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1 Introduction

The 2019 Cologne meeting highlighted that multiple approaches and design philosophies to asyn-
chronicity and i/o were beginning to ‘butt heads’ against one another. The 2019 Belfast meeting
found unexpected committee support for the low level file i/o proposal [P1883] file_handle and
mapped_file_handle, with much feedback being received that many would like to see a similar low
level API treatment of non-file i/o. It was noted again during the second discussion of [P1750] A
Proposal to Add Process Management to the C++ Standard Library that most of P1750 deals with
i/o rather than processes, because nowhere else in the standard deals with the pipe i/o required to
speak stdin, stdout and stderr to child processes.

Straight after the Belfast meeting I had an email discussion with all the major modern i/o players
on WG21, during which I proposed building a consistent low level i/o API framework capable of
solving everybody’s use cases, while also being compatible with Sender-Receiver, and specifically
designed so a Networking TS implementation could be wholly constructed from it. If successful, we
would have a path forwards via which all modern i/o in the future C++ standard could be made a
consistent experience for C++ developers, whilst retaining flexibility of composure and genericity,
but also with low level i/o’s strong guarantees of propagating the i/o determinism characteristics of
the underlying platform.

Due to limits on free time, the prototype only implements pipe_handle. Due to surprise at the
difficulty of matching ASIO’s performance, which required several complete redesigns to achieve
which were time-costly, by the time this paper was written the prototype only works on Microsoft
Windows, and only in single threaded configuration. The recommendations made by this paper
ought to be coloured appropriately.

2 Background and Context

As C++ moves into its fourth decade, there is a widespread yearning for its i/o facilities to be
modernised. The considerable optional improvements to i/o specified in POSIX.2008 were made
mandatory in POSIX.2017, however due to how long it took for the Filesystem TS to be standard-
ised, i/o in standard C++ remains a 1990s-era experience.

The decision to standardise ASIO as the Networking TS in 2014 began an onslaught of standardis-
ation work on the many prerequisites necessary to codify what ‘work’ is, and what ‘execute’ must
mean [P0443]. This took longer than anyone expected, and it meant that the Networking TS moved
target from C++ 17, then to 20, and most recently to 23.

Concurrent to these developments was the development of Coroutines which shipped with C++ 20,
which is a language feature built into the core of C++ itself. As a language not library feature,
Coroutines gets special ‘magical’ treatment by the compiler and runtime in various use cases and
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contexts. Some felt that any Networking i/o proposal not built entirely around the same design
language and design philosophy as Coroutines must be by definition suboptimal, even maybe the
wrong choice going forward. Others felt that an ISO standards committee specifically exists to
standardise existing practice, and that already far too many fundamental refactorings of ASIO had
been performed into order to mutate it into something that WG21 would accept as the Networking
i/o layer.

As the specifics for Executors and Networking as intended for C++ 23 have firmed up, the divi-
sions between philosophical and ideological opinions on what should, and should not, became more
apparent. This led to some particularly heated conversations within WG21 committee meetings,
never mind elsewhere in the C++ userbase and ecosystem.

Thankfully, this is engineering rather than religion or politics, and a great deal of highly contentious
debate can be solved to the satisfaction of all via demonstrating proof in code. The challenging
problem at hand was whether it was possible to build an i/o framework which was a consistent API
experience from lowest to highest levels, whilst retaining performance, determinism, and not being
a pain to use.

3 Design principles

The goals I set out in the post-Belfast discussion for the extension of LLFIO into asynchronous
non-file i/o were as follows, in order:

1. Low level i/o should be an optimal building block experience on top of which to
write high level abstractions

That means adhering to the LLFIO API design principles, which are: (i) strong ABI bound-
aries such that all platform-specific code lives behind an ABI and away from the translation
unit, and header files are interfaces not implementation (i.e. very low build impact) (ii) all the
determinism and performance supplied by the OS and platform are to be delivered undam-
aged to the API user (i.e. no dynamic memory allocation, no copying memory, no mutexs, no
hidden waits) (iii) it should always be possible to max out your hardware from a single kernel
thread, firstly in terms of minimum latency, secondly in terms of maximum throughput, in
that order.

2. A spinlooped polling API design should be the topmost asynchronous i/o API
layer

In general, low latency can be exchanged for increased throughput, but throughput cannot
be exchanged for lower latency. On that basis, a reactor-based API design – which is fun-
damentally about favouring throughput over latency – is the wrong choice for the topmost
asynchronous i/o API layer. A reactor-based API ought to come after a spinlooped polling
API layer.

I appreciate that for those who have only ever used ASIO in its default out of the box con-
figuration, it is hard to imagine an asynchronous i/o API which doesn’t have an i/o service
dispatching i/o completions to whichever next kernel thread becomes idle.
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However for an important subset of Networking users (e.g. many who work in Finance), the
word ‘thread’ is as anathema as the word ‘malloc’ is to audio programmers. Threads mean
synchronisation, and synchronisation means loss of determinism. Furthermore completing i/o
on the ‘wrong’ kernel thread can mean loss of cache warmth, also damaging determinism. Such
low latency networking users run a custom build of ASIO usually with ASIO_DISABLE_THREADS

defined, with a separate i/o service instance per kernel thread, and with Mellanox’s https://
github.com/Mellanox/libvma redirecting BSD socket APIs into non-kernel RDMA for extra
low latency.

My goal was to directly support ultra-low-latency single-kernel-thread usermode RDMA i/o
as the principle API design for low level asynchronous i/o, with failover to a reactor API
layer. For some high end devices, looping .poll() over a (small) array of pending i/o would
be all that you need do for minimum possible latency i/o. There would also be a second tier
of API suitable for large arrays of pending i/o which efficiently as-if calls .poll() for only
those handles which have signalled, but otherwise is as fully deterministic as it is possible to
be. And finally, there would be a third tier of API which if no pending i/o has been signalled,
will sleep the kernel thread until any pending i/o signals.

For those who don’t care about latency and only care about throughput, they can exclusively
use the third tier of API, and they would get what out-of-the-box ASIO currently provides.

3. Match or exceed ASIO’s performance

There is no point proposing a low level asynchronous i/o layer which is slower than ASIO,
otherwise end users pay for what they don’t use, and you cannot construct a useful imple-
mentation of ASIO on top.

4. It must be possible to implement the Networking TS entirely using the low level
framework

Given the design constraints already outlined, directly using the low level asynchronous i/o
framework will be laden with footguns and unanticipated surprise, never mind much tedious
verbosity. Strict discipline, and considerable domain experience, is required to write correct,
high performance, low level i/o code – just as it is for someone writing lock free code using
atomics.

Conversely, the C++ userbase has extensive experience with ASIO; StackOverflow and many
books are laden with answers and design patterns for how best to write high throughput
networking code using ASIO; and the uninitiated programmer can get up to speed with writing
correct, high throughput networking in C++ quickly given all this documentation already
available.

I strongly believe that we need to standardise ASIO as is. To do anything else will not be
warmly received by the C++ userbase for the simple reason that ASIO works, and it works
well without too much effort for its solution domain of high throughput networking i/o.

This does not mean however that ASIO ought to be standardised as a black box which performs
magic internally. If it can be standardised as a convenient set of high level wrappers abstracting
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away the footguns, mandatory discipline and verbosity tedium which doing low level i/o
directly must always force upon the developer, I find that the ideal outcome for standardising
Networking i/o, personally speaking.

4 Walkthrough of the proposed low level i/o API design

4.1 Simple blocking i/o (extract from P1031 Low level file i/o)

Many thought twenty years ago that simple blocking i/o would never be used in high performance i/o
code, however as the added overhead of implementing asynchronous i/o over the i/o itself increases
due to hardware improvements, for use cases where the i/o is highly likely to be implemented as
memcpy() (e.g. all file i/o served from the kernel cache, all RDMA on shared memory regions with
a current local oplock etc), simple blocking i/o often beats all alternatives. As file and fabric i/o is
very likely to be served from local RAM cache for most patterns of i/o, [P1031] Low level file i/o
places simple blocking i/o at its heart.

P1031 specifies .read() and .write() as ‘block until there is any data’ operations. To be specific,
if there is one or more bytes which can be i/o’d right now, perform that i/o and return the buffers
partially or wholly filled/drained. If, and only if, no i/o can be performed right now, then do not
return until some i/o has been performed. Both operations take a deadline, which is a relative
or absolute timeout by which some i/o must occur, so forward progress can be guaranteed up to
whatever the platform provides. A zero relative timeout means non-blocking i/o.

Under P1031, each handle type defines its own buffer_type and buffers_type, and they can
be anything. For [P1883] file_handle and mapped_file_handle, and indeed the pipe_handle

as implemented by our prototype, they are types concept-requirement matching those of span<
byte> and span<span<byte>> respectively, but with the guarantee that layout matches that of
the platform-specific scatter-gather structure type (e.g. struct iovec on POSIX). This enables
scatter-gather buffer lists to be handled straight to the OS, without conversion nor repacking.

Under P1031, each handle type also defines its own io_request type. This can also be anything.
For [P1883] file_handle and mapped_file_handle, and indeed the pipe_handle implemented by
our prototype, it is:

1 // A scatter-gather list of buffers, and file extent offset at which to perform the i/o.
2 template <class T> struct io_request
3 {
4 T buffers{};
5 extent_type offset{(extent_type) -1};
6

7 constexpr io_request();
8 explicit constexpr io_request(T _buffers);
9 constexpr io_request(T _buffers, extent_type _offset);

10 };

One might be surprised that a non-seekable handle type such as pipe_handle still takes an extent
offset. This is because an append-only file_handle can be constructed where writes are always
atomically appended to the file, and for which the offset request is ignored. Attempting reads at
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offsets exceeding the current maximum file extent also have various platform-specific semantics,
which includes ignoring the requested offset. The concept of the offset being ignored in various
situations is therefore already well formalised. Additionally, code written for a non-seekable handle
type can use an append-only file_handle and work correctly, and indeed for a number of algorithms,
it is very useful for have unbounded buffer length pipes where writes never block1. There are also
debugging and logging use cases. In short, it was felt that, on balance, retaining an identical API
for pipe handle i/o to file i/o was worth it, and my personal opinion on that would probably also
extend the same offset-based i/o API to low level socket i/o as well.

Finally, under P1031 each handle type also defines its own io_result type which extends the
result<T> from [P1028] SG14 status_code and standard error object, which allows handle types to
implement free-upon-result-destruction patterns, and so on. A result returns either T for success,
or error from P1028. If you observe the value on an errored result, result invokes error().

throw_exception() on your behalf to throw the C++ exception defined by the error’s domain.
Here is the full API:

1 /*! \brief Read data from the open handle.
2

3 \warning Depending on the implementation backend, **very** different buffers may be returned than
4 you supplied. You should **always** use the buffers returned and assume that they point to different
5 memory and that each buffer’s size will have changed.
6

7 \return The buffers read, which may not be the buffers input. The size of each scatter-gather
8 buffer returned is updated with the number of bytes of that buffer transferred, and the pointer
9 to the data may be \em completely different to what was submitted (e.g. it may point into a

10 memory map).
11 \param reqs A scatter-gather and offset request.
12 \errors Any of the values POSIX read() can return, ‘errc::timed_out‘, ‘errc::operation_canceled‘.
13 ‘errc::not_supported‘ may be returned if deadline i/o is not possible with this particular handle
14 configuration (e.g. reading from regular files on POSIX or reading from a non-overlapped HANDLE
15 on Windows).
16 \mallocs The default synchronous implementation in file_handle performs no memory allocation.
17 */
18 io_result<buffers_type> read(io_request<buffers_type> reqs) noexcept;
19

20 //! \overload Convenience nonblocking based overload for ‘read()‘
21 io_result<buffers_type> try_read(io_request<buffers_type> reqs) noexcept;
22

23 //! \overload Convenience duration based overload for ‘read()‘
24 template<class Rep, class Period>
25 io_result<buffers_type> try_read_for(io_request<buffers_type> reqs,
26 const std::chrono::duration<Rep, Period> &duration) noexcept;
27

28 //! \overload Convenience absolute based overload for ‘read()‘
29 template<class Clock, class Duration>
30 io_result<buffers_type> try_read_until(io_request<buffers_type> reqs,
31 const std::chrono::time_point<Clock, Duration> &timeout)

noexcept;

The write API is so similar as to be not worth spelling out (if you really want to know, see [P1883]
1file_handle::zero() deallocates written extents in a file, so when combined with a temporary inode, you

can easily create a true unbounded buffer length pipe.
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file_handle and mapped_file_handle). But before moving on, here is an example of use of the
simple blocking API:

1 namespace llfio = LLFIO_V2_NAMESPACE;
2

3 // Open the file for read
4 llfio::file_handle fh = llfio::file( //
5 {}, // path_handle to base directory
6 "foo" // path_view to path fragment relative to base directory
7 // default mode is read only
8 // default creation is open existing
9 // default caching is all

10 // default flags is none
11 ).value(); // If failed, throw a filesystem_error exception
12

13 // Make a vector sized the current maximum extent of the file
14 std::vector<llfio::byte> buffer(fh.maximum_extent().value());
15

16 // Make a scatter buffer to indicate what to fill
17 llfio::file_handle::buffer_type b{ buffer.data(), buffer.size() };
18

19 // Make an i/o request object
20 llfio::file_handle::buffer_types req{
21 {b}, // sequence of buffers to fill
22 0 // offset within file to start reading from
23 };
24

25 // Synchronous scatter read from file
26 llfio::file_handle::io_result<buffers_type> buffersread = llfio::read(
27 fh, // handle to read from
28 req // i/o request to perform
29 ).value(); // If failed, throw a filesystem_error exception
30

31 // In case of racy truncation of file by third party to new length, adjust buffer to
32 // bytes actually read
33 buffer.resize(buffersread.bytes_transferred());

4.2 Simple ‘blocking’ coroutine i/o

When writing code within C++ Coroutines, often one wishes to suspend execution of the coroutine
until an i/o completes, resuming execution thereafter.

This looks almost identical to the simple blocking i/o code under P1031:

1 namespace llfio = LLFIO_V2_NAMESPACE;
2

3 llfio::pipe_handle::buffer_type buffer;
4 for(;;)
5 {
6 // This will never return if the coroutine gets cancelled during suspension
7 llfio::pipe_handle::io_result<llfio::pipe_handle::buffers_type> r
8 = co_await read_pipe.co_read({ // use co_read() instead of read()
9 {buffer}, // otherwise *identical* arguments to read()

10 0
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11 });
12 if(!r)
13 {
14 co_return r.error();
15 }
16 BOOST_CHECK(r.value().size() == 1);
17 BOOST_CHECK(r.value()[0].size() == sizeof(_buffer));
18 }
19 }

The overwhelmingly most common point of feedback is ‘I really hate the co_ prefix. We need that
to go away in general, not become worse than it already is’.

And I empathise, I truly do. However, the co_ naming ship has sailed in C++ 20, and that can no
longer be undone.

The only difference between .co_read(), .co_write() and .co_barrier() over their non-.co_
equivalents is that they return an io_awaitable<async_read>, io_awaitable<async_write> or
io_awaitable<async_barrier> respectively. Each takes identical input parameters, so the only
way to disambiguate them from their non-awaitable equivalents would be via function naming in
any case. And a co_ prefix is as good as any, and it is consistent with the co_ prefixed keywords.

[Note: For those unfamiliar with Sender-Receiver, you may wish to study the next
section before re-reading this section. – end note]

The io_awaitable<T> type is actually a Receiver wrapper around an i/o Sender (from [P1341]
Unifying Asynchronous APIs in the C++ standard library) which tells C++ Coroutines how to do
the i/o. The awaitable’s Receiver definition is trivially simple:

1 template <class ResultType>
2 struct io_awaitable_receiver_type
3 {
4 ResultType *result{nullptr};
5 coroutine_handle<> coro;
6

7 void set_value(ResultType &&res)
8 {
9 result = &res;

10 if(coro)
11 {
12 coro.resume();
13 }
14 }
15 void set_done() {}
16 };

In fact, the guts of the whole i/o awaitable type is sufficiently short it can be listed here too:

1 bool await_ready() noexcept
2 {
3 // If i/o not started yet, start it
4 if(!_state->started())
5 {
6 _state->start();
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7 }
8 // If i/o already completed, we are ready
9 if(_state->completed())

10 {
11 return true;
12 }
13 // Poll i/o for completion, if it completes we are ready
14 if(_state->poll() == io_status_type::completed)
15 {
16 return true;
17 }
18 return false;
19 }
20 _result_type await_resume()
21 {
22 assert(this->_receiver.result != nullptr);
23 return std::move(_state->storage.ret);
24 }
25 void await_suspend(coroutine_handle<> coro)
26 {
27 _lock_guard g(this->lock);
28 if(_state->completed())
29 {
30 coro.resume();
31 return;
32 }
33 _state->_receiver.coro = coro;
34 }

Walking through a use instance, .co_read() which returns an io_awaitable<async_read> ini-
tialises an async_read Sender, and passes it to io_awaitable which then Connects it with the
i/o awaitable’s Receiver implementation. We return the Connected, but not Started, i/o state
transported by the i/o awaitable returned from .co_read().

As per how C++ Coroutines works, when calling co_await on an awaitable type, .await_ready
() is first asked if the awaitable is ready. In the above implementation, if this is the first time
.await_ready() has been called, we Start the previously Connected i/o state. This begins the i/o,
which may complete immediately (e.g. it was served from kernel cache, so no blocking needed). If
it does complete immediately, we return true to indicate that no coroutine suspension is required.
The coroutine would therefore proceed as optimally as is possible.

You may notice there are two ways of checking for i/o completion. The first, _state->completed(),
is a simple read of a flag saying whether the i/o is completed. The second, _state->poll() involves
a virtual function call (hence the early check) which calls some handle-specific i/o code to poll the
i/o for completion. It is required that .poll() be deterministic and to do as little work as is possible
to check for the i/o to be completed, for some definition of ‘little work’ (e.g. a short fixed length
spin loop checking a hardware register might be acceptable).

As per C++ Coroutines, if .await_ready() returns false, .await_suspend() is called to suspend
the coroutine’s execution. Other code will now execute. At some point, someone else would call
the connected i/o state’s .poll() function to poll the i/o, or call a function which figures out
which connected i/o states are ready to have their .poll() function called. If the i/o has now
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completed, the Receiver’s .set_value() will be called, which resumes any suspended coroutine.
Upon resumption, the coroutine’s co_await operator will call .await_resume() to fetch the result
of the i/o, which will be the scatter-gather buffers filled or drained, same as for simple blocking i/o.

Most of why the above simple ‘blocking’ coroutine i/o is so simple to implement is thanks to Sender-
Receiver, which is next.

4.3 Low level Sender-Receiver i/o

Low level Sender-Receiver i/o is just a small step upwards from what we’ve already seen. I should
caveat that the Sender-Receiver design presented here is not exactly the one from P1341R0. Firstly,
I have incorporated my best understanding of the upcoming changes to Sender-Receiver which will
be proposed by Lewis, Kirk and Eric and others in papers in this mailing, and because we were all
so time pressed before the mailing deadline this year due to Christmas, we have not coordinated
paper content as much as would be usual (sorry!). Secondly, I had to make some changes to the
Sender-Receiver lifetime model (covered shortly) which Lewis thinks solved by overly simplistic
means, and he has an alternative mechanism to better achieve the same ends which I haven’t seen
yet.

Still, none of that is as important as making the general point that Sender-Receiver has evolved
since the last meeting, and we all of us are all basically on the same page.

Under Sender-Receiver, to begin say a read i/o, we firstly construct an async_read() sender. This
takes identical arguments, and has identical form, to simple blocking read():

1 async_read::async_read(handle &, io_request<buffers_type>);
2

3 async_read::try_async_read(handle &, io_request<buffers_type>);
4

5 template<class Rep, class Period>
6 async_read::try_async_read_for(handle &,
7 io_request<buffers_type>,
8 const std::chrono::duration<Rep, Period> &);
9

10 template<class Clock, class Duration>
11 async_read::try_async_read_until(handle &,
12 io_request<buffers_type>,
13 const std::chrono::time_point<Clock, Duration> &);

async_read is the thread-unsafe form of this i/o sender. If you want a thread-safe form, you use
atomic_async_read instead. The latter requests atomic synchronisation for the connected state
to ensure that multiple kernel threads concurrently using the connected i/o state will synchronise.
If you are building a Networking TS on top of low level Sender-Receiver i/o, atomic_async_read
is what you must use within your implementation, as the completion handlers which the Receiver
would invoke could traverse kernel threads.

We next Connect this Sender instance with a Receiver instance, which must implement these member
functions:

1 // Called when the i/o has completed with the i/o result
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2 void Receiver::set_value(io_result<buffers_type> &&);
3

4 // Called when the i/o state can be disposed of
5 void Receiver::set_done();

(Due to using io_result to return failure deterministically, and because we can never throw excep-
tions, we do not use Receiver::set_error())

In the reference implementation, Connecting an i/o sender and a Receiver yields an io_operation_connection

<Sender, Receiver> object. This provides a .start() member function which implements the
Start operation. You can relocate in memory a connected i/o state up until you perform Start upon
it. Thereafter you cannot relocate it in memory until its .set_done() is called.

4.3.1 Polling and awaiting

Once you have Started a connected i/o state, you must periodically call io_operation_connection
<Sender, Receiver>::poll() upon it to (a) check if the i/o it began has completed and (b) to
cause its Receiver to be invoked if the i/o did just complete.

io_operation_connection<Sender, Receiver>::poll() is guaranteed to be a deterministic call
apart from whatever the invocation of the Receiver might do, and whilst efficient for small numbers
of pending i/o, it becomes inefficient when the number of pending i/o becomes large. Therefore
every handle has an associated io_multiplexer instance into which every asynchronous i/o is
collated. One can as-if call io_operation_connection<Sender, Receiver>::poll() on all pending
i/o known to that io_multiplexer instance, up to specified limits, by calling the multiplexer’s .

complete_io() member function:

1 // As-if call the i/o part of ‘.poll()‘ on up to ‘max_items‘ pending i/o, returning how many called.
2 result<int> io_multiplexer::complete_io(int max_items = -1) noexcept;
3

4 /* As-if call the i/o part of ‘.poll()‘ on up to ‘max_items‘ pending i/o, not exceeding the specified
5 maximum duration or time point.
6 */
7 template<class Rep, class Period>
8 result<int> io_multiplexer::complete_io_within(
9 const std::chrono::duration<Rep, Period> &duration,

10 int max_items = -1) noexcept;
11 template<class Clock, class Duration>
12 result<int> io_multiplexer::complete_io_within(
13 const std::chrono::time_point<Clock, Duration> &timeout,
14 int max_items = -1) noexcept;

.complete_io() is not guaranteed to be deterministic, but it is guaranteed to be non-blocking,
apart from any blocking that the Receiver invocation might do. Most platforms will implement it
with O(1) complexity, but others could have O(total pending i/o) complexity. It may complete
one, or many pending i/o before it returns, the number depending on what is efficient on the local
platform, and obviously enough on the number of ready pending i/o. To aid bounded execution
times, one can bound i/o completions to within numerical or time constraints – this can help ensure
that .complete_io() returns in less time than it might otherwise. If there is no ready pending
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i/o right now, a negative number is returned. If there is no pending i/o at all right now, zero is
returned.

.complete_io() only checks for i/o completion based on i/o being successful or unsuccessful. It
does not perform any checking for i/o timeouts. If you never place timeouts other than infinite or
zero on scheduled i/o, then you never need to call this function:

1 // As-if call the timeout part of ‘.poll()‘ on up to ‘max_items‘ pending i/o, returning how many
2 // called.
3 result<int> io_multiplexer::timeout_io(int max_items = -1) noexcept;
4

5 // Time bounded editions
6 template<class Rep, class Period>
7 result<int> io_multiplexer::timeout_io_within(
8 const std::chrono::duration<Rep, Period> &duration,
9 int max_items = -1) noexcept;

10 template<class Clock, class Duration>
11 result<int> io_multiplexer::timeout_io_within(
12 const std::chrono::time_point<Clock, Duration> &timeout,
13 int max_items = -1) noexcept;

.timeout_io() is very similar to .complete_io() in terms of behaviour, however it is fundamentally
an O(total pending i/o) complexity operation as an ordered list of all i/o with timeouts must
be constructed in order to figure out the priority queue for completing i/o with errc::timed_out.
This list is cached within the i/o multiplexer, and only recently added pending i/o is merged into
those lists. However this call is unavoidably more expensive than .complete_io(), which is why
you only need to call it if you use timeouts in your i/o.

4.3.2 The i/o multiplexer

The i/o multiplexer provides a facility for posting invocables from any kernel thread. This is always
thread safe, even if the i/o multiplexer implementation itself is not thread safe (see later). There is
a corresponding drain function for posted invocables:

1 // Will invoke ‘f()‘ later. Always threadsafe.
2 template <class U>
3 requires(std::is_invocable_v<U>)
4 result<void> io_multiplexer::post(U &&f);
5

6 // Invoke up to ‘max_items‘ previously posted items
7 result<int> io_multiplexer::invoke_posted_items(int max_items = -1) noexcept;
8

9 // Time bounded editions
10 template<class Rep, class Period>
11 result<int> io_multiplexer::invoke_posted_items_within(
12 const std::chrono::duration<Rep, Period> &duration,
13 int max_items = -1) noexcept;
14 template<class Clock, class Duration>
15 result<int> io_multiplexer::invoke_posted_items_within(
16 const std::chrono::time_point<Clock, Duration> &timeout,
17 int max_items = -1) noexcept;
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Unless you call io_multiplexer::run(), it is on user code to drain the posted items queue, if they
wish.

The final facility is io_multiplexer::run(), which roughly corresponds with ASIO’s io_context
::poll() (I couldn’t name the function .poll(), as it would be confusing with the i/o connected
state’s .poll()). io_multiplexer::run() looks boringly similar to the previous functions, but
note that instead of time bounding total execution time, we now time limit waits upon new work.
Hence instead of using the _within() nomenclature, we use the idiomatic try_, try_X_for and
try_X_until nomenclature:

1 /* As-if call all of ‘.poll()‘ on up to ‘max_items‘ pending i/o, and ‘.invoke_posted_items()‘,
2 returning how many called/invoked.
3 */
4 result<int> io_multiplexer::run(int max_items = -1) noexcept;
5

6 // Non blocking edition
7 result<int> io_multiplexer::try_run(int max_items = -1) noexcept;
8

9 // Timeout editions
10 template<class Rep, class Period>
11 result<int> io_multiplexer::try_run_for(
12 const std::chrono::duration<Rep, Period> &duration,
13 int max_items = -1) noexcept;
14 template<class Clock, class Duration>
15 result<int> io_multiplexer::try_run_until(
16 const std::chrono::time_point<Clock, Duration> &timeout,
17 int max_items = -1) noexcept;

io_multiplexer::run() essentially combines .complete_io(), .timeout_io(), and .invoke_posted_items

() in a loop. If any of those three return a positive number, at the end of the loop run() returns
with the number of items processed. If there is no pending i/o to wait upon, and no posted items,
run() immediately returns with zero. If there is pending i/o but no ready i/o, the calling thread is
put to sleep until a pending i/o signals, or somebody posts a callable to be invoked from another
kernel thread, or any timeout specified elapses. This ‘wait-until’ semantic differs from the ‘work-
until’ semantic in the previous functions, because this function is always non-deterministic, with
potentially unknown lengths of thread sleep possible.

4.3.3 Example of use of Sender-Receiver low level i/o

Believe it or not, I just described all of the essentials of an implementation of low level asynchronous
i/o. This proposal is quite compact. Just a few pages of normative wording in addition to non-
asynchronous low level i/o, would describe it all.

Using low level asynchronous i/o is very straightforward, though verbose to write, as it is for all low
level i/o. Here is how to begin many asynchronous read i/o’s:

1 namespace llfio = LLFIO_V2_NAMESPACE;
2

3 // Assume there are many read pipes, and each has a buffer to be filled
4 std::array<std::pair<llfio::pipe_handle, llfio::pipe_handle::buffer_type>, N> pipes;
5
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6 // Define the Receiver for a pipe read
7 struct pipe_read_receiver
8 {
9 size_t idx{0};

10

11 void set_value(llfio::pipe_handle::buffers_type &&filled)
12 {
13 std::cout << "Pipe " << idx << " read " << filled.bytes_transferred() << " bytes." << std::endl;
14 }
15 void set_done() { /*do nothing*/ }
16 };
17

18 // Connect asynchronous reads of all read pipes to their receivers
19 std::array<llfio::io_operation_connection<llfio::async_read, pipe_read_receiver>, N> connections;
20 for(size_t n = 0; n < N; n++)
21 {
22 connections[n] = llfio::connect(
23 llfio::async_read( // sender
24 pipes[n].first, // handle to read
25 { // i/o request object
26 { pipes[n].second }, // scatter buffer to fill
27 0 // offset within device to read from
28 }),
29 pipe_read_receiver{n} // receiver
30 );
31 }
32

33 // Begin asynchronously reading all the pipes
34 for(size_t n = 0; n < N; n++)
35 {
36 connections[n].start();
37 }

Something not obvious in the above is:

• No dynamic memory allocations can ever be performed.

• No C++ exceptions can ever be thrown.

• No locks can ever be taken.

• No waits can ever occur.

• The compiler can see all the memory that can ever be used by the asynchronous i/o from the
base of the call tree. This enables various optimisations e.g. coroutine frame allocation can
perform a single allocation for all state.

The above code is therefore fully deterministic, if your OS pipe handle implementation can begin
async read i/o’s deterministically.

You now have a choice of how to implement i/o polling. Here is a simple spinlooped polling based
implementation:

1 // Loop polling all the pipes until all have read something, or failed to read something
2 bool done;
3 do
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4 {
5 done = true;
6 for(auto &i : connections)
7 {
8 if(llfio::update_status::completed != i.poll())
9 {

10 done = false;
11 }
12 }
13 } while(!done);

If all the pipes being read have at least one byte in their buffers, the above code is also fully
deterministic and wait free, if your OS pipe handle implementation can drain a non-empty buffer
deterministically.

If you don’t mind losing determinism, the above simple spinlooped polling based implementation
can be implemented more efficiently using:

1 // Loop efficiently polling all the pipes until all have read something, or failed to read something
2 size_t done = 0;
3 while(done < N)
4 {
5 int completed = pipes[0].first.multiplexer()->complete_io().value();
6 if(completed > 0)
7 {
8 done += completed;
9 }

10 }

This is more efficient because complete_io() asks the OS which of the read i/o’s scheduled have
completed, and calls the receivers for those completed i/o’s only. This avoids having to linearly
iterate polling each of the whole array of scheduled read i/o’s, which would become inefficient as N
grows large.

complete_io() never blocks, so the CPU will spin at 100% in the loop. If you would like the thread
to be slept until a read i/o completes, just replace complete_io() with run():

1 // Sleep until all the pipes until all have read something, or failed to read something
2 size_t done = 0;
3 while(done < N)
4 {
5 int completed = pipes[0].first.multiplexer()->run().value();
6 if(completed > 0)
7 {
8 done += completed;
9 }

10 }

The above code is all you need to do asynchronous low level i/o. Some relevant implementation
detail not mentioned for brevity is that unless you explicitly set the i/o multiplexer for a handle,
it will set itself on first async i/o to use the current thread locally set i/o multiplexer. If one of
those hasn’t been retrieved for this kernel thread before, io_multiplexer::best_available(1) is
called to retrieve the best available i/o multiplexer implementation for this platform which supports
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no more than one thread. Thus the above code works because the programmer knows that the
thread-local i/o multiplexer is being used, and that no other i/o has been scheduled by this kernel
thread to that i/o multiplexer (otherwise the completed i/o counts returned by complete_io() and
run() would refer to other scheduled i/o that just our pipes, and confound the logic).

4.4 Summary

I have achieved all I set out to do before Christmas in this prototype:

1. Use a spinloop-polling-based Sender-Receiver API design throughout, rather than a Proac-
tor/Reactor API design.

2. Enforce a strict ABI boundary behind which all platform-specific stuff can be encapsulated
(i.e. don’t leak system headers into the interface), but without getting in the way of the
compiler being able to statically merge dynamic memory allocations.

3. Match or exceed ASIO’s performance despite all the above constraints.

4. It must be possible to build a backwards compatible Networking TS/ASIO wrapper on top of
all this.

In short: I have proven it is possible to standardise a single consistent i/o API experience from simple
blocking i/o right through to ultra high performance i/o. And it’s all thanks to Sender-Receiver.

It is believed by this author that the above API contains all the necessary primitive operations to
implement the current Networking TS exclusively using low level i/o facilities. It is possible that
some of ASIO’s proactor facilities (e.g. strands) could possibly have a less optimal implementation
than is possible with strictly employing the above facilities alone. However, personally speaking, I
would implement strands as a C++ Coroutine in C++ 20, whose suspension and resumption may
occur across kernel threads, and I believe such a strand implementation would be optimal with the
above facilities.

I should stress that I don’t wish to hold up the Networking TS from C++ 23 based on these propos-
als. I would simply not standardise the parts (e.g. the socket classes) which would be standardised
as low level socket i/o classes in C++ 26. Whilst this may seem highly problematic, both ASIO
and the Networking TS allow user defined socket i/o classes, so standard library implementations
simply ship their own locally defined stand-in socket i/o classes, or else ship experimental low level
socket i/o classes based on P1031. Indeed, if standard library implementers were feeling keen, they
could ship their Networking implementation written using experimental low level i/o as this paper
outlines, and send implementation feedback to WG21.

The point I wish to make is that we just need to not standardise in the normative wording of C++
23 the stuff that we can’t row back upon in C++ 26, and we can press ahead with standardising
Networking now.
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5 Implementation notes from developing this prototype

5.1 Background

Back when I started this prototyping in the run up towards the Christmas vacation break, I
thought that I understood Sender-Receiver. I had read Corentin’s excellent blog post at https:

//cor3ntin.github.io/posts/executors/. I had watched Eric’s many video presentations at
many conferences on universal asynchronicity in C++. I had been a follower of Lewis’ https:
//github.com/lewissbaker/cppcoro for many many years. And of course I had been keeping up
with reading my WG21 mailings, so I had read all the relevant papers.

However it turns out that I really did not understand Sender-Receiver. Not one bit. And I would
like to take this opportunity to publicly thank principally Eric Niebler for gently holding my hand
over many private email exchanges as I laboriously thrashed around in confusion until, thanks to
his excellent tutelage, one day the lightbulb just switched on, and it all made sense.

It didn’t just make sense though. It was far, far better than that. The LLFIO reference library
has long had an async file i/o implementation based on a similar design to ASIO. Its performance,
quite frankly, sucked; implementation was a pain; and I generally steered anybody interested away
from async file i/o, which is generally slower than blocking file i/o except for uncached i/o.

Between Belfast and Christmas break in 2019, I had built a new async i/o framework around the
deterministic polling-based design principles I described earlier in this paper. It was very complex.
It was buggy. Lewis very kindly sent a long, long list of entirely valid feedback which basically said
(though he never did) ‘this is crap’. Then the Sender-Receiver lightbulb switched on, and suddenly
it all became so clear as to what should be the design: clean, elegant lines of efficiency, code reuse
and abstraction. My only (big!) concern was whether this stuff could be implemented with a hard
ABI boundary separating the platform-specific code away from the template-stuff (as hitherto, all
the Sender-Receiver stuff did not use concrete types, and it was not known at that time whether it
could work with concrete types over a formal ABI boundary), without losing a lot of performance,
and retaining the magical ability of the compiler to collapse and merge Coroutine frame allocation
because it can foresee all static memory allocations from the base of a call tree. As by that stage
Christmas vacation was about to begin, I wished everybody a Merry Christmas, and I set to work
throwing away everything and trying again.

The message I want to communicate to anyone reading is that if you don’t like Sender-Receiver
for various reasons, then in my opinion you don’t really understand it yet. Sender-Receiver is an
architecture, a way of laying out, structuring, and grouping your code into reusable parts upon which
the compiler has magical powers to optimise particularly well, thanks to taking advantage of how
Coroutines were standardised. Sender-Receiver is genius in my opinion. It’s so damn simple people
can’t see just how game changing it is: it makes possible fully deterministic, ultra high performance,
extensible, composable, asynchronous standard i/o. That’s huge. No other contemporary systems
programming language would have that: not Rust, not Go, not even Erlang.

Before I move on, I’d like the publicly thank all those who brought Sender-Receiver to C++, which
was a group effort, but Kirk obviously enough is the visionary who invented Sender-Receiver, and
Lewis did much of the building out of, and tying in, that bright spark of innovation into Coroutines,
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Connect-Start, etc and all the technical donkey work of building out an opinion in favour of Sender-
Receiver. Eric has worked his ass off doing all the liaising, persuading, reaching out, coordination,
and basically non-technical human management stuff which nobody tends to notice happening
behind the scenes to bring technical innovations into the standard.

Persuading people to adopt complex niche stuff is hard, but persuading people to adopt new fun-
damental vocabulary requires particularly deep effort, for which very few will thank you because it
was disruptive. I thank you all for your service.

5.2 Performance numbers

The benchmark chosen was deliberately designed to illuminate i/o framework implementation in-
efficiencies. There is a single pipe, with separate read and write handles to it. A pool of threads
concurrently tries to write to the pipe using blocking i/o, in order to always keep its buffer full.
On the read side, the framework under test reads a single byte from the pipe, and its completion
handler schedules the next read of a single byte from the pipe. The idea is that we spend as much
time within the i/o framework as is possible for a single kernel thread, and thus get an idea of its
overhead relative to others. All testing was carried out on a laptop with four core Intel i7-8565U
CPU boosting up to 4.6Ghz running Microsoft Windows 10, using Visual Studio 2019 16.4 as the
compiler.

My first Sender-Receiver design was clean and simple, but it was far slower than ASIO in the first
benchmark I ran. This first attempt was about half the performance of ASIO, which was a big
surprise at the time.

Upon diagnosis, a large portion of the cause was due to how Sender-Receiver was specified before I
began my efforts (and for which Sender-Receiver ended up needing to be changed). To understand
this properly, I shall have to delve into quite a bit of implementation detail.

All non-blocking i/o in Microsoft Windows is done via the two-pointer-sized IO_STATUS_BLOCK

structure:

1 typedef struct _IO_STATUS_BLOCK {
2 union {
3 NTSTATUS Status;
4 PVOID Pointer;
5 } DUMMYUNIONNAME;
6 ULONG_PTR Information;
7 } IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

There is always exactly one of these structures per pending i/o (most reading will better recognise the
Win32 formulation of this NT kernel structure, struct OVERLAPPED). The kernel will (potentially
asynchronously) write into this structure when the i/o completes either with success or failure, so
it cannot move in memory during the i/o.

The Sender-Receiver Connected state similarly cannot be moved in memory between Start and when
either the Receiver’s .set_value(), .set_error() or .set_done() is called (these correspond to
asynchronous operation success, failure and abort respectively). My initial design therefore placed
the IO_STATUS_BLOCK structure within the connected i/o state structure, which made sense.
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Microsoft Windows has three mechanisms by which you can poll/force changes to the IO_STATUS_BLOCK
structure:

1. Poll the HANDLE using a (possibly zero-timeout) wait-until-handle-signals instruction which
returns when some i/o completes on that handle somewhere. One then checks this structure
to see if this specific i/o completed.

This is how io_operation_connection<Sender, Receiver>::poll() is implemented on Mi-
crosoft Windows: it performs a single non-blocking kernel wait on the handle, and it in-
vokes the Receiver for the i/o if its IO_STATUS_BLOCK structure changes its status from
STATUS_IO_PENDING. Similarly, this is how simple blocking i/o on non-blocking handles is
implemented in LLFIO, one simply loops the wait-until-handle-signals syscall and checking
the IO_STATUS_BLOCK structure until any deadline is reached.

2. Specify a per-i/o user supplied callback function to be invoked when the i/o completes at
the next alertable wait point. In Microsoft Windows, thread sleep points can be specified as
alertable or not, and if so they will wake as soon as any callback is posted to that thread,
and drain the per-thread queue by invoking all the callbacks before the thread sleep point
returns. This is often called ‘alertable i/o’, or ‘APC i/o’ (APC is an Asynchronous Procedure
Callback).

3. Associate the HANDLE with a completion port, whereby notifications of i/o status changes in
associated handles are enqueued to the completion port. The queue of accumulated notifica-
tions can be drained by one or many kernel threads. This is often called IOCP, shorthand for
i/o completion ports. ASIO uses IOCP as its implementation on Microsoft Windows.

One can see easily that for the first mechanism, you only need to keep around the IO_STATUS_BLOCK
structure until its status changes, and for the second mechanism you only need to keep it around
until its callback function gets invoked. However, there is a big implementation wrinkle in the third
IOCP mechanism: the IO_STATUS_BLOCK structure gets updated for a second time when somebody
drains the completion notification for that i/o. In other words, you absolutely must keep around
the IO_STATUS_BLOCK structure until IOCP is done with it, else you get memory corruption.

That in turn means that under the original Sender-Receiver specification, for IOCP registered
handles, you can only call .set_value() and .set_error() and .set_done() after some thread
has reaped the associated completion from IOCP. Specifically, you cannot call it early immediately
when the i/o has completed, because under the original Sender-Receiver design, after the Receiver
is invoked its state can be destructed. So you must wait.

This explains the performance difference of my first Sender-Receiver design against ASIO. In our
benchmark against ASIO, we read a single byte from a single pipe handle using ReadFile(). We
must next drain the IOCP queue using GetQueuedCompletionStatus(), and then invoke the Re-
ceiver now that IOCP is done with the i/o.

ASIO however invokes the completion handler immediately after ReadFile(), and does not wait to
drain the IOCP queue first. This lets it begin the next i/o much sooner, and thus ASIO performs
multiple ReadFile() syscalls and completion handler invocations for each drain of the IOCP queue
via the GetQueuedCompletionStatus() syscall.

ASIO achieves this via a trick: each OVERLAPPED structure is kept in its own dynamically allocated
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memory allocation. Smart pointers to each OVERLAPPED structure track completion handler invo-
cation state. If an i/o completes before its IOCP notification is drained, its completion handler is
called immediately, and will not be called again when the IOCP notification is reaped. Similarly, if
IOCP is the first time ASIO learns of i/o completion, the completion handler is called at that point
instead.

In this design, there can be a significant lag between completion handler invocation and draining the
IOCP queue. ASIO handles this by dynamically allocating more OVERLAPPED structures as needed
(it recycles structures dispensed with by IOCP).

5.3 Matching low-level Sender-Receiver i/o with ASIO’s performance

Most reading this paper will not consider it important that potential dynamic memory allocation
is unavoidable in the hot i/o path in ASIO’s design. They would suggest using a custom allocator
with ASIO, or ‘preheating’ ASIO. They would consider i/o to be inevitably non-deterministic, and
thus striving for determinism in i/o a fool’s errand.

However for me and those thinking like me who tend to hang around on SG14 Low Latency, I find
that attitude symptomatic of developers conditioned on ‘throughput-maximising’ designs where you
must work with the lowest common denominator in i/o (e.g. speaking the kind of network protocols
required by the fundamentally non-deterministic internet). If you control your i/o implementation
however, you can do much, much better.

In my line of work I really care about worst case latencies. Not average latencies, latencies @ 99%,
or even latencies at 99.9%. I’m talking about latencies @ 99.9999%. Warm cached file i/o is almost
perfectly deterministic on Linux, and high end consumer SSDs e.g. my Samsung 970 Pro i/o is
deterministic 99% of the time. Enterprise grade SSDs can be much better again e.g. Samsung’s
Z-SSD, or Intel’s Optane, which guarantee up to six sigmas of bounded i/o latencies. Lots of people
pay a lot of money for storage hardware which can deliver 99.9999% determinism, and then find
that most i/o software can’t preserve determinism.

As one of my design goals is to retain determinism in i/o which is very precious to many use cases,
and which hardware and kernel engineers have spent much effort in ensuring, replicating ASIO’s
trick which relies on potential non-determinism in the hot path wasn’t possible. So instead I changed
the Sender-Receiver lifecycle:

• Start begins the operation on the Connected state.

• The Receiver’s .set_value() and .set_error() completes the operation.

• The Receiver’s .set_done() is called when it is safe to dispose of or recycle the Connected
state.

Note that Receiver::set_done() is now always called for every Started operation, and you cannot
relocate in memory a Started state until .set_done() is invoked.

This change enables .set_value() to be called as soon as the i/o completes, which in turn closed
most of the performance gap with ASIO. In fact, with that and a few other optimisations, LLFIO’s
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reference implementation gets within 2% of ASIO for the single byte reading benchmark if LLFIO
speaks IOCP in the same way as ASIO does.

However thanks to this being a greenfield design, I was able to incorporate native support for
‘Win8 IOCP’ which can be opted into using SetFileCompletionNotificationModes(). This does
not enqueue IOCP notifications for i/o which completes immediately. This enabled the reference
implementation upon which this paper has been based to exceed ASIO’s performance by 23% for
the single byte single pipe reader benchmark.

I believe there is further fat to trim if one does not insist on a strict ABI boundary between
platform-specific implementation code and everything else – we spend a measurable amount of time
marshalling and repacking data to go through a vtable indirection, which wouldn’t be necessary if
say we had an intelligent enough Modules implementation to hand. I certainly believe that the 2%
like-with-like performance gap from ASIO can be closed to zero.

5.4 Consequences of extending i/o state lifetime past completion

It may initially seem unwieldy for i/o states to hang around for arbitrarily long periods of time
after i/o completion. How might code manage this situation without resorting to dynamic memory
allocation? In other words, aren’t we simply forcing end users to repeat the implementation trick
ASIO used?

The answer is yes. But if you want this sort of implementation detail to be taken care of on your
behalf, use ASIO!

If your use case requires absolute guaranteed bounded worst case i/o latencies, then that comes with
a price attached: a considerable added headache in managing i/o states. But I personally think
that an acceptable tradeoff, and I think most of my colleagues on SG14 Low Latency would agree.

6 What next?

If WG21 likes the general direction of this proposal, the first step would be to remove from the
normative wording in the next edition of the Networking TS any specification of the basic socket
classes, and leave them open for standardisation after C++ 23.

The second step would be to consider separating the socket-support parts of the Networking TS such
as IP addresses, endpoints, and DNS resolution into an entirely orthogonal and standalone section,
or indeed standalone paper. Or, indeed choose to provide non-normative notes for the specification
of these, rather than normative wording in C++ 23.

The third step would be to consider separating the buffer sequence adapter parts of the Networking
TS into an entirely orthogonal and standalone section, or indeed standalone paper. In my opinion,
the buffer sequence infrastructure is useful for all i/o, and ought to be decoupled from Networking.

The fourth step would be to ensure that all the async_*() completion-token based free functions
do not conflict with the identically named async_* Sender types. I believe Lewis and Eric have a
proposed mechanism for ensuring this. So long as their proposed mechanism is compatible with a
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strict ABI boundary i.e. the Sender types are concrete for each category of handle types, I would
have no objection.

Stripping away all these orthogonal parts would considerably reduce the number of pages in the
present Networking TS draft, and I believe would aid its more rapid standardisation into C++
23 by helping everybody concentrate on the specific value which standardising ASIO adds to the
standard C++ library: a suite of well tested, widely understand, high level concurrency and i/o
abstractions.
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