pair points to the element with key equivalent to the key of t.

59 Complexity: Logarithmic.

a_eq.insert(t)

60 Result: iterator
61 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
62 Effects: Inserts t and returns the iterator pointing to the newly inserted element. If a range containing

elements equivalent to t exists in a_eq, t is inserted at the end of that range.
63 Complexity: Logarithmic.

a.insert(p, t)

64 Result: iterator
65 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
66 Effects: Inserts t if and only if there is no element with key equivalent to the key of t in containers

with unique keys; always inserts t in containers with equivalent keys. t is inserted as close as possible
to the position just prior to p.

67 Returns: An iterator pointing to the element with key equivalent to the key of t.
68 Complexity: Logarithmic in general, but amortized constant if t is inserted right before p.

a.insert(i, j)

69 Result: void
70 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i. Neither i nor j are iterators

into a.
71 Effects: Inserts each element from the range [i, j) if and only if there is no element with key equivalent

to the key of that element in containers with unique keys; always inserts that element in containers
with equivalent keys.

72 Complexity: N log(a.size() +N), where N has the value distance(i, j).

a.insert(il)

73 Effects: Equivalent to a.insert(il.begin(), il.end()).

a_uniq.insert(nh)

74 Result: insert_return_type
75 Preconditions: nh is empty or a_uniq.get_allocator() == nh.get_allocator() is true.
76 Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is

no element in the container with a key equivalent to nh.key().
77 Returns: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise if the

insertion took place, inserted is true, position points to the inserted element, and node is empty; if
the insertion failed, inserted is false, node has the previous value of nh, and position points to an
element with a key equivalent to nh.key().
Complexity: Logarithmic.

a_eq.insert(nh)

78 Result: iterator
79 Preconditions: nh is empty or a_eq.get_allocator() == nh.get_allocator() is true.
80 Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by

nh and returns an iterator pointing to the newly inserted element. If a range containing elements with
keys equivalent to nh.key() exists in a_eq, the element is inserted at the end of that range.

81 Postconditions: nh is empty.

§ 22.2.7.1 834

© ISO/IEC Dxxxx

82 Complexity: Logarithmic.

a.insert(p, nh)

83 Result: iterator
84 Preconditions: nh is empty or a.get_allocator() == nh.get_allocator() is true.
85 Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by

nh if and only if there is no element with key equivalent to nh.key() in containers with unique keys;
always inserts the element owned by nh in containers with equivalent keys. The element is inserted as
close as possible to the position just prior to p.

86 Postconditions: nh is empty if insertion succeeds, unchanged if insertion fails.
87 Returns: An iterator pointing to the element with key equivalent to nh.key().
88 Complexity: Logarithmic in general, but amortized constant if the element is inserted right before p.

a.extract(k)

89 Result: node_type
90 Effects: Removes the first element in the container with key equivalent to k.
91 Returns: A node_type owning the element if found, otherwise an empty node_type.
92 Complexity: log(a.size())

a_tran.extract(kx)

93 Result: node_type
94 Effects: Removes the first element in the container with key r such that !c(r, kx) && !c(kx, r) is

true.
95 Returns: A node_type owning the element if found, otherwise an empty node_type.
96 Complexity: log(a_tran.size())

a.extract(q)

97 Result: node_type
98 Effects: Removes the element pointed to by q.
99 Returns: A node_type owning that element.

100 Complexity: Amortized constant.

a.merge(a2)

101 Result: void
102 Preconditions: a.get_allocator() == a2.get_allocator().
103 Effects: Attempts to extract each element in a2 and insert it into a using the comparison object of a.

In containers with unique keys, if there is an element in a with key equivalent to the key of an element
from a2, then that element is not extracted from a2.

104 Postconditions: Pointers and references to the transferred elements of a2 refer to those same elements
but as members of a. Iterators referring to the transferred elements will continue to refer to their
elements, but they now behave as iterators into a, not into a2.

105 Throws: Nothing unless the comparison object throws.
106 Complexity: N log(a.size()+N), where N has the value a2.size().

a.erase(k)

107 Result: size_type
108 Effects: Erases all elements in the container with key equivalent to k.
109 Returns: The number of erased elements.
110 Complexity: log(a.size()) + a.count(k)

§ 22.2.7.1 835

© ISO/IEC Dxxxx

a_tran.erase(kx)

111 Result: size_type
112 Effects: Erases all elements in the container with key r such that !c(r, kx) && !c(kx, r) is true.
113 Returns: The number of erased elements.
114 Complexity: log(a_tran.size()) + a_tran.count(kx)

a.erase(q)

115 Result: iterator
116 Effects: Erases the element pointed to by q.

Returns: An iterator pointing to the element immediately following q prior to the element being erased.
If no such element exists, returns a.end().

117 Complexity: Amortized constant.

a.erase(r)

118 Result: iterator
119 Effects: Erases the element pointed to by r.
120 Returns: An iterator pointing to the element immediately following r prior to the element being erased.

If no such element exists, returns a.end().
121 Complexity: Amortized constant.

a.erase(q1, q2)

122 Result: iterator
123 Effects: Erases all the elements in the range [q1, q2).
124 Returns: An iterator pointing to the element pointed to by q2 prior to any elements being erased. If no

such element exists, a.end() is returned.
125 Complexity: log(a.size()) +N , where N has the value distance(q1, q2).

a.clear()

126 Effects: Equivalent to a.erase(a.begin(), a.end()).
127 Postconditions: a.empty() is true.
128 Complexity: Linear in a.size().

b.find(k)

129 Result: iterator; const_iterator for constant b.
130 Returns: An iterator pointing to an element with the key equivalent to k, or b.end() if such an element

is not found.
131 Complexity: Logarithmic.

a_tran.find(ke)

132 Result: iterator; const_iterator for constant a_tran.
133 Returns: An iterator pointing to an element with key r such that !c(r, ke) && !c(ke, r) is true,

or a_tran.end() if such an element is not found.
134 Complexity: Logarithmic.

b.count(k)

135 Result: size_type
136 Returns: The number of elements with key equivalent to k.
137 Complexity: log(b.size()) + b.count(k)

a_tran.count(ke)

138 Result: size_type

§ 22.2.7.1 836

© ISO/IEC Dxxxx

139 Returns: The number of elements with key r such that !c(r, ke) && !c(ke, r).
140 Complexity: log(a_tran.size()) + a_tran.count(ke)

b.contains(k)

141 Result: bool
142 Effects: Equivalent to: return b.find(k) != b.end();

a_tran.contains(ke)

143 Result: bool
144 Effects: Equivalent to: return a_tran.find(ke) != a_tran.end();

b.lower_bound(k)

145 Result: iterator; const_iterator for constant b.
146 Returns: An iterator pointing to the first element with key not less than k, or b.end() if such an

element is not found.
147 Complexity: Logarithmic.

a_tran.lower_bound(kl)

148 Result: iterator; const_iterator for constant a_tran.
149 Returns: An iterator pointing to the first element with key r such that !c(r, kl), or a_tran.end() if

such an element is not found.
150 Complexity: Logarithmic.

b.upper_bound(k)

151 Result: iterator; const_iterator for constant b.
152 Returns: An iterator pointing to the first element with key greater than k, or b.end() if such an

element is not found.
153 Complexity: Logarithmic,

a_tran.upper_bound(ku)

154 Result: iterator; const_iterator for constant a_tran.
155 Returns: An iterator pointing to the first element with key r such that c(ku, r), or a_tran.end() if

such an element is not found.
156 Complexity: Logarithmic.

b.equal_range(k)

157 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant b.
158 Effects: Equivalent to: return make_pair(b.lower_bound(k), b.upper_bound(k));
159 Complexity: Logarithmic.

a_tran.equal_range(ke)

160 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for constant a_tran.
161 Effects: Equivalent to: return make_pair(a_tran.lower_bound(ke), a_tran.upper_bound(ke));
162 Complexity: Logarithmic.
163 The insert and emplace members shall not affect the validity of iterators and references to the container,

and the erase members shall invalidate only iterators and references to the erased elements.
164 The extract members invalidate only iterators to the removed element; pointers and references to the

removed element remain valid. However, accessing the element through such pointers and references while
the element is owned by a node_type is undefined behavior. References and pointers to an element obtained
while it is owned by a node_type are invalidated if the element is successfully inserted.

165 The fundamental property of iterators of associative containers is that they iterate through the containers
in the non-descending order of keys where non-descending is defined by the comparison that was used to

§ 22.2.7.1 837

© ISO/IEC Dxxxx

construct them. For any two dereferenceable iterators i and j such that distance from i to j is positive, the
following condition holds:

value_comp(*j, *i) == false

166 For associative containers with unique keys the stronger condition holds:
value_comp(*i, *j) != false

167 When an associative container is constructed by passing a comparison object the container shall not store a
pointer or reference to the passed object, even if that object is passed by reference. When an associative
container is copied, through either a copy constructor or an assignment operator, the target container shall
then use the comparison object from the container being copied, as if that comparison object had been passed
to the target container in its constructor.

168 The member function templates find, count, contains, lower_bound, upper_bound, equal_range, erase,
and extract shall not participate in overload resolution unless the qualified-id Compare::is_transparent is
valid and denotes a type (13.10.3). Additionally, the member function templates extract and erase shall
not participate in overload resolution if is_convertible_v<K&&, iterator> || is_convertible_v<K&&,
const_iterator> is true, where K is the type substituted as the first template argument.

169 A deduction guide for an associative container shall not participate in overload resolution if any of the
following are true:
—(169.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is

deduced for that parameter.
—(169.2) It has an Allocator template parameter and a type that does not qualify as an allocator is deduced

for that parameter.
—(169.3) It has a Compare template parameter and a type that qualifies as an allocator is deduced for that

parameter.

22.2.7.2 Exception safety guarantees [associative.reqmts.except]
1 For associative containers, no clear() function throws an exception. erase(k) does not throw an exception

unless that exception is thrown by the container’s Compare object (if any).
2 For associative containers, if an exception is thrown by any operation from within an insert or emplace

function inserting a single element, the insertion has no effect.
3 For associative containers, no swap function throws an exception unless that exception is thrown by the swap

of the container’s Compare object (if any).

22.2.8 Unordered associative containers [unord.req]
22.2.8.1 General [unord.req.general]

1 Unordered associative containers provide an ability for fast retrieval of data based on keys. The worst-case
complexity for most operations is linear, but the average case is much faster. The library provides four
unordered associative containers: unordered_set, unordered_map, unordered_multiset, and unordered_-
multimap.

2 Unordered associative containers conform to the requirements for Containers (22.2), except that the expressions
a == b and a != b have different semantics than for the other container types.

3 Each unordered associative container is parameterized by Key, by a function object type Hash that meets the
Cpp17Hash requirements (16.4.4.5) and acts as a hash function for argument values of type Key, and by a
binary predicate Pred that induces an equivalence relation on values of type Key. Additionally, unordered_map
and unordered_multimap associate an arbitrary mapped type T with the Key.

4 The container’s object of type Hash — denoted by hash — is called the hash function of the container. The
container’s object of type Pred — denoted by pred — is called the key equality predicate of the container.

5 Two values k1 and k2 are considered equivalent if the container’s key equality predicate pred(k1, k2) is
valid and returns true when passed those values. If k1 and k2 are equivalent, the container’s hash function
shall return the same value for both.
[Note 1 : Thus, when an unordered associative container is instantiated with a non-default Pred parameter it usually
needs a non-default Hash parameter as well. —end note]

§ 22.2.8.1 838

© ISO/IEC Dxxxx

For any two keys k1 and k2 in the same container, calling pred(k1, k2) shall always return the same value.
For any key k in a container, calling hash(k) shall always return the same value.

6 An unordered associative container supports unique keys if it may contain at most one element for each
key. Otherwise, it supports equivalent keys. unordered_set and unordered_map support unique keys.
unordered_multiset and unordered_multimap support equivalent keys. In containers that support equiva-
lent keys, elements with equivalent keys are adjacent to each other in the iteration order of the container.
Thus, although the absolute order of elements in an unordered container is not specified, its elements are
grouped into equivalent-key groups such that all elements of each group have equivalent keys. Mutating
operations on unordered containers shall preserve the relative order of elements within each equivalent-key
group unless otherwise specified.

7 For unordered_set and unordered_multiset the value type is the same as the key type. For unordered_map
and unordered_multimap it is pair<const Key, T>.

8 For unordered containers where the value type is the same as the key type, both iterator and const_-
iterator are constant iterators. It is unspecified whether or not iterator and const_iterator are the
same type.
[Note 2 : iterator and const_iterator have identical semantics in this case, and iterator is convertible to const_-
iterator. Users can avoid violating the one-definition rule by always using const_iterator in their function
parameter lists. —end note]

9 The elements of an unordered associative container are organized into buckets. Keys with the same hash
code appear in the same bucket. The number of buckets is automatically increased as elements are added
to an unordered associative container, so that the average number of elements per bucket is kept below
a bound. Rehashing invalidates iterators, changes ordering between elements, and changes which buckets
elements appear in, but does not invalidate pointers or references to elements. For unordered_multiset and
unordered_multimap, rehashing preserves the relative ordering of equivalent elements.

10 In this subclause,
—(10.1) X denotes an unordered associative container class,
—(10.2) a denotes a value of type X,
—(10.3) a2 denotes a value of a type with nodes compatible with type X (Table 77),
—(10.4) b denotes a possibly const value of type X,
—(10.5) a_uniq denotes a value of type X when X supports unique keys,
—(10.6) a_eq denotes a value of type X when X supports equivalent keys,
—(10.7) a_tran denotes a possibly const value of type X when the qualified-ids X::key_equal::is_transparent

and X::hasher::is_transparent are both valid and denote types (13.10.3),
—(10.8) i and j denote input iterators that refer to value_type,
—(10.9) [i, j) denotes a valid range,
—(10.10) p and q2 denote valid constant iterators to a,
—(10.11) q and q1 denote valid dereferenceable constant iterators to a,
—(10.12) r denotes a valid dereferenceable iterator to a,
—(10.13) [q1, q2) denotes a valid range in a,
—(10.14) il denotes a value of type initializer_list<value_type>,
—(10.15) t denotes a value of type X::value_type,
—(10.16) k denotes a value of type key_type,
—(10.17) hf denotes a possibly const value of type hasher,
—(10.18) eq denotes a possibly const value of type key_equal,
—(10.19) ke is a value such that

—(10.19.1) eq(r1, ke) == eq(ke, r1),
—(10.19.2) hf(r1) == hf(ke) if eq(r1, ke) is true, and
—(10.19.3) (eq(r1, ke) && eq(r1, r2)) == eq(r2, ke),

§ 22.2.8.1 839

© ISO/IEC Dxxxx

where r1 and r2 are keys of elements in a_tran,
—(10.20) kx is a value such that

—(10.20.1) eq(r1, kx) == eq(kx, r1),
—(10.20.2) hf(r1) == hf(kx) if eq(r1, kx) is true,
—(10.20.3) (eq(r1, kx) && eq(r1, r2)) == eq(r2, kx), and
—(10.20.4) kx is not convertible to either iterator or const_iterator,

where r1 and r2 are keys of elements in a_tran,
—(10.21) n denotes a value of type size_type,
—(10.22) z denotes a value of type float, and
—(10.23) nh denotes a non-const rvalue of type X::node_type.

11 A type X meets the unordered associative container requirements if X meets all the requirements of an
allocator-aware container (22.2.2.1) and the following types, statements, and expressions are well-formed and
have the specified semantics, except that for unordered_map and unordered_multimap, the requirements
placed on value_type in 22.2.2.5 apply instead to key_type and mapped_type.
[Note 3 : For example, key_type and mapped_type are sometimes required to be Cpp17CopyAssignable even though
the associated value_type, pair<const key_type, mapped_type>, is not Cpp17CopyAssignable. —end note]

typename X::key_type

12 Result: Key.

typename X::mapped_type

13 Result: T.
14 Remarks: For unordered_map and unordered_multimap only.

typename X::value_type

15 Result: Key for unordered_set and unordered_multiset only; pair<const Key, T> for unordered_-
map and unordered_multimap only.

16 Preconditions: value_type is Cpp17Erasable from X.

typename X::hasher

17 Result: Hash.
18 Preconditions: Hash is a unary function object type such that the expression hf(k) has type size_t.

typename X::key_equal

19 Result: Pred.
20 Preconditions: Pred meets the Cpp17CopyConstructible requirements. Pred is a binary predicate that

takes two arguments of type Key. Pred is an equivalence relation.

typename X::local_iterator

21 Result: An iterator type whose category, value type, difference type, and pointer and reference types
are the same as X::iterator’s.
[Note 4 : A local_iterator object can be used to iterate through a single bucket, but cannot be used to iterate
across buckets. —end note]

typename X::const_local_iterator

22 Result: An iterator type whose category, value type, difference type, and pointer and reference types
are the same as X::const_iterator’s.
[Note 5 : A const_local_iterator object can be used to iterate through a single bucket, but cannot be used
to iterate across buckets. —end note]

typename X::node_type

23 Result: A specialization of a node-handle class template (22.2.5), such that the public nested types
are the same types as the corresponding types in X.

§ 22.2.8.1 840

© ISO/IEC Dxxxx

X(n, hf, eq)

24 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq
as the key equality predicate.

25 Complexity: O(n)

X(n, hf)

26 Preconditions: key_equal meets the Cpp17DefaultConstructible requirements.
27 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and

key_equal() as the key equality predicate.
28 Complexity: O(n)

X(n)

29 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements.
30 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function

and key_equal() as the key equality predicate.
31 Complexity: O(n)

X a = X();
X a;

Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements.
32 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the

hash function and key_equal() as the key equality predicate.
33 Complexity: Constant.

X(i, j, n, hf, eq)

34 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i.
35 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and eq

as the key equality predicate, and inserts elements from [i, j) into it.
36 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j, n, hf)

37 Preconditions: key_equal meets the Cpp17DefaultConstructible requirements. value_type is Cpp17-
EmplaceConstructible into X from *i.

38 Effects: Constructs an empty container with at least n buckets, using hf as the hash function and
key_equal() as the key equality predicate, and inserts elements from [i, j) into it.

39 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j, n)

40 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type
is Cpp17EmplaceConstructible into X from *i.

41 Effects: Constructs an empty container with at least n buckets, using hasher() as the hash function
and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.

42 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(i, j)

43 Preconditions: hasher and key_equal meet the Cpp17DefaultConstructible requirements. value_type
is Cpp17EmplaceConstructible into X from *i.

44 Effects: Constructs an empty container with an unspecified number of buckets, using hasher() as the
hash function and key_equal() as the key equality predicate, and inserts elements from [i, j) into it.

45 Complexity: Average case O(N) (N is distance(i, j)), worst case O(N2).

X(il)

46 Effects: Equivalent to X(il.begin(), il.end()).

§ 22.2.8.1 841

© ISO/IEC Dxxxx

X(il, n)

47 Effects: Equivalent to X(il.begin(), il.end(), n).

X(il, n, hf)

48 Effects: Equivalent to X(il.begin(), il.end(), n, hf).

X(il, n, hf, eq)

49 Effects: Equivalent to X(il.begin(), il.end(), n, hf, eq).

X(b)

50 Effects: In addition to the container requirements (22.2.2.1), copies the hash function, predicate, and
maximum load factor.

51 Complexity: Average case linear in b.size(), worst case quadratic.

a = b

52 Result: X&
53 Effects: In addition to the container requirements, copies the hash function, predicate, and maximum

load factor.
54 Complexity: Average case linear in b.size(), worst case quadratic.

a = il

55 Result: X&
56 Preconditions: value_type is Cpp17CopyInsertable into X and Cpp17CopyAssignable.
57 Effects: Assigns the range [il.begin(), il.end()) into a. All existing elements of a are either

assigned to or destroyed.
58 Complexity: Average case linear in il.size(), worst case quadratic.

b.hash_function()

59 Result: hasher
60 Returns: b’s hash function.
61 Complexity: Constant.

b.key_eq()

62 Result: key_equal
63 Returns: b’s key equality predicate.
64 Complexity: Constant.

a_uniq.emplace(args)

65 Result: pair<iterator, bool>
66 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
67 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... if and only

if there is no element in the container with key equivalent to the key of t.
68 Returns: The bool component of the returned pair is true if and only if the insertion takes place, and

the iterator component of the pair points to the element with key equivalent to the key of t.
69 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.emplace(args)

70 Result: iterator
71 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
72 Effects: Inserts a value_type object t constructed with std::forward<Args>(args)... and
73 Returns: An iterator pointing to the newly inserted element.
74 Complexity: Average case O(1), worst case O(a_eq.size()).

§ 22.2.8.1 842

© ISO/IEC Dxxxx

a.emplace_hint(p, args)

75 Result: iterator
76 Preconditions: value_type is Cpp17EmplaceConstructible into X from args.
77 Effects: Equivalent to a.emplace(std::forward<Args>(args)...).
78 Returns: An iterator pointing to the element with the key equivalent to the newly inserted element. The

const_iterator p is a hint pointing to where the search should start. Implementations are permitted
to ignore the hint.

79 Complexity: Average case O(1), worst case O(a.size()).

a_uniq.insert(t)

80 Result: pair<iterator, bool>
81 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
82 Effects: Inserts t if and only if there is no element in the container with key equivalent to the key of t.
83 Returns: The bool component of the returned pair indicates whether the insertion takes place, and the

iterator component points to the element with key equivalent to the key of t.
84 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.insert(t)

85 Result: iterator
86 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
87 Effects: Inserts t.
88 Returns: An iterator pointing to the newly inserted element.
89 Complexity: Average case O(1), worst case O(a_eq.size()).

a.insert(p, t)

90 Result: iterator
91 Preconditions: If t is a non-const rvalue, value_type is Cpp17MoveInsertable into X; otherwise,

value_type is Cpp17CopyInsertable into X.
92 Effects: Equivalent to a.insert(t). The iterator p is a hint pointing to where the search should start.

Implementations are permitted to ignore the hint.
93 Returns: An iterator pointing to the element with the key equivalent to that of t.
94 Complexity: Average case O(1), worst case O(a.size()).

a.insert(i, j)

95 Result: void
96 Preconditions: value_type is Cpp17EmplaceConstructible into X from *i. Neither i nor j are iterators

into a.
97 Effects: Equivalent to a.insert(t) for each element in [i,j).
98 Complexity: Average case O(N), where N is distance(i, j), worst case O(N(a.size() + 1)).

a.insert(il)

99 Effects: Equivalent to a.insert(il.begin(), il.end()).

a_uniq.insert(nh)

100 Result: insert_return_type
101 Preconditions: nh is empty or a_uniq.get_allocator() == nh.get_allocator() is true.
102 Effects: If nh is empty, has no effect. Otherwise, inserts the element owned by nh if and only if there is

no element in the container with a key equivalent to nh.key().

§ 22.2.8.1 843

© ISO/IEC Dxxxx

103 Postconditions: If nh is empty, inserted is false, position is end(), and node is empty. Otherwise
if the insertion took place, inserted is true, position points to the inserted element, and node is
empty; if the insertion failed, inserted is false, node has the previous value of nh, and position
points to an element with a key equivalent to nh.key().

104 Complexity: Average case O(1), worst case O(a_uniq.size()).

a_eq.insert(nh)

105 Result: iterator
106 Preconditions: nh is empty or a_eq.get_allocator() == nh.get_allocator() is true.
107 Effects: If nh is empty, has no effect and returns a_eq.end(). Otherwise, inserts the element owned by

nh and returns an iterator pointing to the newly inserted element.
108 Postconditions: nh is empty.
109 Complexity: Average case O(1), worst case O(a_eq.size()).

a.insert(q, nh)

110 Result: iterator
111 Preconditions: nh is empty or a.get_allocator() == nh.get_allocator() is true.
112 Effects: If nh is empty, has no effect and returns a.end(). Otherwise, inserts the element owned by

nh if and only if there is no element with key equivalent to nh.key() in containers with unique keys;
always inserts the element owned by nh in containers with equivalent keys. The iterator q is a hint
pointing to where the search should start. Implementations are permitted to ignore the hint.
Postconditions: nh is empty if insertion succeeds, unchanged if insertion fails.

113 Returns: An iterator pointing to the element with key equivalent to nh.key().
114 Complexity: Average case O(1), worst case O(a.size()).

a.extract(k)

115 Result: node_type
116 Effects: Removes an element in the container with key equivalent to k.
117 Returns: A node_type owning the element if found, otherwise an empty node_type.
118 Complexity: Average case O(1), worst case O(a.size()).

a_tran.extract(kx)

119 Result: node_type
120 Effects: Removes an element in the container with key equivalent to kx.
121 Returns: A node_type owning the element if found, otherwise an empty node_type.
122 Complexity: Average case O(1), worst case O(a_tran.size()).

a.extract(q)

123 Result: node_type
124 Effects: Removes the element pointed to by q.

Returns: A node_type owning that element.
125 Complexity: Average case O(1), worst case O(a.size()).

a.merge(a2)

126 Result: void
127 Preconditions: a.get_allocator() == a2.get_allocator().
128 Effects: Attempts to extract each element in a2 and insert it into a using the hash function and key

equality predicate of a. In containers with unique keys, if there is an element in a with key equivalent
to the key of an element from a2, then that element is not extracted from a2.

§ 22.2.8.1 844

© ISO/IEC Dxxxx

129 Postconditions: Pointers and references to the transferred elements of a2 refer to those same elements
but as members of a. Iterators referring to the transferred elements and all iterators referring to a will
be invalidated, but iterators to elements remaining in a2 will remain valid.

130 Complexity: Average case O(N), where N is a2.size(), worst case O(N*a.size() + N).

a.erase(k)

131 Result: size_type
132 Effects: Erases all elements with key equivalent to k.
133 Returns: The number of elements erased.
134 Complexity: Average case O(a.count(k)), worst case O(a.size()).

a_tran.erase(kx)

135 Result: size_type
136 Effects: Erases all elements with key equivalent to kx.
137 Returns: The number of elements erased.
138 Complexity: Average case O(a_tran.count(kx)), worst case O(a_tran.size()).

a.erase(q)

139 Result: iterator
140 Effects: Erases the element pointed to by q.
141 Returns: The iterator immediately following q prior to the erasure.
142 Complexity: Average case O(1), worst case O(a.size()).

a.erase(r)

143 Result: iterator
144 Effects: Erases the element pointed to by r.
145 Returns: The iterator immediately following r prior to the erasure.
146 Complexity: Average case O(1), worst case O(a.size()).

a.erase(q1, q2)

147 Result: iterator
148 Effects: Erases all elements in the range [q1, q2).
149 Returns: The iterator immediately following the erased elements prior to the erasure.
150 Complexity: Average case linear in distance(q1, q2), worst case O(a.size()).

a.clear()

151 Result: void
152 Effects: Erases all elements in the container.
153 Postconditions: a.empty() is true.
154 Complexity: Linear in a.size().

b.find(k)

155 Result: iterator; const_iterator for const b.
156 Returns: An iterator pointing to an element with key equivalent to k, or b.end() if no such element

exists.
157 Complexity: Average case O(1), worst case O(b.size()).

a_tran.find(ke)

158 Result: iterator; const_iterator for const a_tran.
159 Returns: An iterator pointing to an element with key equivalent to ke, or a_tran.end() if no such

element exists.

§ 22.2.8.1 845

© ISO/IEC Dxxxx

160 Complexity: Average case O(1), worst case O(a_tran.size()).

b.count(k)

161 Result: size_type
162 Returns: The number of elements with key equivalent to k.
163 Complexity: Average case O(b.count(k)), worst case O(b.size()).

a_tran.count(ke)

164 Result: size_type
165 Returns: The number of elements with key equivalent to ke.
166 Complexity: Average case O(a_tran.count(ke)), worst case O(a_tran.size()).

b.contains(k)

167 Effects: Equivalent to b.find(k) != b.end().

a_tran.contains(ke)

168 Effects: Equivalent to a_tran.find(ke) != a_tran.end().

b.equal_range(k)

169 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for const b.
170 Returns: A range containing all elements with keys equivalent to k. Returns make_pair(b.end(),

b.end()) if no such elements exist.
171 Complexity: Average case O(b.count(k)), worst case O(b.size()).

a_tran.equal_range(ke)

172 Result: pair<iterator, iterator>; pair<const_iterator, const_iterator> for const a_tran.
173 Returns: A range containing all elements with keys equivalent to ke. Returns make_pair(a_tran.end(),

a_tran.end()) if no such elements exist.
174 Complexity: Average case O(a_tran.count(ke)), worst case O(a_tran.size()).

b.bucket_count()

175 Result: size_type
176 Returns: The number of buckets that b contains.
177 Complexity: Constant.

b.max_bucket_count()

178 Result: size_type
179 Returns: An upper bound on the number of buckets that b can ever contain.
180 Complexity: Constant.

b.bucket(k)

181 Result: size_type
182 Preconditions: b.bucket_count() > 0.
183 Returns: The index of the bucket in which elements with keys equivalent to k would be found, if any

such element existed. The return value is in the range [0, b.bucket_count()).
184 Complexity: Constant.

b.bucket_size(n)

185 Result: size_type
186 Preconditions: n shall be in the range [0, b.bucket_count()).
187 Returns: The number of elements in the nth bucket.
188 Complexity: O(b.bucket_size(n))

§ 22.2.8.1 846

© ISO/IEC Dxxxx

b.begin(n)

189 Result: local_iterator; const_local_iterator for const b.
190 Preconditions: n is in the range [0, b.bucket_count()).
191 Returns: An iterator referring to the first element in the bucket. If the bucket is empty, then b.begin(n)

== b.end(n).
192 Complexity: Constant.

b.end(n)

193 Result: local_iterator; const_local_iterator for const b.
194 Preconditions: n is in the range [0, b.bucket_count()).
195 Returns: An iterator which is the past-the-end value for the bucket.
196 Complexity: Constant.

b.cbegin(n)

197 Result: const_local_iterator
198 Preconditions: n shall be in the range [0, b.bucket_count()).
199 Returns: An iterator referring to the first element in the bucket. If the bucket is empty, then

b.cbegin(n) == b.cend(n).
200 Complexity: Constant.

b.cend(n)

201 Result: const_local_iterator
202 Preconditions: n is in the range [0, b.bucket_count()).
203 Returns: An iterator which is the past-the-end value for the bucket.
204 Complexity: Constant.

b.load_factor()

205 Result: float
206 Returns: The average number of elements per bucket.
207 Complexity: Constant.

b.max_load_factor()

208 Result: float
209 Returns: A positive number that the container attempts to keep the load factor less than or equal to.

The container automatically increases the number of buckets as necessary to keep the load factor below
this number.

210 Complexity: Constant.

a.max_load_factor(z)

211 Result: void
212 Preconditions: z is positive. May change the container’s maximum load factor, using z as a hint.
213 Complexity: Constant.

a.rehash(n)

214 Result: void
215 Postconditions: a.bucket_count() >= a.size() / a.max_load_factor() and a.bucket_count()

>= n.
216 Complexity: Average case linear in a.size(), worst case quadratic.

a.reserve(n)

217 Effects: Equivalent to a.rehash(ceil(n / a.max_load_factor())).

§ 22.2.8.1 847

© ISO/IEC Dxxxx

218 Two unordered containers a and b compare equal if a.size() == b.size() and, for every equivalent-key
group [Ea1, Ea2) obtained from a.equal_range(Ea1), there exists an equivalent-key group [Eb1, Eb2)
obtained from b.equal_range(Ea1), such that is_permutation(Ea1, Ea2, Eb1, Eb2) returns true. For
unordered_set and unordered_map, the complexity of operator== (i.e., the number of calls to the ==
operator of the value_type, to the predicate returned by key_eq(), and to the hasher returned by hash_-
function()) is proportional to N in the average case and to N2 in the worst case, where N is a.size(). For
unordered_multiset and unordered_multimap, the complexity of operator== is proportional to

∑
E2
i in

the average case and to N2 in the worst case, where N is a.size(), and Ei is the size of the ith equivalent-key
group in a. However, if the respective elements of each corresponding pair of equivalent-key groups Eai and
Ebi are arranged in the same order (as is commonly the case, e.g., if a and b are unmodified copies of the same
container), then the average-case complexity for unordered_multiset and unordered_multimap becomes
proportional to N (but worst-case complexity remains O(N2), e.g., for a pathologically bad hash function).
The behavior of a program that uses operator== or operator!= on unordered containers is undefined unless
the Pred function object has the same behavior for both containers and the equality comparison function for
Key is a refinement215 of the partition into equivalent-key groups produced by Pred.

219 The iterator types iterator and const_iterator of an unordered associative container are of at least the
forward iterator category. For unordered associative containers where the key type and value type are the
same, both iterator and const_iterator are constant iterators.

220 The insert and emplace members shall not affect the validity of references to container elements, but may
invalidate all iterators to the container. The erase members shall invalidate only iterators and references to
the erased elements, and preserve the relative order of the elements that are not erased.

221 The insert and emplace members shall not affect the validity of iterators if (N+n) <= z * B, where N is
the number of elements in the container prior to the insert operation, n is the number of elements inserted, B
is the container’s bucket count, and z is the container’s maximum load factor.

222 The extract members invalidate only iterators to the removed element, and preserve the relative order of
the elements that are not erased; pointers and references to the removed element remain valid. However,
accessing the element through such pointers and references while the element is owned by a node_type is
undefined behavior. References and pointers to an element obtained while it is owned by a node_type are
invalidated if the element is successfully inserted.

223 The member function templates find, count, equal_range, contains, extract, and erase shall not
participate in overload resolution unless the qualified-ids Pred::is_transparent and Hash::is_transparent
are both valid and denote types (13.10.3). Additionally, the member function templates extract and erase
shall not participate in overload resolution if is_convertible_v<K&&, iterator> || is_convertible_-
v<K&&, const_iterator> is true, where K is the type substituted as the first template argument.

224 A deduction guide for an unordered associative container shall not participate in overload resolution if any of
the following are true:
—(224.1) It has an InputIterator template parameter and a type that does not qualify as an input iterator is

deduced for that parameter.
—(224.2) It has an Allocator template parameter and a type that does not qualify as an allocator is deduced

for that parameter.
—(224.3) It has a Hash template parameter and an integral type or a type that qualifies as an allocator is deduced

for that parameter.
—(224.4) It has a Pred template parameter and a type that qualifies as an allocator is deduced for that parameter.

22.2.8.2 Exception safety guarantees [unord.req.except]
1 For unordered associative containers, no clear() function throws an exception. erase(k) does not throw an

exception unless that exception is thrown by the container’s Hash or Pred object (if any).
2 For unordered associative containers, if an exception is thrown by any operation other than the container’s

hash function from within an insert or emplace function inserting a single element, the insertion has no
effect.

3 For unordered associative containers, no swap function throws an exception unless that exception is thrown
by the swap of the container’s Hash or Pred object (if any).

215) Equality comparison is a refinement of partitioning if no two objects that compare equal fall into different partitions.

§ 22.2.8.2 848

© ISO/IEC Dxxxx

30 Regular expressions library [re]
30.1 General [re.general]

1 This Clause describes components that C++ programs may use to perform operations involving regular
expression matching and searching.

2 The following subclauses describe a basic regular expression class template and its traits that can handle
char-like (21.1) template arguments, two specializations of this class template that handle sequences of char
and wchar_t, a class template that holds the result of a regular expression match, a series of algorithms
that allow a character sequence to be operated upon by a regular expression, and two iterator types for
enumerating regular expression matches, as summarized in Table 130.

Table 130: Regular expressions library summary [tab:re.summary]

Subclause Header
30.2 Requirements
30.4 Constants <regex>
30.5 Exception type
30.6 Traits
30.7 Regular expression template
30.8 Submatches
30.9 Match results
30.10 Algorithms
30.11 Iterators
30.12 Grammar

30.2 Requirements [re.req]
1 This subclause defines requirements on classes representing regular expression traits.

[Note 1 : The class template regex_traits, defined in 30.6, meets these requirements. —end note]
2 The class template basic_regex, defined in 30.7, needs a set of related types and functions to complete the

definition of its semantics. These types and functions are provided as a set of member typedef-names and
functions in the template parameter traits used by the basic_regex class template. This subclause defines
the semantics of these members.

3 To specialize class template basic_regex for a character container CharT and its related regular expression
traits class Traits, use basic_regex<CharT, Traits>.

4 In the following requirements,
—(4.1) X denotes a traits class defining types and functions for the character container type charT;
—(4.2) u is an object of type X;
—(4.3) v is an object of type const X;
—(4.4) p is a value of type const charT*;
—(4.5) I1 and I2 are input iterators (23.3.5.3);
—(4.6) F1 and F2 are forward iterators (23.3.5.5);
—(4.7) c is a value of type const charT;
—(4.8) s is an object of type X::string_type;
—(4.9) cs is an object of type const X::string_type;
—(4.10) b is a value of type bool;
—(4.11) I is a value of type int;
—(4.12) cl is an object of type X::char_class_type; and

§ 30.2 1564

© ISO/IEC Dxxxx

—(4.13) loc is an object of type X::locale_type.
5 A traits class X meets the regular expression traits requirements if the following types and expressions are

well-formed and have the specified semantics.

typename X::char_type

6 Return type: charT, the character container type used in the implementation of class template basic_-
regex.

typename X::string_type

7 Return type: basic_string<charT>

typename X::locale_type

8 Return type: A copy constructible type that represents the locale used by the traits class.

typename X::char_class_type

9 Return type: A bitmask type (16.3.3.3.4) representing a particular character classification.

X::length(p)

10 Return type: size_t
11 Returns: The smallest i such that p[i] == 0.
12 Complexity: Linear in i.

v.translate(c)

13 Return type: X::char_type
14 Returns: A character such that for any character d that is to be considered equivalent to c then

v.translate(c) == v.translate(d).

v.translate_nocase(c)

15 Return type: X::char_type
16 Returns: For all characters C that are to be considered equivalent to c when comparisons are to be

performed without regard to case, then v.translate_nocase(c) == v.translate_nocase(C).

v.transform(F1, F2)

17 Return type: X::string_type
18 Returns: A sort key for the character sequence designated by the iterator range [F1, F2) such that if

the character sequence [G1, G2) sorts before the character sequence [H1, H2) then v.transform(G1,
G2) < v.transform(H1, H2).

v.transform_primary(F1, F2)

19 Return type: X::string_type
20 Returns: A sort key for the character sequence designated by the iterator range [F1, F2) such that if

the character sequence [G1, G2) sorts before the character sequence [H1, H2) when character case is
not considered then v.transform_primary(G1, G2) < v.transform_primary(H1, H2).

v.lookup_collatename(F1, F2)

21 Return type: X::string_type
22 Returns: A sequence of characters that represents the collating element consisting of the character

sequence designated by the iterator range [F1, F2). Returns an empty string if the character sequence
is not a valid collating element.

v.lookup_classname(F1, F2, b)

23 Return type: X::char_class_type
24 Returns: Converts the character sequence designated by the iterator range [F1, F2) into a value of a

bitmask type that can subsequently be passed to isctype. Values returned from lookup_classname
can be bitwise OR’ed together; the resulting value represents membership in either of the corresponding

§ 30.2 1565

© ISO/IEC Dxxxx

character classes. If b is true, the returned bitmask is suitable for matching characters without regard
to their case. Returns 0 if the character sequence is not the name of a character class recognized by X.
The value returned shall be independent of the case of the characters in the sequence.

v.isctype(c, cl)

25 Return type: bool
26 Returns: Returns true if character c is a member of one of the character classes designated by cl,

false otherwise.

v.value(c, I)

27 Return type: int
28 Returns: Returns the value represented by the digit c in base I if the character c is a valid digit in

base I ; otherwise returns -1.
[Note 2 : The value of I will only be 8, 10, or 16. —end note]

u.imbue(loc)

29 Return type: X::locale_type
30 Effects: Imbues u with the locale loc and returns the previous locale used by u if any.

v.getloc()

31 Return type: X::locale_type
32 Returns: Returns the current locale used by v, if any.
33 [Note 3 : Class template regex_traits meets the requirements for a regular expression traits class when it is specialized

for char or wchar_t. This class template is described in the header <regex>, and is described in 30.6. —end note]

30.3 Header <regex> synopsis [re.syn]
#include <compare> // see 17.11.1
#include <initializer_list> // see 17.10.2

namespace std {
// 30.4, regex constants
namespace regex_constants {

using syntax_option_type = T1;
using match_flag_type = T2;
using error_type = T3;

}

// 30.5, class regex_error
class regex_error;

// 30.6, class template regex_traits
template<class charT> struct regex_traits;

// 30.7, class template basic_regex
template<class charT, class traits = regex_traits<charT>> class basic_regex;

using regex = basic_regex<char>;
using wregex = basic_regex<wchar_t>;

// 30.7.6, basic_regex swap
template<class charT, class traits>

void swap(basic_regex<charT, traits>& e1, basic_regex<charT, traits>& e2);

// 30.8, class template sub_match
template<class BidirectionalIterator>

class sub_match;

using csub_match = sub_match<const char*>;
using wcsub_match = sub_match<const wchar_t*>;

§ 30.3 1566

