
Title:      Labels at the end of compound statements (C compatibility)
Author:  Martin Uecker, University of Göttingen, Germany
Date:      2020-10-26

Introduction

WG14 adopted a change for C2X that allows placement of labels everywhere inside a compound 
statement (N2508). While this improves compatibility with C++ which previously diverged from C 
by allowing labels in front of declarations, there is still a remaining incompatibility: C now does 
allow labels at the end of a compound statement, while C++ does not. It is proposed to change the 
C++ grammar to remove this remaining difference.

Example:

void foo(void)
{
first: // allowed in C++, now also allowed in C

int x; 

second: // allowed in both C++ and C
x = 1;

last: // not allowed in C++, but now allowed in C
}
 
The underlying reason for this difference is that the structure of the grammar is different.

In C declarations and statements are separate production rules which can both appear as block-items
inside compound statements. The simplest change for C was to also allow labels as independent 
block-items in addition to statements and declarations. This change then also allowed placing labels
at the end of a compound statement which was seen as useful feature.

In C++ declarations are statements and compound statements can only have statements as block-
items. Thus, labels can already be attached to all statements, i.e. including declarations, but can not 
be placed at the end of compound statements. Another difference is that in C++ (but not in C) it is 
possible to use declarations as sub-statements of a control statements. The  later seems to be an 
unintended side effect of making declarations be statements and now requires a rewrite rule to place
this declaration into a new scope.

Example:

void bar(void)
{

if (1)
here: int x;  // declaration allowed in C++ (not in C)

}

is rewritten to:

void bar(void)
{

if (1) {
here: 

int x;
}

}



Wording Changes

We list three alternative wording changes.

Alternative 1 is a minimal self-contained change that adds an explicit rule to have labels at  the end 
of compound-statement. The disadvantage is that such labels are treated specially and the formal 
grammar does not reflect the full symmetry of the situation.

Alternative 2 is still a simple change, which treats all labels in a compound-statement equally. The 
change makes the grammar also more similar to the C language, which could be seen as an 
advantage. It preserves the treatment of declarations as statement in C++ which is different to C.

Alternative 3 is a more complex change. It is based on the observation that regular statements are 
used as substatements of selection statements and iteration statements only. But these are also 
exactly the exceptional cases that in C++ need to be rewritten into a compound-statements to 
introduce a scope in case they contain declarations (see the example above). But after such 
rewriting, declarations, labels, and statements then only appear inside compound-statements where 
they can be mixed freely (according to the proposed rules). This suggests refactoring of the 
grammar by introducing the concept of a controlled-statement that can be used as substatement of 
selection statements and iteration statements. These controlled-statements are then always rewritten 
to compound-statements, taking care of all special cases using a single rule. A regular statement can 
then be defined in a simpler and more natural way by excluding both declaration-statements and 
labels. Statements, declaration-statements, and labels are all treated equally inside compound-
statements. With these changes, the C++ grammar would again follow the structure of the C 
grammar closely, become more symmetric, and the exceptional rules are consolidated to a single 
rewrite rule.
 

Common Wording

8.2 Label Labeled statement

A statement can be labeled. A label can be added to a statement or used anywhere in a compound-
statement.

labeled-statement:
label:

attribute-specifier-seqopt identifier : statement
attribute-specifier-seqopt case constant-expression : statement
attribute-specifier-seqopt default : statement

labeled-statement:
label statement

The optional attribute-specifier-seq appertains to the label. An identifier label declares the identifier.
The only use of an identifier label is as the target of a goto. The scope of a label is the function in 
which it appears. Labels shall not be redeclared within a function. A label can be used in a gotoIntr 
statement before its declaration. Labels have their own name space and do not interfere with other 
identifiers. [Note: A label may have the same name as another declaration in the same scope or a 
template-parameter from an enclosing scope. Unqualified name lookup ignores labels. — end note]



Case labels and default labels shall occur only in switch statements.

8.3 Expression statement

Expression statements have the form

expression-statement:
expressionopt ;

The expression is a discarded-value expression. All side effects from an expression statement are 
completed before the next statement is executed. An expression statement with the expression 
missing is called a null statement. [Note: Most statements are expression statements — usually 
assignments or function calls. A null statement is useful to carry a label just before the } of a 
compound statement and to supply a null body to an iteration statement such as a while statement. 
— end note]

Wording Alternative 1

8.4 Compound statement or block

So that several statements can be and used where one is expected, the compound statement (also, 
and equivalently, called “block”) is provided.

compound-statement:
{ statement-seqopt  label-seqopt }

statement-seq:
statement
statement-seq statement

label-seq:
label
label-seq label

A compound statement defines a block scope. [Note: A declaration is a statement ([stmt.dcl]). — 
end note]



Wording Alternative 2

8. Statements
8.1 Except as indicated, statements are executed in sequence.

statement:
labeled-statement
unlabeled-statement

unlabeled-statement:
labeled-statement
attribute-specifier-seqopt  expression-statement
attribute-specifier-seqopt  compound-statement
attribute-specifier-seqopt  selection-tatement
attribute-specifier-seqopt  iteration-statement
attribute-specifier-seqopt  jump-statement
declaration-statement
attribute-specifier-seqopt  try-block

8.4 Compound statement or block

So that several statements and labels can be mixed freely and used where one a single statement is 
expected, the compound statement (also, and equivalently, called “block”) is provided.

compound-statement:
{ statement-seqopt  block-item-seqopt }

statement-seq:
statement
statement-seq statement

block-item-seq:
block-item
block-item-seq block-item

block-item:
label
unlabeled-statement

A compound statement defines a block scope. [Note: A declaration is a statement ([stmt.dcl]). — 
end note]



8.5

The substatement in a selection-statement (each substatement, in the else form of the if statement) 
implicitly defines a block scope ([basic.scope]). If the substatement in a selection-statement is a 
single statement and not a compound-statement, it is as if it was rewritten to be a compound-
statement containing the original substatement including all labels which become independent block
items. [Example:
if (x)
  here: int i;
can be equivalently rewritten as
if (x) {
  here: 
  int i;
}
Thus after the if statement, i is no longer in scope. — end example]

8.6.

The substatement in an iteration-statement implicitly defines a block scope which is entered and 
exited each time through the loop. If the substatement in an iteration-statement is a single statement 
and not a compound-statement, it is as if it was  rewritten to be a compound-statement containing 
the original statement including all labels which become independent block items. [Example:
while (--x >= 0)
  here: int i;
can be equivalently rewritten as
while (--x >= 0) {
  here:
  int i;
}
Thus after the while statement, i is no longer in scope. — end example]



Wording Alternative 3

8. Statements
8.1 Except as indicated, statements are executed in sequence.

statement:
labeled-statement
attribute-specifier-seqopt  expression-statement
attribute-specifier-seqopt  compound-statement
attribute-specifier-seqopt  selection-tatement
attribute-specifier-seqopt  iteration-statement
attribute-specifier-seqopt  jump-statement
declaration-statement
attribute-specifier-seqopt  try-block

controlled-statement:
label controlled-statement
statement
declaration-statement

A controlled-statement implicitly defines a block scope ([basic.scope]).   A controlled-statement is 
rewritten to be a compound-statement containing the original statement or declaration-statement 
and including all labels which become independent block items. [Note: Controlled statements are 
used in a selection statements and iteration statements – end node] 
[Example:
if (x)
  here: int i;
is rewritten to
if (x) {
  here: 
  int i;
} – end example]

A substatement of a statement is one of the following:
(2.1) for a labeled-statement, its contained statement or declaration-statement,
(2.2) for a compound-statement, any statement or declaration-statement of its statement-seq,
(2.3) for a selection-statement, any of its statements (but not its init-statement), or, any statement or 
declaration statement contained in any of its controlled-statements
(2.4) for an iteration-statement, its contained statement (but not an init-statement), the statement or 
declaration-statement contained in its controlled-statement
(2.5) for a controlled-statement, its contained statement or declaration-statement.

8.4 Compound statement or block

So that several statements, declarations, and labels can be mixed freely and used where one a single 
statement is expected, the compound statement (also, and equivalently, called “block”) is provided.

compound-statement:
{ statement-seqopt  block-item-seqopt }

statement-seq:
statement



statement-seq statement

block-item-seq:
block-item
block-item-seq block-item

block-item:
label
statement
declaration-statement

A compound statement defines a block scope. [Note: A declaration is a statement ([stmt.dcl]). — 
end note]

8.5

Selection statements choose one of several flows of control.

  selection-statement:
if constexpropt ( init-statementopt condition ) controlled-statement
if constexpropt ( init-statementopt condition ) controlled-statement else controlled-statement
switch ( init-statementopt condition ) controlled-statement

The substatement in a selection-statement (each substatement, in the else form of the if statement) 
implicitly defines a block scope ([basic.scope]). If the substatement in a selection-statement is a 
single statement and not a compound-statement, it is as if it was rewritten to be a compound-
statement containing the original substatement. [Example:
if (x)
  int i;
can be equivalently rewritten as
if (x) {
  int i;
}
Thus after the if statement, i is no longer in scope. — end example]

An if statement of the form

if constexpropt ( init-statement condition ) controlled-statement

is equivalent to

{
   init-statement
   if constexpropt ( condition ) controlled-statement
}

and an if statement of the form

if constexpropt ( init-statement condition ) controlled-statement else controlled-statement

is equivalent to



{
   init-statement
   if constexpropt ( condition ) controlled-statement else controlled-statement
}

except that names declared in the init-statement are in the same declarative region as those declared 
in the condition.

A switch statement of the form

switch ( init-statement condition ) controlled-statement

is equivalent to

{
   init-statement
   switch ( condition ) controlled-statement
}

except that names declared in the init-statement are in the same declarative region as those declared 
in the condition.

8.6 Iteration statements [stmt.iter]

Iteration statements specify looping.

   iteration-statement:
while ( condition ) controlled-statement
do controlled-statement while ( expression ) ;
for ( init-statement conditionopt ; expressionopt ) controlled-statement
for ( init-statementopt for-range-declaration : for-range-initializer ) controlled-statement

The substatement in an iteration-statement implicitly defines a block scope which is entered and 
exited each time through the loop. If the substatement in an iteration-statement is a single statement 
and not a compound-statement, it is as if it was rewritten to be a compound-statement containing 
the original statement. [Example:
while (--x >= 0)
  here: int i;
can be equivalently rewritten as
while (--x >= 0) {
  here:
  int i;
}
Thus after the while statement, i is no longer in scope. — end example]

8.6.1 The while statement

When the condition of a while statement is a declaration, the scope of the variable that is declared 
extends from its point of declaration ([basic.scope.pdecl]) to the end of the while controlled-
statement. A while statement is equivalent to



label :
{
   if ( condition ) {
      controlled-statement
      goto label ;
   }
}

8.6.3 The for statement

The for statement

for ( init-statement conditionopt  ; expressionopt )  controlled-statement

is equivalent to

{
   init-statement
   while ( condition ) {
      controlled-statement
      expression ;
   }
}

except that names declared in the init-statement are in the same declarative region as those declared 
in the condition, and except that a continue in controlled-statement (not enclosed in another 
iteration statement) will execute expression before re-evaluating condition. [Note: Thus the first 
statement specifies initialization for the loop; the condition ([stmt.select]) specifies a test, sequenced
before each iteration, such that the loop is exited when the condition becomes false; the expression 
often specifies incrementing that is sequenced after each iteration. — end note

8.6.4 The range-based for statement

The range-based for statement

for ( init-statementopt for-range-declaration : for-range-initializer ) controlled-statement

Is equivalent to

{
   init-statementopt

   auto &&range = for-range-initializer ;
   auto begin = begin-expr ;
   auto end = end-expr ;
   for ( ; begin != end; ++begin ) {
      for-range-declaration = * begin ;
      controlled-statement
   }
}

where


