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Abstract

We propose a standard library type std::generator which implements a coroutine generator
compatible with ranges.

Revisions

R2

• Some wording fixes

• Improve the section on allocator support

• Updated implementation

R1

• Add benchmarks results and discussion about performance

• Introduce elements_of to avoid ambiguities when a generator is convertible to the refer-
ence type of the parent generator.

• Add allocator support

• Symmetric transfer works with generators of different value / allocator types

• Remove iterator::operator->

• Put generator in a new <generator> header.

• Add an other example to motivate the Value template parameter

Example
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std::generator<int> fib (int max) {
co_yield 0;
auto a = 0, b = 1;

for(auto n : std::views::iota(0, max)) {
auto next = a + b;
a = b, b = next;
co_yield next;

}
}

int answer_to_the_universe() {
auto coro = fib(7) ;
return std::accumulate(coro | std::views::drop(5), 0);

}

Motivation

C++ 20 had very minimalist library support for coroutines. Synchronous generators are an
important use case for coroutines, one that cannot be supported without the machinery
presented in this paper. Writing an efficient and correctly behaving recursive generator is
non-trivial, the standard should provide one.

Design

While the proposed std::generator interface is fairly straight-forward, a few decisions are
worth pointing out.

input_view

std::generator is a non-copyable view which models input_range and spawn move-only itera-
tors. This is because the coroutine state is a unique resource (even if the coroutine handle is
copyable). Unfortunately, some generators can satisfy the view constraints but fail to model
the view O(1) destruction requirement:

template <class T>
std::generator<T> all (vector<T> vec) {

for(auto & e : vec) {
co_yield e;

}
}

Header

Multiple options are available as to where put the generator class.
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• <coroutine>, but <coroutine> is a low level header, and generator depends on bits of
<type_traits> and <iterator>.

• <ranges>

• A new <generator>

Separately specifyable Value Type

This proposal supports specifying both the ”yielded” type, which is the iterator ””reference””
type (not required to be a reference), and its corresponding value type. This allow ranges to
handle proxy types and wrapped reference, like this implementation of zip:

template<std::ranges::input_range Rng1,
std::ranges::input_range Rng2>
generator<
std::tuple<std::ranges::range_reference_t<Rng1>,
std::ranges::range_reference_t<Rng2>,
std::tuple<std::ranges::range_value_type_t<Rng1>,
std::ranges::range_value_type_t<Rng2>>>
zip(Rng1 r1, Rng2 r2) {

auto it1 = std::ranges::begin(r1);
auto it2 = std::ranges::begin(r2);
auto end1 = std::ranges::end(r1);
auto end2 = std::ranges::end(r2);
while (it1 != end1 && it2 != end2) {

co_yield {*it1, *it2};
++it1; ++it2;

}
}

In this second example, using string as value type ensures that calling code can take the
necessay steps to make sure iterating over a generator would not invalidate any of the yielded
values

// Yielding string literals : always fine
std::generator<std::string_view> string_views() {

co_yield "foo";
co_yield "bar";

}

std::generator<std::string_view, std::string> strings() {
co_yield "start";
std::string s;
for (auto sv : string_views()) {

s = sv;
s.push_back('!');
co_yield s;

}
co_yield "end";

}
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// conversion to a vector of strings
// If the value_type was string_view, it would convert to a vector of string_view,
// which would lead to undefined beavior as the string_views may get invalidated upon iteration!
auto v = std::ranges::to<vector>(strings()); // (P1206R3 [3])

Recursive generator

A ”recursive generator” is a coroutine that supports the ability to directly co_yield a generator
of the same type as a way of emitting the elements of that generator as elements of the
current generator.

Example: A generator can co_yield other generators of the same type

generator<const std::string&> delete_rows(std::string table, std::vector<int> ids) {
for (int id : ids) {

co_yield std::format("DELETE FROM {0} WHERE id = {1}", table, id);
}

}

generator<const std::string&> all_queries() {
co_yield elements_of(delete_rows("user", {4, 7, 9 10}));
co_yield elements_of(delete_rows("order", {11, 19}));

}

Example: A generator can also be used recursively

struct Tree {
Tree* left;
Tree* right;
int value;

};

generator<int> visit(Tree& tree) {
if (tree.left) co_yield elements_of(visit(*tree.left));
co_yield tree.value;
if (tree.right) co_yield elements_of(visit(*tree.right));

}

In addition to being more concise, the ability to directly yield a nested generator has some
performance benefits compared to iterating over the contents of the nested generator and
manually yielding each of its elements.

Yielding a nested generator allows the consumer of the top-level coroutine to directly resume
the current leaf generator when incrementing the iterator, whereas a solution that has each
generator manually iterating over elements of the child generator requires O(depth) coroutine
resumptions/suspensions per element of the sequence.

Example: Non-recursive form incurs O(depth) resumptions/suspensions per element and is
more cumbersome to write
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generator<int> slow_visit(Tree& tree) {
if (tree.left) {

for (int x : elements_of(visit(*tree.left)))
co_yield x;

}
co_yield tree.value;
if (tree.right) {

for (int x : elements_of(visit(*tree.right)))
co_yield x;

}
}

Exceptions that propagate out of the body of nested generator coroutines are rethrown into
the parent coroutine from the co_yield expression rather than propagating out of the top-
level ‘iterator::operator++()‘. This follows the mental model that ‘co_yield someGenerator‘ is
semantically equivalent to manually iterating over the elements and yielding each element.

For example: nested_ints() is semantically equivalent to manual_ints()

generator<int> might_throw() {
co_yield 0;
throw some_error{};

}

generator<int> nested_ints() {
try {

co_yield elements_of(might_throw());
} catch (const some_error&) {}
co_yield 1;

}

// nested_ints() is semantically equivalent to the following:
generator<int> manual_ints() {

try {
for (int x : might_throw()) {

co_yield x;
}

} catch (const some_error&) {}
co_yield 1;

}

void consumer() {
for (int x : nested_ints()) {

std::cout << x << " "; // outputs 0 1
}

for (int x : manual_ints()) {
std::cout << x << " "; // also outputs 0 1

}
}
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elements_of

elements_of is a utility function that prevents ambiguity when a nested generator type is
convertible to the value type of the present generator

generator<int> f()
{

co_yield 42;
}

generator<any> g()
{

co_yield f(); // should we yield 42 or generator<int> ?
}

To avoid this issue, we propose that:

• co_yield <expression> always yield the value directly.

• co_yield elements_of(<expression>) yield the values of the nested generator.

For convenience, we further propose that co_yield elements_of(x) be extended to support
yielding the values of arbitrary ranges beyond generators, ie

generator<int> f()
{

std::vector<int> v = /*... */;
co_yield elements_of(v);

}

Symmetric transfer

The recursive form can be implemented efficiently with symmetric transfer. Earlier works in
[CppCoro] implemented this feature in a distinct recursive_generator type.

However, it appears that a single type is reasonably efficient thanks to HALO optimizations
and symmetric transfer. The memory cost of that feature is 3 extra pointers per generator.
It is difficult to evaluate the runtime cost of our design given the current coroutine support
in compilers. However our tests show no noticeable difference between a generator and
a recursive_generator which is called non recursively. It is worth noting that the proposed
design makes sure that HALO [5] optimizations are possible.

While we think a single generator type is sufficient and offers a better API, there are three
options:

• A single generator type supporting recursive calls (this proposal).

• A separate type recursive_generator that can yield values from either recursive_generator
or a generator. That may offer very negligible performance benefits, same memory
usage.
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• A separate recursive_generator type which can only yield values from other recursive_-
generator.

That third option would make the following ill-formed:

generator<int> f();
recursive_generator<int> g() {

co_yield f(); // incompatible types
}

Instead you would need to write:

recursive_generator<int> g() {
for (int x : f()) co_yield x;

}

Such a limitation can make it difficult to decide at the time of writing a generator coroutine
whether or not you should return a generator or recursive_generator as you may not
know at the time whether or not this particular generator will be used within recursive_-
generator or not.

If you choose the generator return-type and then later someone wants to yield its ele-
ments from a recursive_generator then you either need to manually yield its elements
one-by-one or use a helper function that adapts the generator into a recursive_generator.
Both of these options can add runtime cost compared to the case where the genera-
tor was originally written to return a recursive_generator, as it requires two coroutine
resumptions per element instead of a single coroutine resumption.

Because of these limitations, we are not recommending this approach.

Symmetric transfer is possible for different generator types as long as the reference type is
the same, aka, different value type or allocator type does not preclude symmetric transfer
(see sectiion on allocators).

How to store the yielded value in the promise type?

When the reference type of generator is not a reference, A copy of the yielded value need to
be stored, to support both rvalue references and yielding values of different types (which are
convertible_to reference).

There are multiple implementation strategies possible to store the value in the generator. A
previous revision of this paper always stored a copy of the yielded value. When the reference
type was not a reference, this led to two copies: - One at the point of the co_yield expression -
One when calling the iterator::operator*.

However, the yielded expression is guaranteed to be alive until the coroutine resumes, it is,
therefore, sufficient to store its address.

We can take advantage of that fact by only storing a pointer in the generator. When a copy
needs to be made by yield_value (because the yielded value is not of the same type, or cannot
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bind to the reference type), we can store the value in an awaiter that will remain alive until
the end of the co_yield expression.

std::suspend_always yield_value(const Ref& x) {
auto &root = rootOrLeaf_.promise();
root.valuePtr_ = std::addressof(x);
return {};

}

std::suspend_always yield_value(Ref& x) {
auto &root = rootOrLeaf_.promise();
root.valuePtr_ = std::addressof(x);
return {};

}

template<typename T = std::remove_cvref_t<Ref>>
requires !is_reference_v<Ref> && is_constructible_v<Ref, T>
auto yield_value(T&& x) {

struct yield_value_holder {
Ref ref;

bool await_ready() noexcept { return false; }

template<typename Promise>
void await_suspend(coroutine_handle<Promise> h) noexcept {

h.promise().valuePtr_ = addressof(ref);
}
void await_resume() noexcept {}

};
return yield_value_holder{forward<T>(x)};

}

A drawback of this solution is that the yielded value is only destroyed at the end of the full
expression:

(co_yield x, co_yield y); // x is destroyed after y is yielded.

We think this is a reasonable tradeof as it avoids a copy. Further optimization could be done to
copy small values - and avoid an indirection. but it is unclear what the cost of this indirection
is, as none of these accesses should result in cache misses).

To support different implementation strategies to store the value, the wording does not
specify a type for the return value of yield_value.

Allocator support

In line with the design exploration done in section 2 of P1681R0 [4], std::generator can
support both stateless and stateful allocators, and strive to minimize the interface verbosity
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for stateless allocators, by templating both the generator itself and the promise_type’s new
operator on the allocator type. Details for this interface are found in P1681R0 [4].

coroutine_parameter_preview_t such as discussed in section 3 of P1681R0 [4] has not been
explored in this paper.

std::generator<int> stateless_example() {
co_yield 42;

}

template <class Allocator>
std::generator<int>
allocator_example(std::allocator_arg_t, Allocator alloc) {

co_yield 42;
}

my_allocator<std::byte> alloc;
input_range auto rng = allocator_example<my_allocator<std::byte>>(std::allocator_arg, alloc);

The proposed interface requires that, if an allocator is provided, it is the second argument to
the coroutine function, immediately preceded by an instance of std::allocator_arg_t. This
approach is necessary to distinguish the allocator desired to allocate the coroutine state from
allocators whose purpose is to be used in the body of the coroutine function. The required
argument order might be a limitation if any other argument is required to be the first, however,
we cannot think of any scenario where that would be the case.

We think it is important that all standard and user coroutines types can accommodate similar
interfaces for allocator support. In fact, the implementation for that allocator support can be
shared amongst generator, lazy and other standard types.

By default std::generator type erases the allocator type, and uses std::allocator unless
an allocator is provided to the coroutine function. Then:

Type erased allocator(default)

template <class Allocator>
std::generator<int> f(std::allocator_arg_t, Allocator alloc) {}

f(std::allocator_arg, my_alloc{});

Returns a generator of type std::generator<int, int, void> where void denotes that the
allocator is type erased. The allocator is store on the coroutine state if it is stateful or not
default constructible; a pointer is always stored so that the deallocate method of the type
erased allocator can be called.

No allocator

std::generator<int> f() {}
f();

Returns a generator of type std::generator<int, int, void> where void denotes that the
allocator is type erased. A pointer is stored so that the deallocate method of the type erased
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allocator can be called. The allocator is std::allocator and is not stored on the frame (because
it is stateless)

Explicit stateless allocator

std::generator<int, int, std::stateless_allocator<int>> f() {}
f();

Returns a generator of type std::generator<int, int, std::stateless_allocator<int>> No
extra storage is used for the allocator because it is stateless.

Explicit stateful allocator

std::generator<int, int, some_statefull_allocator<int>>
f(std::allocator_arg_t, some_statefull_allocator<int> alloc) {}

f(std::allocator_arg, some_allocator); // must be convertible to some_statefull_allocator

Returns a generator of type std::generator<int, int, some_statefull_allocator<int>> The
allocator is copied in the coroutine state.

Interaction with symmetric transfer and allocator support

The allocator must be part of the promise type. Or implementation uses a base class so that
generators of different allocator types can yield each other. This leaves with 2 implementation
strategies

• Storing a pointer to the base class in the promise handle

• Leave implementers find the best implementation strategy and can bell their own imple-
mentation to be well-formed

• Modify the wording as follow to allow coroutine_handle<promise_base>::from_address(coro.address());
to be well-formed:

To support yielding nested generator of different allocator types we then have several options:

• Leaving implementers find the best strategy with compiler magic

• Modify from_address to allow construcruction from a coroutine of layout compatible
type

static constexpr coroutine_handle<Promise> coroutine_handle<Promise>::from_address(void* addr);

Expects: addr was obtained via a prior call to address on an object of type
cvcoroutine_handle<Promise> of type cvcoroutine_ handle<T> whereT is any
type such that is_layout_compatible_v<T, Promise> is true.

Supporting allocators requires storing, in all cases, a function pointer adjacent to the coroutine
state (to track a deallocation function), along with the allocator itself in the case of stateful
allocators.
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Can we postpone adding support for allocator later?

A case can be made that allocator support could be added to std::generator later. However,
because the proposed design has the allocator as a template parameter, adding allocator after
std::generator ships would represent an ABI break. We recommend that we add allocator
support as proposed in this paper now and make sure that the design remains consistent as
work on std::lazy is made in this cycle. However, it would be possible to extend support for
different mechanisms (such as presented in section 3 of P1681R0 [4] later.

Implementation and experience

generator has been provided as part of cppcoro and folly. However, cppcoro offers a separate
recursive_generator type, which is different than the proposed design.

Folly uses a single generator type which can be recursive but doesn’t implement symmetric
transfer. Despite that, Folly users found the use of Folly:::Generator to be a lot more efficient
than the eager algorithm they replaced with it.

ranges-v3 also implements a generator type, which is never recursive and predates the work
on move-only views and iterators [1], [2] which forces this implementation to ref-count the
coroutine handler.

Our implementation [Implementation] consists of a single type that takes advantage of sym-
metric transfer to implement recursion.

Performance & benchmarks

Because implementations are still being perfected, and because performance is extremely
dependant on whether HALO optimization (see P0981R1 [?]) occurs, it is difficult at this time
to make definitive statements about the performance of the proposed design.

At the time of the writing of this paper, Clang is able to inline non-nested coroutines whether
the implementation supports nested coroutines or not, while GCC never performs HALO
optimization.

When the coroutine is not inlined, support for recursion does not noticeably impact perfor-
mance. And, when the coroutine yields another generator, the performance of the recursive
version is noticeably faster than yielding each element of the range. This is especially notice-
able with deep recursion.

Clang Clang ST1 GCC GCC ST1 MSVC MSVC ST1

Single value (1) 0.235 (2) 2.36 12.4 13.4 61.9 63.7

Single value, noinline (3) 13.5 13.7 14.1 15.2 63.8 64.4

Deep nesting 43670266.0 (4) 427955.0 58801348 338736 224052033 4760914

1 Symmetric transfer.

The values are expressed in nanoseconds. However, please note that the comparison of
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the same result across compiler is not meaningful, notably because the MSVC results were
obtained on different hardware. That being said we observe:

• Only Clang can perform constant folding of values yielded by simple coroutine (1)

• When the generator supports symmetric transfer, clang is not able to fully inline the
generator construction, but HALO is still performed (2).

• When HALO is not performed, the relative performance of both approach is similar (3).

• Supporting recursion is greatly beneficial to nested/recursive algorithms (4).

The code for these benchmarks as well as more detailled results can be found on Github.

Wording

The following wording is meant to illustrate the proposed API.

�? Header <ranges> synopsis [ranges.syn]

namespace std::ranges {

...

template<input_or_output_iterator I, sentinel_for<I> S, subrange_kind K>
inline constexpr bool enable_borrowed_range<subrange<I, S, K>> = true;

// ??, dangling iterator handling
struct dangling;

template<std::ranges::input_range R>
struct elements_of;

template<range R>
using borrowed_iterator_t = conditional_t<borrowed_range<R>, iterator_t<R>, dangling>;

...

}

�? ranges::element_of [ranges.elementsof]

elements_of is a type that encapsulates a range and acts as a tag in overload sets to disam-
biguate when a range should be treated as a sequence rather than a single value in genetric
contexts.

[ Example:

generator<any> f(input_range auto rng) {
co_yield rng; // yield rng as a single value
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co_yield elements_of(rng); // yield each element of rng
}

—end example ]

namespace std::ranges {
template<std::ranges::input_range R>
struct elements_of {

R&& range_; // exposition only

explicit constexpr elements_of(R&& r) noexcept;

constexpr elements_of(elements_of&&) = default;

elements_of(const elements_of&) = delete;
elements_of& operator=(const elements_of&) = delete;
elements_of& operator=(elements_of&&) = delete;

constexpr R && get() && noexcept;
};
template<std::ranges::input_range R>
elements_of(R&& r) -> return elements_of<R>;

}

explicit constexpr elements_of(R&& r) noexcept;

Effects: Initializes range_ with forward<R>(r).

constexpr R && get() && noexcept;

Returns: forward<R>(range_).
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�? Header <generator> synopsis [generator.syn]

#include <coroutine>
#include <ranges>

namespace std {

template<class Ref,
common_reference_with<Ref> Value = remove_cvref_t<Ref>,
class Allocator = void>

class generator;

template <class Ref, class Value, class Allocator>
inline constexpr bool ranges::enable_view<generator<Ref, Value, Allocator>> = true;

}

�? Generator View [coroutine.generator]

�? Overview [coroutine.generator.overview]

generator generates a sequence of elements by repeatedly resuming the coroutine it was
returned from. When the coroutine is resumed, it is executed until it reaches either a co_yield
expression or the end of the coroutine.

Elements of the sequence are produced by the coroutine each time a co_yield expression is
evaluated.

When the co_yield expression is of the form co_yield elements_of(rng), each element of the
range rng is successively produced as an element of the generator.

generator models view and input_view.

[ Example:

generator<int> iota(int start = 0) {
while(true)

co_yield start++;
}

void f() {
for(auto i : iota() | views::take(3))
cout << i << " " ; // prints 0 1 2

}

—end example ]

�? Class template generator [coroutine.generator.class]
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namespace std {

template <class Ref, common_reference_with<Ref> Value = remove_cvref_t<Ref>,
class Allocator = void>

class generator {
class promise_type_; // exposition only

public:
using promise_type = promise_type_;

class iterator; // exposition only

generator() noexcept = default;
generator(const generator &other) = delete;
generator(generator && other) noexcept;

~generator();

generator &operator=(generator other) noexcept;

iterator begin();
sentinel end() const noexcept;

private:
std::coroutine_handle<promise_type> coroutine_ = nullptr; // exposition only
bool started_ = false; // exposition only

explicit generator(std::coroutine_handle<promise_type> coroutine) noexcept; // exposition only

};
}

• coroutine_traits<generator<Ref, Value, Allocator>>::promise_type is valid an denotes
a type,

• Allocator either meets the Cpp17Allocator requirements or is void.

generator(std::coroutine_handle<promise_type> coro) noexcept;

Initializes coroutine_ with coro.

generator(generator &&other) noexcept;

Initializes coroutine_ with exchange(other.coroutine_, {}),
and started_ with exchange(other.started_, false).

~generator() noexcept;

Effects: equivalent to:

if (coroutine_) {
if (started_ && !coroutine_.done()) {
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coroutine_.promise().destruct_value_();
}
coroutine_.destroy();

}

generator &operator=(generator other) noexcept;

Effects: equivalent to:

swap(coro_, other.coro_);
swap(started_, other.started_);

iterator begin();

Preconditions:

• !coroutine_ is true or coroutine_ refers to a coroutine suspended at its initial
suspend-point,

• started_ is false.

Effects: Equivalent to:

if(coroutine_) {
started_ = true;
coroutine_.resume();

}
return iterator(coroutine_);

[Note: It is undefined behavior to call begin multiple times on the same coroutine. —end
note ]

default_sentinel_t end() const noexcept;

Returns: default_sentinel_t{}.

�? Exposition-only class template generator::promise_type_ [coroutine.genera-
tor.promise]

template <class Ref, class Value, class Allocator>
class generator<Ref, Value, Allocator>::promise_type_ {

friend generator;

union {
Ref value_; // exposition only

};

void destruct_value_() { // exposition only
if constexpr(!is_lvalue_reference_v<Ref>) {
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value_.~decay_t<Ref>();
}

public:

generator<Ref, Value, Allocator> get_return_object() noexcept;

suspend_always initial_suspend() noexcept;

auto final_suspend() noexcept;

unspecified yield_value(const Ref & value)
noexcept(is_nothrow_move_constructible_v<Ref>);

template <class T>
requires is_convertible_v<T, Ref>
unspecified yield_value(T&& x) noexcept(is_nothrow_constructible_v<Ref, T>);

template <class TVal, class TAlloc>
unspecified yield_value(elements_of<generator<Ref, TVal, TAlloc>> g) noexcept; // see below

template<ranges::input_range R>
requires convertible_to<ranges::range_reference_t<R>, Ref>
unspecified yield_value(elements_of<R> rng); // see below

void await_transform() = delete;

void return_void() noexcept {};

void unhandled_exception();

static void* operator new(size_t size) requires same_as<Allocator, void>;
static void* operator new(size_t size) requires (!same_as<Allocator, void> && is_default_constructible_v<Allocator>);

template<typeame Alloc, class... Args>
static void* operator new(size_t size, allocator_arg_t, Alloc& alloc, Args&...);

template<class This, typeame Alloc, class... Args>
static void* operator new(size_t size, This&, allocator_arg_t, Alloc& alloc, Args&...);

static void operator delete(void* pointer, size_t size) noexcept;
};

generator<Ref, Value, Allocator> get_return_object() noexcept;

Effects: Equivalent to:

return generator<Ref, Value, Allocator>{
coroutine_handle<promise_type>::from_promise(*this)};

suspend_always initial_suspend() noexcept;
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Returns: suspend_always{}.

unspecified yield_value(const Ref& x)
noexcept(is_nothrow_move_constructible_v<Ref>);

template <class T>
requires is_convertible_v<T, Ref>
unspecified yield_value(T&& x)

noexcept(is_nothrow_constructible_v<Ref, T>);

Effects: Initialises value_ from static_cast<decltype(x)>(x); Returns: An implementation-
defined awaitable type.

template <class TVal, class TAlloc>
auto yield_value(elements_of<generator<Ref, TVal, TAlloc>> g) noexcept;

Mandates:

• TAlloc meets the Cpp17Allocator requirements,

Effects: Execution is transferred to the coroutine represented by g.coroutine_ until
its completion. After g.coroutine_ completes, the current coroutine is resumed. If
g.coroutine_ completes with an exception, the exception is rethrown from the ‘co_yield‘
expression.

Variables with automatic storage duration in the scope of the coroutine represented
by g.coroutine_ are destroyed before variables with automatic storage duration in the
scope of the coroutine denoted by this coroutine.

[Note: Generators can transfer control recursively. —end note ]

Returns: An implementation defined awaitable type which takes ownership of the gener-
ator g.

template<std::ranges::input_range R>
requires convertible_to<ranges::range_reference_t<R>, Ref>

auto yield_value(elements_of<R> rng);

Effects: Equivalent to:

{
auto it = std::ranges::begin(rng.get());
auto itEnd = std::ranges::end(rng.get());
while (it != itEnd) {

co_yield *it;
++it;

}
}

The return object is of an implementation defined type T such that is_same_v<coroutine_-
traits<T>::promise_type, coroutine_traits<generator>::promise_type> is true.

[Note: The coroutine state is allocated with Allocator - or allocator<byte> if is_same_-
v<Allocator, void> is true. —end note ]
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Returns: An implementation-defined awaitable type.

void unhandled_exception();

Effects: Equivalent to: throw;

static void* operator new(size_t size) requires same_as<Allocator, void>;

Effects: Allocates the coroutine state with std::allocator.

static void* operator new(size_t size) requires (!same_as<Allocator, void> && is_default_constructible_v<Allocator>);

Effects: Allocates the coroutine state with a default-constructed instance of Allocator.

template<typeame Alloc, class... Args>
static void* operator new(size_t size, allocator_arg_t, Alloc& alloc, Args&...);

template<class This, typeame Alloc, class... Args>
static void* operator new(size_t size, This&, allocator_arg_t, Alloc& alloc, Args&...);

Mandates:

• same_as<Allocator, void> || convertible_to<Alloc, Allocator> is true,

• Alloc meets the Cpp17Allocator requirements,

Effects: Allocates the coroutine state with Alloc.

[Note: If std::allocator_traits<Alloc>::is_always_equal::value is falseor if is_default_-
constructible_v<Alloc> is false, alloc is stored in the allocation for the coroutine state.
—end note ]

static void operator delete(void* pointer, size_t size) noexcept;

Deallocate the coroutine state with an instance of the allocator equivalent to the one
that was use to allocate it.

�? Class template generator::iterator [coroutine.generator.iterator]

template <class Ref, class Value, class Allocator>
class generator<Ref, Value, Allocator>::iterator {
private:

std::coroutine_handle<promise_type> coroutine_; // exposition only

public:
using iterator_category = std::input_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = promise_type::value_type;
using reference = promise_type::reference;

iterator() noexcept = default;
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iterator(const iterator&) = delete;

iterator(iterator&& other) noexcept;

iterator& operator=(iterator&& other) noexcept;

explicit iterator(std::coroutine_handle<promise_type> coroutine) noexcept; // exposition only

bool operator==(default_sentinel_t) const noexcept;

iterator& operator++();
void operator++(int);

reference operator*() const noexcept(std::is_nothrow_copy_constructible_v<reference>);

};

iterator(iterator&& other) noexcept;

Effects: Initializes coroutine_ with exchange(other.coroutine_, {}).

iterator& operator=(iterator&& other) noexcept;

Effects: Equivalent to coroutine_ = exchange(other.coroutine_, {});

explicit iterator(std::coroutine_handle<promise_type> coroutine) noexcept;

Effects: Initializes coroutine_ with coroutine.

bool operator==(default_sentinel_t) const noexcept

Returns: !coroutine_ || coroutine_.done().

iterator& operator++();

Preconditions: coroutine_ && !coroutine_.done() is true.

Effects: Equivalent to:

coroutine_.promise().destruct_value_();
coroutine_.resume();
return *this;

void operator++(int);

Preconditions: coroutine_ && !coroutine_.done() is true.

Effects: Equivalent to:

(void)operator++();

reference operator*() const
noexcept (noexcept(std::is_nothrow_copy_constructible_v<reference>));
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Preconditions: coroutine_ && !coroutine_.done() is true.

Effects: Equivalent to:

return coroutine_.promise().value_;

Feature test macros

Insert into [version.syn]

#define __cpp_lib_generator <DATE OF ADOPTION> // also in <ggenerator>
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