
Document Number: P1909R0
Date: 2019-10-07
Authors: Michael Wong
Project: Programming Language C++, SG14 Games Dev/Low Latency/Financial
Trading/Banking/Simulation/Embedded
Reply to: Michael Wong <michael@codeplay.com>

SG14: Low Latency Meeting Minutes 2019/08/14-
2019/09/11

Contents
Minutes for 2019/08/14 SG14 Conference Call ... 2

Minutes for 2019/09/11 SG14 Conference Call ... 10

Minutes for 2019/08/14 SG14 Conference Call

1.1 Roll call of participants

>

 Ben Saks, Ben Craig, Hubert Tong, Javier Cabezas, John McFarlane, Marco

Foco, Matt Harrington, Matthew BUtler, Ronen Friedman, Staffan Tj. Michael

Wong

> 1.2 Adopt agenda

>

Approve

> 1.3 Approve minutes from previous meeting, and approve publishing

> previously approved minutes to ISOCPP.org

>

Approve.

> 1.4 Action items from previous meetings

>

> 2. Main issues (125 min)

>

> 2.1 General logistics

>

> Review Cologne results.

>

Flat map : P1727 in LEWG, deferred to LWG after C++20, some concerns about

unordered maps, Zach Laine driving, may need range component maturaity

Deterministic exception: EWG presented by Herb:

1. continuing on exception violation

2. memory exhaustion

EWG polls had some split results, Bjarne, Daveed, Chandler were strongly

against the out of memory aspects, and possibly implementation concerns

Affinity: high level affinity looks likely to move ahead

low level proposal topology discovery that is more lists like, instead tree

like

Niall papers on elsewhere/unreacheable memory:

P1026 next step go to SG1 for more confirmation before a SG is started

Linear Algebra Sg14 F2F;

both proposals were passed to LEWG, they try for integration

Plan CPPCON SG14 meeting

>

 Sept 18 Wednesday

Please get in touch about reserving a seat

Linear Algebra at CPPCON SG14

Please propose papers for next call Sept 11.as deadline.

Please submit draft to the reflector asap even before the Sept 11 meeting.

Patrice will be there.

SG14 members can enter for free but still need to register. others buy a

ticket, but the cost can be commuted

34 paid and 9 free

Belfast C++ meetng:

2 events: committee starts on Nov 4, Nov 11 is ACCU Ireland follow on

can hold an SG14 meeting for games developers and low latency in the UK

2.2 Paper reviews

>

> 2.2.1 Improving Debug Builds Inline With User Expectation: John MacFarlane

>

> p1832.html <https://lists.isocpp.org/sg14/att-0190/p1832.html>

>

 debug builds based on GCC -O0 -Og implementation

selecting which function to be inlined

generally disables inlining to enable stepping through

-Og enables the following optimization flags for function defined in

system headers -isystem

affects numeric work

need something intermediate between debug and release build

needed as a queue to debug for embedded systems

other impacting effects as well, when debugging interactively, real pain to

step over std:: begin and end for algorithm

tried to narrow the scope

yes have an issue: direction currently is compielr options and tweak

compiler behaviour

much more suited as an attribute

like explicit inlining

eigen library has this problem, undebuggable

if you want to step into your own code, but not some dependent library

code, so need fine grain control

good candidate for inlining not based on location of source code, but

whether it a dependency

bad thing is that attribute need to be used in conjunction with macros,

explicit inlining is a terible semantics

https://lists.isocpp.org/sg14/att-0190/p1832.html

really need a hint for optimization, debuggability or some slider

macro to be used for my code that I want to debug

there is precedence for -isystem vs I, should be alternate interface that

is not based on location

on Msvc side there is no external I, they chose not to go that way due to

warnings, want to be able to give type conversion warnings in a template,

hard to get MSVC to take /Iexternal, but/Ob1 fo give good results

so I like the direction of turning more inlining

will find the blogpost

suspect msvc agree they have an issue. But in 2019 or 2017 one of the

change they introduced as a default is not step into, so they change the

step through experience to elide anything that was in angle bracket

modules dust is still setting, but they could help solve the problem, with

headers from one body of code is finding its place into a TU from another,

but still have to explictky say so that someone elses code is not to be

inlined

looks like there is some support external:I in Visual studio

like the pitch of the problem, the solution is general direction: to take

this beyond QOI

committee and if they want a more generic solution, then it will be more

load on compiler implementations

This problem is more chronic for numerics, where inlining and expression

templates with auto

No objections to moving onto SG15 tooling

Arthur also sent feedback.

> 2.2.2 Error Size Benchmarking by Ben Craig

>

> P1640R0: Error size benchmarking

>

>

> https://raw.githack.com/ben-craig/error_bench/master/error_size_benchmarking.html

> <

> https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-

5Fbench_master_error-5Fsize-

5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSw

vF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-

lWcD4&s=LGjT-TVB94ptHzUmdPNh4LJr1eMpKuAcmL7pQSWzxxA&e=>

https://raw.githack.com/ben-craig/error_bench/master/error_size_benchmarking.html
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s

>

>

 Didn't quite understand what the various scenarios mean.

 Didn't manage to try the EDG portable exception mechanism.

 Not sure only EH overhead is measured.

 noexcept is grossly underused

 - Because of Lakos rule

 - Because library shies away from conditional noexcept

 -> Maybe this is more of a library issue

 It was a mistake to require termination from noexcept functions

 that attempt to throw. Forces generation of EH tables.

 Also, because something like vector::operator[] isn't noexcept

 (due to Lakos rule), it's easy to get a situation where the

 compiler cannot prove that no exception is thrown.

 Analogy: Comparing the size of "int main() {}" to

 "#include<iostream>

 int main() { std::cout << "Hello\n"; }"

 will see a huge growth in size.

 We should compare the cost of the hot paths also.

 Ben Craig concludes that C++ EH doesn't serve all domains well.

 Ask for Patrice to restart his work

may be work with EDG, XLC, Sun compilers as well

 2.2.3 PTF/Colony?

>

No one to present.

had a mini discussion on the reflector, to support SIMD.

Matt Bently working on implementation to make use the simd scatter gather

instructions which only work on ARM for the core pieces on Colony. He

wishes to know if this was worthwhile. Niall was mildly positive, staffan

was mildly against. Matt will go off and experiement.

Is that to get better performance? Probably but it is not one of the detail

that WG21 cares about. There was concern about intrusive vs nonintrusive

interface.

>

> 2.2.4 Linear Algebra update from Aug 7

>

>

> Next call: Sept 4: 3-5 PM ET

>

> 2.2.5: Any serious study on cost of Exception vs cost of Error Codes

>

Done by Ben Craig's paper.

> 2.2.6 any other proposal for reviews?

>

> 2.3 Domain-specific discussions

>

> 2.3.1 Embedded domain discussions: Ben Craig, Wooter and Odin Holmes

> 2.3.3 Games Domain: John McFarlane, Guy Davidson and Paul Hampson

> 2.3.4 Finance Domain: Carl Cooke, Neal Horlock, Mateusz Pusz and Clay

> Trychta

>

> 2.3.5 Lnear Algenra: Bob Steagall, Mark Hoemman

>

> 2.4 Other Papers and proposals

>

> 2.5 Future F2F meetings:

>

> 2.6 future C++ Standard meetings:

> https://isocpp.org/std/meetings-and-participation/upcoming-meetings

>

>

> - *2019-11-04 to 09: Belfast, Northern Ireland;* Archer Yates

> -

> - 2020-02-10 to 15: Prague, Czech Republic

>

> - 2020-06-01 to 06: Bulgaria

> - 2020-11: (New York, tentative)

> - 2021-02-22 to 27: Kona, HI, USA

>

> 3. Any other business

> Reflector

> https://lists.isocpp.org/mailman/listinfo.cgi/sg14

> As well as look through papers marked "SG14" in recent standards committee

> paper mailings:

> http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/

> http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/

>

> Code and proposal Staging area

> https://github.com/WG21-SG14/SG14

> 4. Review

>

> 4.1 Review and approve resolutions and issues [e.g., changes to SG's

> working draft]

>

> 4.2 Review action items (5 min)

https://isocpp.org/std/meetings-and-participation/upcoming-meetings
https://lists.isocpp.org/mailman/listinfo.cgi/sg14
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/
https://github.com/WG21-SG14/SG14

>

> 5. Closing process

>

> 5.1 Establish next agenda

>

> Sept 11

>

> 5.2 Future meeting

>

> Sept 11

>

> Oct 9: mailing deadline Monday Oct 7

>

> Nov 13: cancelled due to C++ Std meeting

Minutes for 2019/09/11 SG14 Conference Call

1.1 Roll call of participants

>

Andreas Fertig, Ben Craig, Billy Baker, Grafik Robot/rene Riviera, Matthew

Butler, Hubert Tong, John McFarlane, Marco Foco, Ronen Friedman, Staffan

Tj, Michael Wong, Neil Horlock, Mark Hoemmen

> 1.2 Adopt agenda

>

Approve.

> 1.3 Approve minutes from previous meeting, and approve publishing

> previously approved minutes to ISOCPP.org

>

Approve.

> 1.4 Action items from previous meetings

>

None.

> 2. Main issues (125 min)

>

> 2.1 General logistics

>

> Plan CPPCON SG14 meeting

>

Room booking is in Gaylord Hotel, about 30-40, regular seating

Rene Riviera.Steffan TJ, Matthew Butler. Michael Wong

2.2 Paper reviews

>

> 2.2.1 Discuss Possible paper agenda for CPPCON.

>

> 1. "Member Layout Control"

> <

>

>

https://raw.githack.com/grafikrobot/papers/master/wg21/member_layout/member_layout_D1605

R0.html

> >

>

> C++ alliance Marsahl Clow, Vinnie

https://raw.githack.com/grafikrobot/papers/master/wg21/member_layout/member_layout_D1605R0.html
https://raw.githack.com/grafikrobot/papers/master/wg21/member_layout/member_layout_D1605R0.html

>

Allow optimizations that are difficult for embdded systems, rearranging

member of class for packing

consider interaction with alignas

should support alignas within this feature

talk about cache line and false sharing

talk about context sensitive keyword

solves a very specific issue, this could be not broad enogh for C++

would prefer all the controls in one place, unifying all the other

alignment controls padding ,layout, order, alignment

propose some form of unification, like pragma pack,

this depends on committee

suggest syntax be extendable, to alignment

2. Linear Algebra by Bob Steagall/Guy Davidson

>

> 3. BLAS by Mark Hoemmen

>

Working on implementation of the proposal with stub filled in

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1674r0.md

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1673r0.md

wrapping one of the BLAS function, takes mdspan as input and output, has

layout and accessors, not all are friendly to the BLAS

implementation has a selection process that picks out what is really needed

previous review has concerns about small matrixes which needs to pass by

value

mdarray proposal is a container version of mdspan may be useful for pass by

value

small linear algebra, but batches of them at a time

Games might want to target this as well

design is based on BLAS but that is based on larger matrixes

one optimization that is missing is when value is so small it could pass by

reference

need feedback on vector-vector, matrix-matrix operations, and these

vector-vector overlap standard algorithms,

some of them makes sense to keep, but others may not, e.g. dot-products,

norm,

copy-swap is one that overlaps standard algorithm

possible integration means implementing 1385 on top of this BLAS wrapper

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1385r2.html

Intention is not to compete with each other

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1674r0.md
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1673r0.md
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1385r2.html

Feedback request:

What about very small matrices and vectors?

Can take those as md-span or md-array by reference, so should we try to

pass by value, if you have experience with very small matrices to weigh in.

Should we drop BLAS-1 and replace with standard algorithms? This is

thin-BLAS

Can we have an engine in 1385 that would call the function in this

proposal? Yes Bob and I have thought of that, then BLAS api would be there.

Though some people prefer an explicit interface, and additional

capabilities like different data layouts for increased performance.

Reference vs value case, from games industry needs to understand needs

comparable performance between debug to release builds

debug builds have to inline more

one of the key requirement: debug builds are rare and slow, and no inlining

in most libraries we use,

so we force inlining in both debug and release, need to reduce the number

of calls if you can get the code to inline for small things

dereference and indirections kills debuggability

if matrices have compile dimensions, then we may be able to plug in our own

vector code, with built-in intrinsics, pluggable only needed for one

implementation, usually custom written code

without engine to plug in different backends, then you get what std lib

provides, this will kill it for game developers

like batch interface? yes

how about as a library? probably

single data arrays that we transform is ok

this gives value to change BE and customize

Please consider Paper 1832 shows game industry expectation:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1832r0.html

SG15 is meeting after CPPCON, Rene will be there and may proxy P1832

Any other papers?

>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1832r0.html

Improving Debug Builds Inline With User Expectation before LA proxy by Rene

> 2.2.2 Error Size Benchmarking by Ben Craig Update.

>

> P1640R0: Error size benchmarking

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1832r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1832r0.html

>

>

> https://raw.githack.com/ben-craig/error_bench/master/error_size_benchmarking.html

> <

>

> https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-

5Fbench_master_error-5Fsize-

5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSw

vF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-

lWcD4&s=LGjT-TVB94ptHzUmdPNh4LJr1eMpKuAcmL7pQSWzxxA&e=>

>

>

> 2 papers for Belfast: stripped down version of this same paper more focused

working on timing/speed paper, got data, will share it in the chat, need to

add words and graph

https://raw.githack.com/ben-craig/error_bench/err_gauss/results/ret_nd/happy_8.html

early data

showing exception/terminate to be less cost then other error returns

checking with implementers on the numbers

nothign surprising so far at macro level

micro level yes, returnign a struct that is trivial, is more expensive then

a non-trivial with a defined destructor, due to register filling

are you looking value in the struct, struct is a pointer to error domain

and a value, if domain is null then there is no error and i dont look

in some cases ,termnate is a recovery mechanism, when compiler running and

runs out of diskspace, then ok to terminate, could also be when u run out

of heap

 2.2.3 PTF/Colony?

>

> 2.2.4 Linear Algebra update from Sept 4

>

> Next call: Oct 2: 3 PM ET

>

> 2.2.5: Any serious study on cost of Exception vs cost of Error Codes

>

Ben Craig is working on this.

> 2.2.6 any other proposal for reviews?

>

> 2.3 Domain-specific discussions

>

> 2.3.1 Embedded domain discussions: Ben Craig, Wooter and Odin Holmes ,

> John MacFarlane

> 2.3.3 Games Domain: Rene Riviera, Guy Davidson and Paul Hampson

> 2.3.4 Finance Domain: Carl Cooke, Neal Horlock, Mateusz Pusz and Clay

https://raw.githack.com/ben-craig/error_bench/master/error_size_benchmarking.html
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s
https://urldefense.proofpoint.com/v2/url?u=https-3A__raw.githack.com_ben-2Dcraig_error-5Fbench_master_error-5Fsize-5Fbenchmarking.html&d=DwMGaQ&c=r2dcLCtU9q6n0vrtnDw9vg&r=bHyceIQQHQvbfTSwvF3b5ym3XCQIh0_iFRNJbNk-FCc&m=_OFSroXnnYHKfBQqw8TVSac0et4fEQ80IMeaj-lWcD4&s
https://raw.githack.com/ben-craig/error_bench/err_gauss/results/ret_nd/happy_8.html

> Trychta

>

Peter Langford of STAC to think about the next London November event after

Belfast meeting. Discussion of what C++20 may be offering for finance

commnuiy.

SG1 concept of affinity may be different then affinity in low latency which

requires placement and explciit control

HPC rely on more the way you launch a batch job on placement on MPI and

OpenMP threads, and OpenMP deals wth first touch and thread teams

one virtual allocation that crosses numa domains

we dont use explicit control as much unless it is on GPUs

P484 thread constructor attribute

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0484r1.pdf

Should we create a scorecard to WG21 on each of our domains.

2.3.5 Linear Algenra: Bob Steagall, Mark Hoemman

>

> 2.4 Other Papers and proposals

>

> 2.5 Future F2F meetings:

>

Sept 18 CPPCON

> 2.6 future C++ Standard meetings:

> https://isocpp.org/std/meetings-and-participation/upcoming-meetings

>

> - *2019-11-04 to 09: Belfast, Northern Ireland;* Archer Yates

> -

> - 2020-02-10 to 15: Prague, Czech Republic

>

> - 2020-06-01 to 06: Bulgaria

> - 2020-11: (New York, tentative)

> - 2021-02-22 to 27: Kona, HI, USA

>

> 3. Any other business

> Reflector

> https://lists.isocpp.org/mailman/listinfo.cgi/sg14

> As well as look through papers marked "SG14" in recent standards committee

> paper mailings:

> http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/

> http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/

>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0484r1.pdf
https://isocpp.org/std/meetings-and-participation/upcoming-meetings
https://lists.isocpp.org/mailman/listinfo.cgi/sg14
http://open-std.org/jtc1/sc22/wg21/docs/papers/2015/
http://open-std.org/jtc1/sc22/wg21/docs/papers/2016/

> Code and proposal Staging area

> https://github.com/WG21-SG14/SG14

> 4. Review

>

> 4.1 Review and approve resolutions and issues [e.g., changes to SG's

> working draft]

>

> 4.2 Review action items (5 min)

>

> 5. Closing process

>

> 5.1 Establish next agenda

>

>

> 5.2 Future meeting

>

> Oct 9

>

> Oct 9: mailing deadline Monday Oct 7

>

> Nov 13: cancelled due to C++ Std meeting

https://github.com/WG21-SG14/SG14

