
Stroustrup Type-and-resource safety 2021-07-12

1

Doc. no. P2410r0

Date: 2021-07-12

Project: Programming Language C++

Audience: All

Reply to: Bjarne Stroustrup (bs@ms.com)

Type-and-resource safety in modern C++

Bjarne Stroustrup

1. Introduction
Complete type-and-resource safety have been an ideal (aim) of C++ from very early on (1979) and is
achievable though a judicious programming technique enforced by language rules and static analysis.
The basic model for achieving that can be found in [Str’15] and do not imply limitations of what can be
expressed or run-time overheads compared to traditional C and C++ programming techniques. The basic
design and enforcement techniques simply ensure that:

• §2: every object is accessed according to the type with which it was defined
• §3: every object is properly constructed and destroyed
• §4-5: every pointer either points to a valid object or is the nullptr
• §6: every reference through a pointer is not through the nullptr (often a run-time check)
• §6: every access through a subscripted pointer is in-range (often a run-time check)

That’s just what C++ requires and what most programmers have tried to ensure since the dawn of time.
The difficulty is to guarantee it in a realistically-sized program. Experience shows that this cannot be
done without static analysis and run-time support. Furthermore, for fundamental reasons this cannot
done even with such support if arbitrary legal language constructs are accepted while conventional good
performance must be maintained.

The way out of this dilemma is a carefully crafted set of programming rules supported by library facilities
and enforced by static analysis.

This presentation is based on the C++ Core Guidelines [CG] and their enforcement rules (e.g., as
implemented by the Core Guidelines checker distributed with Microsoft Visual Studio). That is, the
points made here are backed up by specific rules and supported by existing software. By default, the CG
do not provide complete type-and-resource safety. This paper is a high-level overview of the rules that
must be enforced to guarantee that. Details can be found elsewhere (§9).

All static analysis for GC is local; that is. Non-local static analysis, e.g., whole-program analysis, is not
scalable and can’t in general handle dynamic linking.

Stroustrup Type-and-resource safety 2021-07-12

2

To meet common definitions of safety, we further need to address

• Narrowing conversions and overflow
• Data races and deadlocks

Those are dealt with separately in the CG and elsewhere.

The Core Guidelines are designed for selective and gradual adoption. Consequently, all traditional C++
technique are available where conversion to stricter rules is not considered practical. In particular,
nothing must impede C++’s ability to directly manipulate hardware where and when necessary.

2. Object access
Every object is accessed according to the type with which it was defined.

The language guarantees this except for preventable pointer misuses (see §4, §5), explicit casts, and
type punning using unions. The CG have specific rules to enforce these language rules.

Static analysis can prevent unsafe casting and unsafe uses of unions. Type-safe alternatives to unions,
such as std::variant, are available. Casting is essential only for converting untyped data (bytes) into
typed objects.

3. Construction and destruction
Every object is properly constructed and destroyed.

Static analysis easily prevents the creation of uninitialized objects. Buffers of uninitialized unsigned
chars are acceptable according to the language definition and needed for performance reasons.

The language guarantees that destructors for scoped objects are invoked upon scope exit and that
destructors for static objects are invoked upon program termination.

Using copy elision or move operations, objects can be safely moved between scopes. The CG insist that a
moved-from object be assignable, but general operations are not allowed on moved-from objects. This
is ensured through static analysis.

Entities that must be acquired and later released for some other part of a system (e.g., memory or file
handles) are called resources and represented as objects with destructors doing the release and often
with constructors that do the acquisition as part of establishing an invariant. This is often referred to as
resource safety or as RAII (Resource Acquisition Is Initialization). In addition to resource safety, this
scope-based resource management ensures predictability and minimizes resource retention.

4. No dangling pointers
Every pointer either points to an object or is the nullptr. The first and essential step to ensure this is to
guarantee initialization (see §3).

In this paper

• “pointer” includes all ways of referring to an object, including containers of pointers, references,
lambda captures, and smart pointers.

Stroustrup Type-and-resource safety 2021-07-12

3

• “return” includes all ways of getting a pointer value out of a scope, including containers of
pointers, reference arguments, pointers to pointers, lambda captures, global variables, and
exception values.

4.1. Escaping pointers
No pointer may point to an object after the object has gone out of scope. This is achieved through static
analysis, preventing a pointer from “escaping” into a scope surrounding the object to which it points. A
pointer value can be returned from a scope provided

(1) It was passed into the scope (e.g., as an argument or retrieved from an object external to
the scope).

(2) It points to an object external to the scope (e.g., it was initialized by new).

If static analysis cannot prove that, the pointer cannot be returned. This implies limitations to the
complexity of the flow of control leading to the return of a pointer value.

4.2. Invalidation
No pointer may access a deleted object. This trivially prohibits access to a deleted object in the scope in
which it was created using new (and scopes nested therein). Like for detecting escaping pointers, this
implies limitations to the complexity of the flow of control leading to the return if a pointer value.

This leaves the problem of preventing a pointer to an object on the free store from being deleted in a
called function and then accessed through in its original scope. In principle, that could be handled using
static analysis, but global static analysis is impractical or unaffordable in many contexts, so the CG resort
to annotation:

• A pointer returned by new is an owner and must be deleted (unless stored in static storage to
ensure that it lives “forever.”).

• Only a pointer known to be an owner can be deleted. Thus, a pointer passed into a scope as an
owner<T*> must be deleted in that scope or passed along to another scope as an owner. A
pointer that is passed into a scope as a plain T* may not be deleted.

• A pointer passed to another scope as an owner and not passed back as an owner is said to be
invalidated and cannot be used again in its original scope (since it will have been deleted).

Anything that holds an owner is subject to the owner rules. Given owner annotation, these rules are
enforced by static analysis.

The owner annotation is necessary only for low-level code implementing higher-level abstractions (such
as vector) and for pointers in interfaces that cannot be changed (e.g., for ABI reasons). The CG
recommend preferring higher-level abstractions, such as vector and unique_ptr and avoid explicit
owner annotations wherever possible.

4.3. “Odd” pointers
It is necessary to avoid access through a one-past-the-end pointer (e.g., an iterator returned from find())
and to avoid all-but-assignments to moved-from objects. This is ensured through static analysis
enforcing proper use. A not_end type similar to not_null may be useful to help the static analyzer in
cases where the result of x.find() and the like isn’t immediately tested against x.end().

Stroustrup Type-and-resource safety 2021-07-12

4

5. Memory pools
The discussion in §4 assumes that objects are static, local (automatic), or on the free store (heap,
dynamic memory) managed by new and delete. However, user-defined memory management in various
forms is essential in many application areas and fundamental in the C++ standard library.

By a memory pool, I mean a section of memory in which an object can be stored. In principle, a pointer
to an object in a memory pool can be handled in a similar manner to that of a pointer to an object
created by new. However, C++ lacks a standard “pool” abstraction. Instead, there are thousands of
variations of the idea, seriously complicating the task of static-analyzer writers.

To avoid dangling pointers to its stored objects, a pool can apply one of alternative strategies:

1. Disallow objects to be deleted or relocated
2. Disallow pointers to objects to escape
3. Invalidate all pointers to objects if a potentially deleting or relocating operation is invoked

std::vector with subscripting and resize() is a typical example of a pool that requires special attention
and is dealt with through invalidation (the third alternative) enforced by static analysis. If a non-const
function is invoked on a vector, all pointers to its elements are considered invalid and may not be used.
This is ensured through static analysis. This is a conservative, but safe, strategy that can be applied to
every pool. To enable a non-const function (e.g vector::operator[]()) to be considered not invalidating,
we might add a [[not_invalidate]] annotation. Such annotation can be validated by static analysis.

6. No Range errors
Every reference through a pointer is not through the nullptr (often a run-time check).

The CG simply prohibit access through a pointer that is not known to be not the nullptr. As an
alternative to repeated nullptr checks, it offers the gsl::not_null type.

Every access to an array is in-range (often a run-time check).

The CG simply prohibit subscripting of pointers (and equivalent address arithmetic). As an alternative, it
offers gsl::span that provides range-checked access (a version of gsl::span is now std::span). Containers,
range-for, and algorithms dramatically reduces the need for subscripting pointers compared to C-style
code. Spans are ideally used in interfaces, but can also be used locally as an alternative to direct use of
pointers passed through potentially unsafe interfaces; such pointers typically require special (see §7)
attention or run-time checking.

7. Low-level code
C++ is extensively used for low-level manipulation of memory and other system resources. Making C++
safe by eliminating all direct access to “raw” memory is not an option. Languages that ban such unsafe
access, typically have ways of allowing unsafe code or delegate such manipulation to code written in C
or C++.

The current solution for messy, low-level code (e.g., for a memory manager where casts and pointer
manipulation are necessary or for highly-optimized implementation of key data structures) is to apply
the static analysis selectively. We may need a notion of “trusted code” marked in the code itself, maybe

Stroustrup Type-and-resource safety 2021-07-12

5

indicated by a [[trusted]] annotation. Such annotation would allow programmers to understand
[[trusted]] code independently of static analyzer settings. Naturally [[trusted]] code would require
significant extra care and review; it should be minimized. Calls to other code from [[trusted]] code
would be assumed correct by the static analyzer.

Such annotation need not be all-or-nothing. The “profile” options currently used to control the CG static
analysis would make a good initial set of options, e.g. [[trusted lifetime]] would suppress the checking
for leaks, etc.

For most code written in a modern C++ style, conforming to the restrictions needed to achieve type-
and-resource safety doesn’t require major structural changes or imply run-time overheads. Older styles
of code will need to replace use of arrays through pointers with abstractions such as vector and span.
However, there are structures that cannot easily be fitted into this guaranteed framework. An example
is general graphs with nodes where ownership and lifetime aren’t clearly indicated so that type-and-
resource safety depends on the cleverness of the programmer. One possible solution is to cleanly and
explicitly separate ownership and access (e.g., a vector of owner pointers plus a data structure on non-
owning link pointers). Another is to use of a smart pointers (e.g. std::shared_ptr) plus tests for
circularities.

8. So what?
The static analysis I rely on for guarantees is not yet 100% implemented (but is getting close) and what is
available is not available on every platform. It would be a massive advantage for all C++ developers if it
were. Universal availability of Core Guidelines static analysis would be far more significant than any
single language extensions, and far easier/cheaper to achieve. It would also be following the tradition of
C and C++ in distinguishing between what is legal in the standard and what is good software
development. The compiler is not our only tool, and has never been.

What is checked statically should be principled and precisely specified. The C++ Core Guidelines is a
significant effort in that direction. Also, the completeness of the safety guarantees needs to be – as far
as possible – formally proved.

9. References
• [CG] The C++ Core Guidelines.
• The Core Guidelines Support Library (GSL).
• T. Ramananandro, G. Dos Reis, and X. Leroy: A mechanized semantics for C++ object

construction and destruction, with applications to resource management. ACM/SIGPLAN
Notices 2012/01/18.

• [Str’15] B. Stroustrup, H. Sutter, and G. Dos Reis: A brief introduction to C++'s model for type-
and resource-safety. Isocpp.org. October 2015. Revised December 2015.

• B. Stroustrup: C++ -- an Invisible Foundation of Everything. ACCU Overload No 161. Feb‘21.
• B. Stroustrup: Thriving in a crowded and changing world: C++ 2006-2020. ACM/SIGPLAN History

of Programming Languages conference, HOPL-IV. London. June 2020.
• H. Sutter: Lifetime safety: Preventing common dangling. P1179R1. 2019-11-22.
• A Microsoft guide to using the Core Guidelines static analyzer in Visual Studio.

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/microsoft/gsl
https://www.researchgate.net/publication/220997597_A_mechanized_semantics_for_C_object_construction_and_destruction_with_applications_to_resource_management
https://www.researchgate.net/publication/220997597_A_mechanized_semantics_for_C_object_construction_and_destruction_with_applications_to_resource_management
https://www.stroustrup.com/resource-model.pdf
https://www.stroustrup.com/resource-model.pdf
https://accu.org/journals/overload/29/161/overload161.pdf#page=10
https://dl.acm.org/doi/abs/10.1145/3386320
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1179r1.pdf
https://docs.microsoft.com/en-us/cpp/code-quality/using-the-cpp-core-guidelines-checkers?view=msvc-160

	Type-and-resource safety in modern C++
	Bjarne Stroustrup
	1. Introduction
	2. Object access
	3. Construction and destruction
	4. No dangling pointers
	4.1. Escaping pointers
	4.2. Invalidation
	4.3. “Odd” pointers

	5. Memory pools
	6. No Range errors
	7. Low-level code
	8. So what?
	9. References

