

Document P1895R0
Date 2019-10-07
Reply To Lewis Baker <​lbaker@fb.com​>

Eric Niebler <​eniebler@fb.com​>
Kirk Shoop <​kirkshoop@fb.com​>

Audience LEWG
Target C++23

tag_invoke: A general pattern for supporting
customisable functions

Abstract
Modern customization point objects ([customization.point.object]) were a step forward over raw ADL for
making libraries customizable. However, there are a couple of problems they leave unsolved:

1. Each one internally dispatches via ADL to a free function of the same name, which has the effect
of globally reserving that identifier (within some constraints). Two independent libraries that pick
the same name for an ADL customization point still risk collision.

2. There is occasionally a need to write wrapper types that ought to be transparent to customization.
(Type-erasing wrappers are one such example.) With C++20's CPOs, there is no way to
generically forward customizations through the transparent wrappers.

Point (1) above is an immediate and pressing concern in the executors design, where we would like to
give platform authors the ability to directly customize parallel algorithms. Using the C++20 CPO design
would explode the number of uniquely-named ADL customization points from a handful to potentially
hundreds, which would create havoc for the ecosystem.

Point (2) is also a concern for executors, where platform authors would like to decorate executor types
with platform-specific "properties" (extra-standard affinities and thresholds of all sorts) that can be
exposed even through transparent layers of adaptation, such as the polymorphic executor wrapper. This
need led to the properties system (P1393) which LEWG has already reviewed.

It's important to note that, although the problems in C++20 CPOs are exposed by the executors work, the
problems are not specific to executors.

This paper presents a solution: a single ADL customization point named ​tag_invoke ​ that takes as its
first argument a CPO that is used as a tag to select an overload. A new CPO, ​std::is_fooable(t) ​,
rather than dispatching via ADL to ​is_fooable(t) ​, would dispatch instead to

mailto:lbaker@fb.com
mailto:eniebler@fb.com
mailto:kirkshoop@fb.com

tag_invoke(std::is_fooable, t) ​. As will be shown below, this neatly solves both problems
described above without the need for a separate properties system.

Overview
This paper proposes defining a standard, uniform mechanism for customisable functions exposed as
customisation-point-objects (CPOs) to allow user-defined types to customise the behaviour of those
operations without requiring the use of a separate ADL name for each CPO.

This would add a new meta-customisation-point-object called ​std::tag_invoke ​ that abstracts away
the mechanism of evaluating an unqualified call to ​tag_invoke() ​ that finds the appropriate overload
by ADL.

Customisation-point-objects are then implemented in terms of calls to overloads of ​tag_invoke() ​ that
pass the CPO itself as the first argument, allowing it to tag-dispatch to an appropriate overload for that
CPO based on the type of the first parameter. CPOs can optionally dispatch to some default
implementation if no overload of ​tag_invoke() ​ could be found.

Customisations of a CPO define overloads of ​tag_invoke() ​ found by ADL, typically defined as hidden
friend functions to avoid making the overload-set unnecessarily large, and that take the CPO object as
the first argument and specialise on one or more of the other argument types.

For example:
// Define a new CPO named mylib::foo()

namespace ​ mylib
{

 i ​nline constexpr struct ​ foo_fn {
 ​template ​< ​typename ​ T>
 ​auto operator ​()(​const ​ T& x) ​const ​ ->
 std::tag_invoke_result_t<foo_fn, ​const ​ T&> {
 // CPO dispatches to tag_invoke() call

 // passes the CPO itself as first argument.

 ​return ​ std::tag_invoke(* ​this ​, x);
 }

 } foo{};

}

// Use the mylib::foo() CPO

template ​< ​typename ​ T>
 ​requires ​ std::invocable< ​decltype ​(mylib::foo),
 ​const ​ T&>
bool ​ print_foo(​const ​ T& value) {
 ​// Just call the CPO like an ordinary function
 std::cout << mylib::foo(value) << std::endl;

}

// Customise the mylib::foo() CPO for my_type

namespace ​ otherlib
{

 ​class ​ other_type {
 ...

 ​private ​:
 // Provide an overload of tag_invoke() with

 // the CPO as the first argument.

 ​friend int ​ tag_invoke(std::tag_t<mylib::foo>,
 ​const ​ other_type& x) {
 ​return ​ x.value_;
 }

 ​int ​ value_;
 };

}

// Can now call print_foo() function.

void ​ example() {
 otherlib::other_type x;

 print_foo(x);

}

Note: Code that just wants to use/call a customisable function does not need to know anything about
tag_invoke() ​. It can just call the CPO as if it were an ordinary function. The ​tag_invoke()

mechanism is used only in the implementation of customisable functions and by types that want to
customise the implementation of the function.

This approach to defining CPOs has a number of important properties:

It centralises and hides away the mechanics of defining customisation-points that allow
customisation by defining functions found by ADL.

This greatly simplifies the amount of boiler-plate needed to define a new customisation-point. No
longer do you need to:

● define the CPO type in an unspecified, private namespace
● optionally define a poison-pill overload of the ADL function for unqualified calls in that

context from finding the ADL name in parent namespaces
● define the constexpr CPO in a separate inline namespace that will not be found by the

CPO type's ​operator() ​ so that it doesn't result in recursively calling itself, and add a
'using namespace' declaration to bring the CPO into the parent namespace without
conflicting with hidden friends that might be also defined in that namespace.

It solves the problem of CPOs defined by different libraries potentially conflicting if they happen
to use the same name and signature for the ADL function but have different semantics.

By incorporating the type of the CPO itself in the signature of the ADL function it becomes
possible to allow two CPOs with the same name but defined in different namespaces, possibly in
unrelated libraries, to be disambiguated by having customisations explicitly specify the type of the
CPO that they intended to customise.

This prevents a type from accidentally providing a customisation for a CPO that they did not
intend to, and also allows a type to simultaneously customise/implement an arbitrary set of CPOs
without worrying about potential naming conflicts that might otherwise arise were CPO-specific
names used to dispatch to ADL-overloads.

This has the added benifit that we only need to reserve a single ADL name, ​tag_invoke ​, which
can then be used by all CPOs.

It provides a single ADL name with a uniform structure for the customisations.

Having a single ADL name to customise, ie. ​tag_invoke() ​, and a uniform structure to these
overloads, always taking the CPO itself as the first argument, makes it possible to build adapters
that generically forward through calls to CPOs involving the adapter type to an underlying object.

For example, one such adapter that can be built using this is a generic type-erasing adapter that
can forward through calls to an arbitrary list of CPOs through to the concrete implementations.

It provides a simpler and more direct representation of customisable functions compared to
using query/prefer/require as described in P1393R0.

The use of ​tag_invoke ​-based CPOs provides many of the same benefits that P1393 properties
provide but does so with a more general facility that also naturally supports customisable
algorithms.

With P1393 properties, full support for customizable parallel algorithms would require a new
standard property for every overload of every standard parallel algorithm. With ​tag_invoke ​, no
additional properties are needed; the algorithm CPO itself, which needs to exist anyway, suffices.
We could even reuse the ones that already exist in the ​std::ranges ​ namespace.

We believe that ​tag_invoke ​-based CPOs meet the needs of the P1393 properties mechanism
while being simpler, more general, and more in keeping with the existing design of the STL. If,
however, it is decided that the query/prefer/require/require_concept CPOs are still desired, they
can trivially be implemented on top of ​tag_invoke ​.

Motivation / Goals
The high-level goals of this facility are:

● To make it simpler to define customisable functions as CPOs
● To provide a uniform interface for customising these functions
● To allow adapter types, such as type-erasing adapters, to forward through calls to CPOs involving

the adapter type to the equivalent call of the CPO with the wrapped type in a generic way.
● Provide a mechanism for customisable functions that avoids the potential for naming conflicts

inherent in picking names from a global scope (names found by ADL, names of member
functions)

While the main driver for adding this facility has been in support of customisation of async algorithms in
the domain of executors and sender/receiver, it is expected that many other domains will also want to
define interfaces in terms of customisable functions or CPOs.

This facility is entirely general and is not specific to any particular domain.

Customisable functions/algorithms
The primary motivation for this capability is to allow libraries to define functions/algorithms that can be
customised externally by user-defined types, allowing them to define alternative implementations when
the function is invoked with particular argument types.

A given customisable function can provide a default implementation, typically in terms of some base
concept that it constrains its arguments on. If someone invokes the function with types that have not
customised the function then the call will dispatch to the default implementation.

If a customisable function has not defined a default implementation then it effectively acts as a basis
operation and user-defined types need to explicitly implement a customisation of this function for it to be
callable with those types.

Thus customisable functions can be broadly split into two main categories:

● basis operations​ - These are customisable functions with no default implementation.
Customisations for these operations must be defined for them to be callable. User-defined types
will typically customise basis operations in order to satisfy some higher-level concept.

● customisable algorithms​ - Customisable functions that have a default implementation defined in
terms of some set of basis operations, but that allow user-defined customisations of the
algorithm. Customisable algorithms are not used in the definition of new concepts.

The ability to allow user-defined types to customise standard library algorithms for their types allows
generic code to continue calling standard library algorithm functions, while allowing those calls to
dispatch to more efficient implementations than the generic implementation provided by the standard
library when called with certain combinations of argument types.

For example, the paper ​P1171R0​ proposes a function ​sync_wait() ​ that blocks the current thread until
some asynchronous operation, represented as a Sender passed as its only parameter, completes. This
sync_wait() ​ function can be implemented as a generic algorithm in terms of the Sender interface by
attaching a callback to the Sender and using standard thread-synchronisation primitives to block until the
callback is invoked. However, there may be certain types of Senders that may have a more efficient
implementation of ​sync_wait() ​.

For example a Sender that represents the execution of a CUDA kernel on a GPU might be able to
implement the semantics of ​sync_wait() ​ more efficiently by calling the ​cudaEventSynchronize()
function. Thus an implementer of such a sender might want to customise the implementation of
sync_wait() ​ so that if generic code were to call ​sync_wait() ​ with their sender type that it would
dispatch the call to the more efficient implementation.

Simplifying definition of CPOs
The paper ​N4381​ by Eric Niebler introduced the design of customisation-point objects (CPOs) as a better
abstraction for implementing customisation-points that find customisations by ADL. This is the approach
that has been adopted by the recent ​std::ranges ​ CPOs added in C++20.

Say we want to define a CPO, ​mylib::foo ​, that will dispatch to an overload of ​foo() ​ that is found by
ADL, if such an overload exists. If we were to follow the same approach as the ​std::ranges ​ CPOs
then, to avoid all of the issues outlined in N4381, we would need to define our CPO as follows:

https://wg21.link/P1171R0
https://wg21.link/N4381

namespace​ mylib
{

 ​namespace​ foo_cpo_detail
 {

 // "poison pill" to hide overloads of foo() that might be found in parent namespace.

 // We want to limit to only finding overloads by ADL.

 ​void​ foo() = ​delete​;

 ​ // Define function object with operator() that forwards to call to unqualified 'foo()'
 ​struct​ foo_fn {
 ​template​<​typename​ T>
 ​auto operator​()(T&& x) const
 ​noexcept​(​noexcept​(foo((T&&)x)))
 -> ​decltype​(foo((T&&)x)) {
 ​return​ foo((T&&)x);
 }

 };

 }

 // Define 'foo' object in an inline nested namespace.

 // This is necessary to avoid potential conflicts that can arise from having types in

 // 'mylib' that define customisations of 'foo()' as hidden friends, thus implicitly

 // adding functions with name 'foo' in the enclosing namespace,

 // at the same time as having an object with name 'foo' in the same namespace.

 ​inline namespace​ foo_cpo
 {

 ​inline constexpr​ foo_cpo_detail::foo_fn foo{};
 }

}

This is a lot of boiler-plate that we need to go through to be able to define a new CPO.

We would ideally be able to reduce the amount of boiler-plate and magic incantations required to define
a CPO to something more concise and with fewer pitfalls than the above. It should be easy for
applications to define their own CPOs without needing to write a lot of code.

With this proposal we can write a CPO more simply in terms of tag_invoke as follows:

namespace​ mylib
{

 ​inline constexpr struct​ foo_fn {
 ​template​<​typename​ T>
 ​auto operator​()(T&& x) ​const
 ​noexcept​(​noexcept​(std::tag_invoke(*​this​, (T&&)x)))
 -> ​decltype​(std::tag_invoke(*​this​, (T&&)x)) {
 ​return​ std::tag_invoke(*​this​, (T&&)x);
 }

 } foo{};

}

The fact that the ADL name is different from the name of the CPO also means that we do not have to put
the CPO in a different namespace to avoid potential conflicts with friend functions declared by types in
the same namespace that are trying to customise the CPO.

Avoiding problems with name-based ADL customisation
The existing approach to defining CPOs, such as the approach taken by ​std::ranges::begin() ​,
et.al., is to have the CPO dispatch to a call to a particular function name with the overload found by ADL.

While this approach works well for well-known idioms and concepts, like that of a
std::ranges::range ​, this approach does not scale well if we start applying it to making a large
number of algorithms customisable.

Each time we use a name found by ADL we are effectively imbuing that name with special meaning
globally. A call to an unqualified function name can result in that name being found in any namespace
associated with the arguments to the call, regardless of whether the overloads that are found were
intended as customisations of the CPO that is calling them or not.

This can lead to surprising behaviour if an unrelated function is found that just happens to be callable
with the same name and arguments.

It can also lead to conflicts if two libraries independently define customisation points that use the same
name and signature but that have different semantics.
e.g. A library defines ​shapelib::size(const T& shape) ​CPO that dispatches to the
size(shape) ​ function found by ADL and is intended to return the size of a shape in pixels, whereas
std::ranges::size(const T& range) ​ also dispatches to ​size(range) ​ function but is intended
to return the number of elements in the range. If I have a shape type that is a container of shapes then it
may not be possible to simultaneously customise both of these CPOs for the same type. And worse, a
call to one of the CPOs may end up finding an overload intended as a customisation of the other.

The same argument about conflicting names also applies to member functions. I can't have a type that
has both a ​.size() ​ method that returns the number of pixels and a ​.size() ​ method that returns the
number of elements in the container.

These problems will become more prevalent as more libraries, the standard library included, seek to
define customisation points, particularly if libraries start to allow algorithms to be customisable, not just
basis operations.

This proposal addresses this problem by disambiguating ADL calls by having overloads specify the type
of the CPO as the first argument. Different CPOs with the same name can be defined in different
namespaces and so we can disambiguate between customisations of two CPOs with the same name by
explicitly mentioning the type of the CPO that a customisation is intended for.

For example:

namespace​ shapelib
{

 ​template​<shape S>
 ​class​ composite_shape
 {

 ​public​:
 ...

 ​using​ iterator = ​typename​ std::vector<S>::iterator;
 iterator begin() { ​return​ shapes_.begin(); }
 iterator end() { ​return​ shapes_.end(); }

 ​private​:
 ​// Separately customise std::ranges::size and shapelib::size

 ​friend​ size_t tag_invoke(std::tag_t<std::ranges::size>, ​const​ composite_shape& s) {
 ​// Return number of elements
 ​return​ shapes_.size();
 }

 ​friend​ size_t tag_invoke(std::tag_t<shapelib::size>, ​const​ composite_shape& s) {
 ​// Return the max size of the child objects.
 size_t size = 0;

 ​for​ (​auto​& child : s.shapes_) {
 size = std::max(shapelib::size(child), size);

 }

 ​return​ size;
 }

 std::vector<S> shapes_;

 };

This approach is similar to that proposed independently by ​P1665R0​, but has a few important
differences.

Supporting generic adapters that pass-through CPO calls
One of the limitations of using name-based customisation points is that it becomes difficult to customise
a set of CPOs in a generic way. This makes it difficult to build adapter types that would otherwise be
transparent to certain CPO calls, passing the call through to a corresponding call to the CPO on the
wrapped type.

For example, say we wanted to write an adapter that customised calls to a ​get_executor() ​ CPO to
return a particular executor object but that otherwise forwarded all other CPOs invoked with the adapter
as the first argument to call the CPO on the wrapped object. If every CPO required declaring a hidden
friend with a different name then it is not possible to generically forward through customisations of other
CPOs.

https://wg21.link/P1665R0

However, by having all CPOs customisable using the same name, ​tag_invoke ​, we can define a
generic overload of ​tag_invoke() ​ that accepts any CPO and have it generically forward calls to these
CPOs to the wrapped object.

This capability is a key benefit of this approach over the "Customisation Point Functions" approach
discussed in ​P1292R0​.

For example:

template​<​typename​ T, ​typename​ Executor>
struct​ executor_wrapper
{

 ​explicit​ executor_wrapper(T object, Executor ex)
 : object_(object), executor_(ex) {}

private​:
 ​friend​ Executor tag_invoke(std::tag_t<get_executor>, ​const​ executor_wrapper& ew) {
 ​return​ ew.executor_;
 }

 // Forward through calls to other CPOs to the wrapped object.

 // Done in a SFINAE-friendly way that won't hook unsupported operations

 ​template​<​typename​ CPO, ​typename​... Args>
 ​friend​ ​auto​ tag_invoke(CPO cpo, ​const​ executor_wrapper& ew, Args&&... args)
 ​noexcept​(std::is_nothrow_tag_invocable_v<CPO, const T&, Args...>)
 -> std::tag_invoke_result_t<CPO, ​const​ T&, Args...> {
 ​// We can just call the 'cpo' object itself
 ​return​ cpo(ew.object_, (Args&&)args...);
 }

 T object_;

 Executor executor_;

};

If required, the set of CPOs to be forwarded through can be constrained by adding an additional
'​requires ​' constraint on some attribute of the CPO.

For example, a library that defines a number of domain-specific CPOs could categorise those CPO types
by annotating them with a nested '​category ​' type alias. Then a particular adapter could choose to filter
which CPOs are forwarded based on whether they match a particular category or not.

Type-erasing Wrappers
An important feature for the design of executors is the ability to be able to define a type-erased executor
type. i.e. a type that satisfies the executor concept but that can hold a value that is any concrete executor
type. However, the need to be able to define a type-erasing adapter is far more general than that
required by executors.

It is possible to define a concept in terms of the set of its CPOs. For example, the receiver concept can
be defined in terms of calls to three CPOs; ​set_value ​, ​set_error ​ and ​set_done ​.

https://wg21.link/P1292R0

template​<​typename​ T, ​typename​ V, ​typename​ E = std::exception_ptr>
concept​ receiver_of =
 ​ require​s(T r, V value, E error) {
 set_value((T&&)r, (V&&)value);

 set_error((T&&)r, (E&&)error);

 set_done((T&&)r);

 };

What we would like to be able to do is define a type-erased adapter type that also satisfies this concept
and that can wrap any other value that can implement this concept.

template​<​typename​ V, ​typename​ E = std::exception_ptr​>
using​ any_receiver_of = ...;

any_receiver_of<int> r = some_concrete_receiver{...};

set_value(std::move(r), 123); ​// Dispatches to set_value(some_concrete_receiver&&, int)
set_done(std::move(r)); ​// Dispatches to set_done(some_concrete_receiver&&)
set_error(std::move(r), eptr); ​// Dispatches to set_error(some_concrete_receiver&&,
 // std::exception_ptr)

The fact that we can generically customise a CPO by defining a hidden-friend overload of ​tag_invoke
makes it possible to build generic type-erased wrappers that can type-erase any object whose concept is
defined in terms of calls to CPOs using common template metaprogramming techniques.

For example, it is possible to build a type-erased adapter type that takes a variadic list of CPOs and that
customises certain overloads of those CPOs so that when the CPO is invoked with the type-erased
adapter that it dispatches via an indirect call to the corresponding call to the CPO with the type-erased
adapter parameter replaced with the underlying concrete object.

template​<​typename​... CPOs>
class​ any_unqiue {
 ​// See godbolt.org link below for implementation.
};

template​<​auto​&... CPOs>
using​ any_unique_t = any_unique<std::tag_t<CPOs>...>;

template​<​typename​ V, ​typename​ E = std::exception_ptr>
using​ any_receiver_of = any_unique_t<
 overload<​void​(this_&&, V)>(set_value),
 overload<​void​(this_&&) ​noexcept​>(set_done),
 overload<​void​(this_&&, E) ​noexcept​>(set_error)>;

template​<​typename​ V, ​typename​ E = std::exception_ptr>
using​ any_sender_of = any_unique_t<
 overload<​void​(this_&&, any_receiver_of<V, E>)>(submit)
 >;

Internally, the ​any_unique ​ type builds a vtable with an entry for each CPO overload listed as a
template parameter. It then declares a hidden friend that customises that particular overload of the CPO
and dispatches via an indirect call to the function pointer stored in the corresponding vtable entry. The

concrete implementation of this then invokes the CPO again, this time with the ​any_unique ​ parameter
replaced with the concrete object.

The type ​this_ ​ is used as a placeholder to indicate the position, value category and qualifiers of the
parameter for the ​any_unique ​ object and the hidden friend simply substitutes the ​this_ ​ parameter in
the signature. This allows the type-erased object to be in positions other than the first argument if
required.

For an example implementation of the above see ​https://godbolt.org/z/3TvO4f

Note that the type-erased wrappers do not have to be limited to forwarding through basis operations. A
type-erased wrapper can also support forwarding through calls to algorithms, allowing calls to that
algorithm with the type-erased type to dispatch through to a specialisation of that algorithm for the
concrete type rather than having the algorithm implemented in terms of the type-erased basis operations.

This can allow applications to trade-off allowing certain algorithms to have specialised implementations
even when the objects have been type-erased, at the expense of additional function instantiations that
may never be called, and the cost of additional vtable entries for each type-erased type.

For example, a sender that represents a CUDA operation might have customised ​sync_wait() ​ to be
implemented in terms of ​cudaEventSynchronize() ​. However, if we type-erase the sender and then
invoke the ​sync_wait() ​ algorithm on the type-erased sender then by default it will not be able to find
the customisation for the CUDA sender and will dispatch to the default implementation defined in terms
of the ​submit() ​ basis operation and some thread-synchronisation primitive such as
std::binary_semaphore ​.

However, if we extend the type-erased sender type to also include an entry for the ​sync_wait() ​ CPO
then it can customise the call to ​sync_wait() ​ on the type-erased sender to dispatch through a vtable
entry to call the concrete implementation of ​sync_wait() ​, including any customisations there might
have been for that concrete type.

For example:

inline constexpr​ ​unspecified​ sync_wait{};

template​<​typename​ V, ​typename​ E = std::exception_ptr, ​auto​&... OtherCPOs>
using​ any_sender_of = any_unique_t<
 overload<​void​(this_&&, any_receiver_of<V, E>)>(submit),
 OtherCPOs...

 >;

using​ my_float_sender = any_sender_of<​float​, std::exception_ptr,
 overload<​float​(this_&&)>(sync_wait)>;

void​ example(my_float_sender s) {
 ​ // Call to sync_wait() will dispatch to concrete implementation.
 ​float​ result = sync_wait(std::move(s));

https://godbolt.org/z/3TvO4f

 std::cout << ​"Result was: "​ << result << ​"\n"​;
}

Another example is a type-erasing wrapper that wraps a container-like thing that exposes a ​get(c,
idx) ​ operation for member access and a ​sort(c) ​ operation to sort the members:

// Declare two CPOs:

// - get(C& container, size_t index) -> T&

// - sort(C& container) -> void

// get() CPO

inline constexpr struct​ get_fn {
 ​// Default implementation
 ​template​<​typename​ Container>
 r​equires requires​ (Container c, size_t idx) { c[idx]; }
 ​friend auto​ tag_invoke(get_fn, Container& c, idx) -> ​decltype​(c[idx]) {
 ​return​ c[idx];
 }

 ​template​<​typename​ Container>
 ​requires​ std::tag_invocable<get_fn, Container&, size_t>
 ​auto operator​()(Container& c, size_t idx) ​const
 -> std::tag_invoke_result_t<get_fn, Container&, size_t> {

 ​return​ std::tag_invoke(*​this​, c, size_t(idx));
 }

} get{};

// sort() CPO

inline constexpr struct​ sort_fn {
 ​template​<​typename​ Container>
 ​requires requires​ (Container c) { std::ranges::sort(c); }
 ​friend void​ tag_invoke(sort_fn, Container& c) { std::ranges::sort(c); }

 ​template​<​typename​ Container>
 ​requires​ std::tag_invocable<sort_fn, Container&>
 ​void operator​()(Container& c) ​const​ { std::tag_invoke(*​this​, c); }
} sort{};

// Declare a type-erased sortable container.

// Allows member access by calling get() and sorting by calling sort()

template​<​typename​ T>
using​ sortable_container = any_unique_t<
 overload<​const​ T&(​const​ this_&, size_t)>(get),
 overload<T&(this_&, size_t)>(get),

 overload<​void​(this_&)>(sort)>;

// Example usage.

sortable_container<int> c = std::vector<int>{4, 7, 2, 9, 3};

assert​(get(c, 0) == 4);
get(c, 2) = 1;

sort(c); ​// Dispatches to concrete implementation of sort()
assert​(get(c, 0) == 1);
assert​(get(c, 1) == 3);

See ​https://godbolt.org/z/JJ5TcZ​ for an example implementation of this approach.

https://godbolt.org/z/JJ5TcZ

Different type-erasing adapters can be defined with different strategies for storage, ownership and
copy/move semantics. But all of the adapters can use the same technique for customising CPOs using
tag_invoke ​.

This paper is not proposing any particular type-erasure abstraction for the standard library - that should
be the subject of a separate paper. These examples are presented here primarily to demonstrate that it
is possible to build generic type-erased wrappers once we have a generic way to customise any
customisation point.

Simplifying use of Properties
The paper ​P1393R0​ "A General Property Customization Mechanism" proposes a facility that lets
applications define "properties" that can optionally support one or more of the basis operations:
query() ​, ​prefer() ​, ​require() ​ and ​require_concept() ​.

The ​query() ​ operation allows the caller to retrieve the value of a property for a given object.
e.g. ​std::query(someExecutor, std::execution::concurrency) ​ might retrieve the
maximum number of tasks an executor can execute concurrently.

The ​prefer() ​ and ​require() ​ operations allow the caller to adapt/transform an object into a new
object that has the same interface (ie. supports the same set of operations) as the original object but that
has a given property value. This can be done to either enforce particular semantic behaviours or provide
performance-tuning hints to an algorithm.
e.g. ​std::require(someExecutor, std::execution::continuation) ​ could return an
executor that will treat tasks executed on it as continuations of the current task, and so should be
executed immediately on the same thread when the current task completes to take advantage of the
current task's data likely already being in CPU caches.

The ​require_concept() ​ operation allows the caller to adapt/transform an object into a new object
that is based on the original object but that has a different interface.

The facilities proposed by P1393R0 have an overlap in capability with this paper in that it is also
attempting to provide a mechanism for allowing types to customise the behaviour of some operations
through the use of customisation points.

Properties, basis operations and customisable algorithms
The properties system described by P1393 draws a distinction between two axes of customization:
properties and algorithms/basis operations. However, we note that in practice it is very difficult to define a
line between what is a property, a basis operation and a customisable algorithm; they are all some
flavour of customizable functions.

https://wg21.link/P1393R0

By treating these things consistently, we can make it possible for algorithm customizations, basis
operation customizations, and property customizations to follow a type generically through transparent
layers of adaptation.

While these facilities can also be used to provide support for implementing general customisable
functions, doing so via property customisation is less-direct and more restrictive compared to the
tag_invoke() ​-based approach described by this paper.

The property representation of customisable algorithms would need a separate property for each
algorithm and would either use ​query() ​ or ​require_concept() ​ to obtain an invocable that
represented the corresponding customisation for that algorithm.

Some examples of different techniques that use properties to implement customisable algorithms can be
found here:
https://github.com/chriskohlhoff/propria/tree/8d4762f85da8dc83d46cd53e4a5fa412f4c40862/examples/c
pp17/algorithms

CPOs as an alternative to properties
Many of the use-cases for properties can also potentially be represented directly using CPOs
implemented in terms of tag_invoke.

Query-only properties could be defined as customisable getter-functions that can be directly called to
retrieve the result of the query.

P1393 properties also have the ability to perform a compile-time query by querying the
Property::static_query_v<T> ​ member. This facility is used by the ​require() ​ customisation
point to allow it to return the object unmodified it if it already has the given property value.

Example: A query-only property, ​concurrency ​, from P1436R0 that lets you query the maximum
available concurrency for an executor. This query has no default implementation.

P1393 properties approach tag_invoke() CPO approach

// Defining the 'concurrency' property

struct ​ concurrency_t {
 ​template ​< ​typename ​ T>
 ​static constexpr bool ​ is_applicable_property_v
=

 std::executor<T>;

 ​static constexpr bool ​ is_preferable = false;
 ​static constexpr bool ​ is_requirable = false;

 ​using ​ polymorphic_query_result_type = size_t;

 ​template ​< ​typename ​ Executor>
 ​constexpr auto ​ static_query_v =
 Executor::query(concurrency_t{});

// Defining the 'get_concurrency()' function.

struct ​ get_concurrency_fn {
 ​template ​<std::executor E>
 ​requires ​ std::tag_invocable<
 get_concurrency_fn, ​const ​ E&>
 ​auto operator ​()(​const ​ E& executor) const
 ​noexcept ​(std::nothrow_tag_invocable<
 get_concurrency_fn, ​const ​ E&>)
 -> std::tag_invoke_result_t<

 get_concurrency_fn, ​const ​ E&> {
 ​return ​ std::tag_invoke(* ​this ​, executor);
 }

};

https://github.com/chriskohlhoff/propria/tree/8d4762f85da8dc83d46cd53e4a5fa412f4c40862/examples/cpp17/algorithms
https://github.com/chriskohlhoff/propria/tree/8d4762f85da8dc83d46cd53e4a5fa412f4c40862/examples/cpp17/algorithms

};

inline constexpr ​ concurrency_t concurrency{};

inline

constexpr ​ get_concurrency_fn get_concurrency{};

// Customising query of property for a type.

class my_thread_pool_executor {

 ...

private:

 ​friend
 size_t query(concurrency_t,

 ​const ​ my_thread_pool& tp) {
 ​return ​ tp.threadCount_;
 }

 size_t threadCount_;

 ...

};

// Customising the get_concurrency() function.

class ​ my_thread_pool_executor {
 ...

private ​:
 ​friend
 size_t tag_invoke(std::tag_t<get_concurrency>,

 ​const ​ my_thread_pool& tp) {
 ​return ​ tp.threadCount_;
 }

 size_t threadCount_;

 ...

};

// Querying runtime value of an executor

template ​<std::executor E>
 ​requires
 std::can_query_v<concurrency_t, E>

void ​ some_algorithm(E ex) {
 size_t concurrency = std::query(concurrency,

ex);

 ​// ... create 'concurrency' tasks.
}

// Querying runtime value of an executor

template ​<std::executor E>
 ​requires
 std::invocable<decltype(get_concurrency), E>

void ​ some_algorithm(E ex) {
 size_t concurrency = get_concurrency(ex);

 ​// ... create 'concurrency' tasks ​.
}

// Customising a static query of this property

class ​ my_strand_executor {
 ...

public ​:
 ​static constexpr ​ size_t query(concurrency_t) {
 ​// Only executes 1 task at a time.
 ​return ​ 1;
 }

 ...

};

// Customising static get_concurrency()

function.

class ​ my_strand_executor {
 ...

private ​:
 ​friend constexpr ​ size_t tag_invoke(
 std::tag_t<get_concurrency>,

 any_instance_of<my_strand_executor>) {

 ​// Only executes 1 task at a time.
 ​return ​ 1;
 }

 ...

};

NOTE: The RHS implementation of the equivalent of ​static_query ​ makes use of an empty helper
type ​any_instance_of<T> ​ that is implicitly constructible from any type from which a ​T ​ can be
implicitly constructed. This allows this overload to be chosen when passed either an
any_instance_of<T> ​, as in a static-query, or a value of type ​T ​, as in a runtime-query.

See ​https://godbolt.org/z/MERH5I​ for an example implementation of static queries using
tag_invoke ​-based CPOs.

It is also possible to represent the ​prefer/require/require_concept ​ operations on properties as
customisable algorithms that perform adaption/transformation of objects.

https://godbolt.org/z/MERH5I

For example, an algorithm that takes an arbitrary executor and returns an executor that satisfies the
"strand executor" concept (i.e. that never schedules work concurrently) could be represented as a
'​strand_executor ​' property or using CPOs for querying the strand-ness,
is_strand_executor(e) ​, and for turning an executor into a strand, ​make_strand_executor(e) ​.

Properties CPOs

// Define property

struct ​ strand_executor_t {
 ​static constexpr bool ​ is_requirable = true;
 ​static constexpr bool ​ is_preferable = false;

 ​template ​< ​typename ​ T>
 ​static constexpr bool ​ static_query_v = ...;

 ...;

};

inline constexpr

strand_executor_t strand_executor{};

// Define CPOs - with default implementations.

inline constexpr ​ ​unspecified​ is_strand_executor;
inline constexpr ​ ​unspecified
make_strand_executor;

// Static query

template ​< ​typename ​ T>
inline constexpr auto ​ is_strand_executor_v =
 is_strand_executor(any_instance_of_v<T>);

some_executor e;

auto ​ strand = std::require(e, strand_executor);

static_assert ​(
 std::static_query_v< ​decltype ​(strand),
 strand_executor>);

execute(strand, [] { do_something(); });

some_executor e;

auto ​ strand = make_strand_executor(e);

static_assert ​(
 is_strand_executor_v< ​decltype ​(strand)>);

execute(strand, []{ do_something(); });

One of the limitations of the properties based approach using prefer/require is that it assumes that there
is only one way to transform an object into another object that has a particular property. However, there
might be several such strategies for doing this.

With P1393 properties, the primary strategy for implementing a property is defined by the overload
selected by a call to ​std::require(object, property) ​. Other strategies can still be defined using
algorithms but these cannot use the ​require() ​ syntax since there can be only a single overload
selected for this call.

Property CPOs in terms of tag_invoke
If the committee determines that the P1393 property mechanisms are still desired then it would also be
possible to build the property mechanism on top of ​tag_invoke() ​.

The ​std::query ​, ​std::prefer ​, ​std::require ​ and ​std::require_concept ​ names described
in P1393 are CPOs and so could be defined as being customisable via ​std::tag_invoke() ​ without
needing to reserve the ADL names ​query ​, ​prefer ​, ​require ​ and ​require_concept ​ globally.

Doing so would allow properties to make use of generic type-erasure and other adapter facilities built on
top of ​tag_invoke() ​ rather than having to build that capability into the properties mechanism itself.
This would also allow type-erasing wrappers to forward through calls to particular overloads of
customised algorithms in addition to forwarding through property queries and calls to
prefer() ​/​require() ​.

Proposal Details
This section describes the additions proposed for the standard library to be able to support defining
tag_invoke ​-based CPOs.

std::tag_invoke

// <functional>

namespace​ std
{

 ​inline namespace​ ​unspecified​ {
 ​inline constexpr​ ​unspecified​ tag_invoke = ​unspecified​;
 }

}

The ​std::tag_invoke ​ name defines a constexpr object that is invocable with one or more arguments,
the first argument being the 'tag' (typically a CPO), if and only if an overload of ​tag_invoke() ​ that
accepts the same arguments could be found by ADL.

Evaluation of the expression ​std::tag_invoke(tag, args...) ​ is equivalent to evaluating the
unqualified call to ​tag_invoke(​decay-copy​(tag), args...) ​ with overload resolution performed
in a context that includes the declaration:

void tag_invoke();
and that does not include the ​std::tag_invoke ​ name.

[[Editorial note: The ​std::tag_invoke ​ CPO has been nominally placed in the <functional> header as
its name suggests an association with ​std::invoke ​ which is also defined in <functional>. Other names
and other headers could also be considered.]]

Type traits
This section defines some type-traits that simplifies the definition of customisation-point objects that are
defined in terms of ​std::tag_invoke ​, allowing them to more easily constrain overloads, deduce
return-types and forward noexcept qualification of the CPO's ​operator() ​.

// <type_traits>

namespace​ std

{

 ​template​<​auto​& Tag>
 ​using​ tag_t = decay_t<​decltype​(Tag)>;

 ​template​<​class​ Tag, ​class​... Args>
 ​concept​ tag_invocable =
 invocable<​decltype​(tag_invoke), Tag, Args...>;

 ​template​<​class​ Tag, ​class​... Args>
 ​concept​ nothrow_tag_invocable =
 tag_invocable<Tag, Args...> &&

 is_nothrow_invocable_v<​decltype​(tag_invoke), Tag, Args...>;

 ​template​<​class​ Tag, ​class​... Args>
 ​using​ tag_invoke_result = invoke_result<​decltype​(tag_invoke), Tag, Args...>;

 ​template​<​class​ Tag, ​class​... Args>
 ​using​ tag_invoke_result_t = invoke_result_t<​decltype​(tag_invoke), Tag, Args...>;
}

Question: Should ​nothrow_tag_invocable ​ be a concept or a ​constexpr bool
nothrow_tag_invocable_v ​ type-trait?

Example usage of type-traits
An example usage of these facilities in definition of a CPO:

inline constexpr struct​ schedule_fn {
 ​template​<​typename​ T>
 ​requires​ std::tag_invocable<schedule_fn, T>
 ​auto operator​()(T&& x) ​const
 ​noexcept​(std::nothrow_tag_invocable<schedule_fn, T>)
 -> std::tag_invoke_result_t<schedule_fn, T> {

 ​return​ std::tag_invoke(*this, (T&&)x);
 }

} schedule{};

and in definition of a customisation of this CPO:

struct​ some_scheduler {
 ...

private​:
 ​struct​ schedule_sender { ​/*...*/​ };
 ​friend​ schedule_sender tag_invoke(std::tag_t<schedule>,
 ​const​ some_scheduler& s) ​noexcept​ {
 ​return​ schedule_sender{s};
 }

};

Note the use of the ​std::tag_t ​ helper to simplify obtaining the type of the CPO from the CPO name.
This allows writing ​std::tag_t<some_cpo> ​ instead of ​std::decay_t<decltype(some_cpo)> ​.

Allowing CPOs to be defined in such a way that the type of the CPO is left unspecified gives the
implementation more flexibility over implementation strategy and also can avoid needing to introduce two
names into the ​std:: ​ namespace for each CPO.

We only specify the name of the object itself, we don't specify the name of the type. But this means we
need to provide some convenient way of accessing the type of a CPO so that user-defined types can
define overloads of ​tag_invoke() ​ that customise that CPO.

Using the type-alias, ​std::tag_t ​, which extracts that type directly from the CPO itself creates a
stronger tie between the ​tag_invoke() ​ overloads and the CPO compared to explicitly naming the
CPO type, which would otherwise need to rely on a naming convention to provide the association
between the CPO and its type.

// Exposing the CPO type name

// Using type name directly in customisations

namespace ​ somelib
{

 ​inline constexpr struct ​ foo_fn
 {

 ...

 } foo;

}

struct ​ my_type
{

 ...

 ​friend void ​ tag_invoke(somelib::foo_fn,
 ​const ​ my_type& x);
};

// Hiding CPO type name

// Using std::tag_t<CPO> in customisation instead

namespace ​ somelib
{

 ​inline constexpr struct ​ ​unspecified
 {

 ...

 } foo;

}

struct ​ my_type
{

 ...

 ​friend void ​ tag_invoke(std::tag_t<somelib::foo>,
 ​const ​ my_type& x);
};

The use of the object name in the signature should also allow customisations of the CPO to be found
using an IDE's "find all references" feature.

Design Discussion

Strategies for defining default implementations of CPOs
When defining a customisable algorithm that has a default implementation in terms of some concept
there are a couple of ways in which the default implementation can be defined. Each with differing
tradeoffs.

1) Define an unconstrained tag_invoke() method
This approach involves defining a default implementation of the CPO as an unconstrained ​tag_invoke
hidden-friend overload within the CPO type itself.

For example:

inline constexpr struct ​ contains_fn {
 ​// Unconstrained default implementation.

 ​template ​< ​typename ​ Range, ​typename ​ Value>
 ​friend bool ​ tag_invoke(contains_fn, Range&& r, ​const ​ Value& value) {
 ​return ​ std::ranges::find(r, value) != std::ranges::end(r);
 }

 ​template ​<std::range R, ​typename ​ Value>
 ​requires ​ std::tag_invocable<contains_fn, R, ​const ​ Value&>
 ​auto operator ​()(R&& r, ​const ​ Value& value) ​const
 ​noexcept ​(std::nothrow_tag_invocable<contains_fn, R, ​const ​ Value&>)
 -> std::tag_invoke_result_t<contains_fn, R, ​const ​ Value&> {
 ​return ​ std::tag_invoke(*this, (R&&)r, value);
 }

} contains{};

The hidden friend declared here will be found by the ADL call to ​tag_invoke() ​ as the tag argument is
of type ​contains_fn ​ and so its hidden friends will be considered in the overload set.

This approach has the benefit that we can just use the same ​operator() ​ definition as for
basis-operation CPOs that forwards on to ​std::tag_invoke() ​. The return-type of ​operator() ​ can
be declared using ​std::tag_invoke_result_t ​ and doesn't need to be modified to handle either
being a

One problem with this approach, though, is that the unconstrained overload can sometimes be a better
match than a more appropriate customisation.

For example:

template ​< ​typename ​ T>
class ​ my_hash_set {
 ...

private ​:
 ​friend bool ​ tag_invoke(
 std::tag_t<contains>, ​const ​ my_container& c, ​const ​ value_type& value);
};

void ​ example() {
 my_hash_set<int> a;

 ​const auto ​& ca = a;

 ​bool ​ result1 = contains(ca, 123); ​// calls custom version.
 ​bool ​ result2 = contains(c, 123); ​// calls default version!
 ​bool ​ result3 = contains(ca, convertibleToInt); ​// calls default version!
}

The reason for this is that the unconstrained version is a better match than the version that customised
implementation when passed slightly different argument types.

This can often be addressed by appropriately constraining the custom ​tag_invoke ​ overload. eg. by
writing a generic​ tag_invoke() ​ overload that accepts both l-value, r-value and const/non-const
arguments for the container type.

However, this can be difficult to get right and can lead to additional template instantiations of the
algorithm.

Ideally, the CPO would dispatch to the custom version if a custom version is callable with the provided
arguments and only fall back to the default one if no valid custom overload exists. Which leads us to
approach #2.

2) Use if constexpr to dispatch to tag_invoke() if overload is defined, otherwise fall
back to some default implementation
This approach has the implementation of ​operator() ​ detect whether there is a customised version of
the algorithm that is callable with the arguments and if so dispatches to that version, otherwise uses
some default implementation.

inline constexpr​ ​unspecified​ via;
inline constexpr​ ​unspecified​ transform;

inline constexpr struct​ then_execute_fn {
 ​template​<sender S, executor E, ​typename​ F>
 ​decltype​(​auto​) ​operator​()(S&& sender, E&& executor, F&& func) ​const​ {
 ​if constexpr​ (std::tag_invocable<then_execute_fn, S, E, F>) {
 ​// There is a customisation defined for this overload set. Call it.
 ​static_assert​(sender<std::tag_invoke_result_t<then_execute_fn, S, E, F>>);
 ​return​ std::tag_invoke(*this, (S&&)sender, (E&&)executor, (F&&)func);
 } ​else​ {
 // Fall-back to default implementation.

 // Works for any args that satisfy the function's constraints.

 ​return​ transform(via((S&&)sender, (E&&)executor), (F&&)func);
 }

 }

} then_execute;

This approach allows the CPO to define a chain of successive fallback implementations that are checked
in a particular order. This could allow different default implementations to be used depending on
properties of the arguments.

3) Use overload resolution with negative constraints to define order.

Another approach to defining CPOs with a default implementation is to define separate overloads of
operator(). This can, however, require additional constraints on the overload set to define a particular
order of preference in cases where the overloads would otherwise be ambiguous.

inline constexpr​ ​unspecified​ via;
inline constexpr​ ​unspecified​ transform;

inline constexpr struct​ then_execute_fn {
 ​// Dispatch to customisation if one is defined.
 ​template​<sender S, executor E, ​typename​ F>
 ​requires​ std::tag_invocable<then_execute_fn, S, E, F>
 ​auto operator​()(S&& sender, E&& executor, F&& func) ​const
 ​noexcept​(std::nothrow_tag_invocable<then_execute_fn, S, E, F>)
 -> std::tag_invoke_result_t<then_execute_fn, S, E, F> {

 ​return​ std::tag_invoke(*this, (S&&)sender, (E&&)executor, (F&&)func);
 }

 // Fall-back to default implementation if no customisation found.

 // Works for any args that satisfy the function's constraints.

 ​template​<sender S, executor E, ​typename​ F>
 ​requires​ (!std::tag_invocable<then_execute_fn, S, E, F>)
 ​decltype​(​auto​) ​operator​()(S&& sender, E&& executor, F&& func) ​const
 ​noexcept​(​noexcept​(transform(via((S&&)sender, (E&&)executor), (F&&)func))) {
 ​return​ transform(via((S&&)sender, (E&&)executor), (F&&)func);
 }

} then_execute;

This approach makes it easier to perfectly forward noexcept and return-types but requires some careful
crafting of constraints to avoid creating ambiguous overloads.

Note that it may be difficult to add extra overloads in a non-ABI-breaking way in future releases if taking
this approach as the requires-clause generally forms part of the mangled name of a function overload.

Providing default implementations in terms of other concepts
In some cases we may want to provide a generic implementation of a CPO for a category of types
defined by some other concept than the default implementation of an algorithm is in terms of.

One example for this might be the implementation of the submit() customisation-point, which is a basis
operation for the Sender concept, in terms of the coroutines Awaitable concept. It is possible to treat any
Awaitable like a Sender so we should be able to define a generic implementation of submit() in terms of
the Awaitable interface.

For example: A generic implementation of ​submit() ​ for any awaitable type.

template ​<awaitable A, receiver R>
void ​ tag_invoke(std::tag_t<submit>, A&& awaitable, R&& receiver) {

 [](std::decay_t<A> awaitable, std::decay_t<R> receiver) -> oneway_task {

 ​try ​ {
 ​if constexpr ​ (std::is_void_v<await_result_t< ​decltype ​(awaitable)>>) {
 ​co_await ​ std::move(awaitable);
 set_value((R&&)receiver);

 } ​else ​ {
 set_value((R&&)receiver, co_await std::move(awaitable));

 }

 } ​catch ​ (...) {
 set_error((R&&)receiver, std::current_exception());

 }

 }((A&&)awaitable, (R&&)receiver);

}

However, even if we define such an overload, ensuring that this overload is found by ADL for all possible
awaitables can be a challenge.

We would need to have this overload of ​tag_invoke() ​ placed in a namespace that was associated
with ​every​ ADL call to ​tag_invoke() ​ for this CPO with an awaitable. The obvious approach for this is
to place these overloads in a namespace associated with the ​submit ​ CPO type itself.

To enable this use-case, CPOs would need to advertise an associated namespace that generic
tag_invoke() overloads could be added to and permit applications to add overloads of ​tag_invoke()
for that CPO to that namespace.

For example, we could define the ​submit ​ CPO as follows:

namespace ​ std::execution {
 ​namespace ​ submit_ns {
 ​struct ​ __submit_base {};
 }

 // Inherit from a type defined in submit_ns to make it an associated

 // namespace.

 ​inline constexpr struct ​ __submit_fn : __submit_base {
 ​template ​< ​typename ​ Sender, ​typename ​ Receiver>
 ​requires ​ std::tag_invocable<__submit_fn, Sender, Receiver>
 ​void operator ​()(Sender&& s, Receiver&& r) ​const ​ {
 std::tag_invoke(* ​this ​, (Sender&&)s, (Receiver&&)r);
 }

 } submit;

}

Then third-party libraries can add a generic overload of ​tag_invoke() ​ to that namespace to have them
findable by the implementation of the CPO.

For example, the generic ​tag_invoke() ​ overload for the submit CPO for all awaitables shown above
could be defined in this associated namespace to enable any Awaitable to automatically implement
satisfy the Sender concept by virtue of implementing the ​submit() ​ CPO.

This capability is something that should be considered when defining new CPOs. However, it is not
without its dangers.

This can lead to ODR issues if that generic definitions are not available everywhere they might be used.
It can also lead to an increase in compile times if a large number of generic overloads are added to the
associated namespace.

It can also potentially lead to ambiguous calls if multiple generic overloads are added for different
concepts and we try to call the CPO with a type that implements both concepts.

More research and deployment experience is required to fully understand the implications of providing
such a facility.

Potential for ODR issues
Whenever we have a customisation point that is defined in terms of ADL calls, or even template
specialization, it is possible that some translation units will have visibility of a different set of those
overloads or template specialisations than other translation units based on which headers were included
or which modules were imported.

This can lead to ODR-violations if an application is not careful to ensure the same set of customisations
of tag_invoke() overloads for types are visible consistently wherever those types are used throughout a
codebase.

This can introduce problems if, for example, new overloads of ​tag_invoke() ​ are introduced for a given
type and the application does not recompile all code that could possibly have invoked that new overload.

The risk of ODR violations can be mitigated somewhat by declaring all ​tag_invoke ​ customisations as
friend functions of the associated type. This ensures that whenever a type is used that its customisation
of algorithms for that type are also available.

These ODR problems are not new but may become more common if CPOs encounter more
widespread use.

Potential for ABI breaks
Calls to CPOs that dispatch to ​std::tag_invoke() ​ might return different types depending on whether
particular ​tag_invoke() ​ customisations were found.

This means that adding a ​tag_invoke() ​ overload later might cause a CPO call to change its
return-type to a different type when called with the same arguments.

These ABI problems are not new but may become more common if CPOs encounter more
widespread use.

The name-mangling for a function template on some platforms does not encode the concrete return-type
that was deduced, only the expression used to deduce the template. This will typically be in terms of
something like ​decltype(std::tag_invoke(args...) ​).

If an invocation of a CPO originally dispatches to the default implementation and then later adds a new
tag_invoke() ​ customisation such that some TUs use one implementation and other TUs use a
different implementation then can end up with undiagnosed ODR-violations as the new instantiation of
the CPO's operator() might have the same mangled name but a different return-type.

We can mitigate this somewhat by having CPOs encode the chosen return-type as a defaulted template
parameter to the ​operator() ​ function. This way, the chosen return-type would at least be encoded in
the mangled name and so if you have different TUs that find different overloads then you at least have a
chance of detecting this at the linker stage.

For example:

inline constexpr struct ​ some_cpo {
 ​template ​<
 ​typename ​ A,
 ​typename ​ B,
 ​typename ​ Result = std::tag_invoke_result_t<some_cpo, A, B>>
 Result ​operator ​()(A&& a, B&& b) ​const ​ {
 ​return ​ std::tag_invoke(* ​this ​, (A&&)a, (B&&)b);
 }

};

It may not catch all such ODR violations, however. And this approach would need to be applied
consistently across all functions whose return-types may depend on the result of a customisation point.

The wider implication here, however, is that it could be an ABI-break to later add any overload of
tag_invoke() ​ that would change the return-type of a CPO after adding the type. For some third-party
libraries this may not be a problem, but it could be a problem for standard library async algorithms and
standard library types.

Again, these issues are not specific to this proposal. Any customisation mechanism we come up with is
going to suffer from the same challenges as they are inherent to C++'s separate compilation mechanism.

Compile-time impacts
One concern that needs to be investigated further is the impact that having all CPOs dispatch to a single
ADL name would have on compile times.

By having every CPO customisable using the same '​tag_invoke ​' name, if we end up with a large
number of types all customising a large number of CPOs then the number of overloads of ​tag_invoke
in the overload-set that the compiler needs to consider when resolving the correct overload has the
potential to be large and this could potentially impact compile times.

The compile-time impacts can be mitigated somewhat by limiting the number of ​tag_invoke ​ overloads
that are considered by a given ​tag_invoke ​ ADL call.

This can be achieved by:

● defining CPO types in separate namespaces that do not contain and ​tag_invoke() ​ overloads
● declaring ​tag_invoke() ​ customisations for particular types as hidden-friends of those types so

that these overloads are only considered when that type is an argument to a CPO

In cases where these steps are not enough (​e.g.​, when a CPO takes a large number of arguments), we
can further limit the number of associated namespaces and types to inspect by having the CPO dispatch
to ​std::tag_invoke() ​ with only a subset of the arguments. The ​tag_invoke ​ overload thus found
would return an invocable object that curries those arguments out. The CPO, after obtaining this
invocable by dispatching to ​tag_invoke() ​, would then invoke the invocable with the rest of the
arguments.

This should, in the vast majority of cases, present the compiler with only a handful of ​tag_invoke
overloads in the overload set for it to sort through during overload resolution.

Conclusion
There is a growing need for being able to define customisable functions in the standard library. The most
pressing use-case for them at the moment is in support of the design of executors.

This paper proposes that CPOs should in general be defined in terms of ADL calls to overloads of the
tag_invoke() ​ function and proposes adding a ​std::tag_invoke ​ helper and some associated
concepts and type-traits to help definition of this style of CPO.

This approach to defining CPOs has some advantages over the existing approach of using a separate
ADL name for each CPO: it enables building generic adapters that forward through CPO calls, and
avoids potential conflicts due to libraries choosing conflicting ADL names.

This approach also has the potential to either replace the need for the P1393R0 properties facilities or
complement it as a potential foundational building block on which the higher-level properties APIs can be
built, enabling general abstractions like type-erased wrappers to be able to work with both properties and
customisable algorithms at the same time.

