
Portable assumptions
Timur Doumler (papers@timur.audio)

Document #: P1774R2
Date: 2019-11-25
Project: Programming Language C++
Audience: Evolution Working Group

Abstract

We propose a standard facility providing the semantics of existing compiler intrinsics such as
__builtin_assume (Clang) and __assume (MSVC, Intel). It gives the programmer a way to
allow the compiler to assume that a given C++ expression is true, without evaluating it, and to
optimise based on this assumption. This is very useful for high-performance and low-latency
applications in order to generate both faster and smaller code.

1 Motivation
All major compilers offer built-ins that give the programmer a way to allow the compiler to assume
that a given C++ expression is true, and to optimise based on this assumption. They are very useful
for high-performance and low-latency applications in order to generate both faster and smaller code.
Use cases include more efficient code generation for mathematical operations, better vectorisation
of loops, elision of unnecessary branches, function calls, and more. This is existing practice, but it
would be much more accessible and easy-to-use if it were a standardised, portable C++ facility.

1.1 History and context

Adding such portable optimisation hints was already proposed once [N4425] and discussed by EWG
in 2015 in Lenexa1. The paper was rejected. EWG’s guidance was that this functionality should be
provided within the proposed contracts facility, and not as a separate feature.
Unfortunately, contracts as merged into the C++20 working draft in June 2018 in Rapperswil
[P0542R5], actually failed to provide such portable optimisation hints [P1773R0]. Later, in July
2019 in Cologne, contracts were pulled from C++20 altogether.
Regardless of whether contracts will eventually make it into a future C++ standard, and whether
or not assumptions might be a feature of such contracts, we need an independent low-level “assume”
facility. The present paper focuses on proposing exactly this low-level facility. Its purpose is to
introduce a standard way to provide an optimisation hint to the compiler, as an implementation
detail of a C++ program, locally, with clearly defined semantics that are expressed in C++ code,
independent of any build modes, build flags, etc.
In case contracts or other higher-level features will make use of such assumptions in the future, it
can then be implemented in terms of this low-level facility.

1https://cplusplus.github.io/EWG/ewg-closed.html#179

1

mailto:papers@timur.audio
https://cplusplus.github.io/EWG/ewg-closed.html#179


1.2 Existing practice

The major compilers offer the following built-ins providing this functionality:

— MSVC and Intel provide __assume(expression );

— Clang provides __builtin_assume(expression );

— GCC does not provide an analogous built-in directly, but the same can be achieved with
if (!expression ) __builtin_unreachable();

See [N4425] for a more thorough discussion.

1.3 Examples

Consider the following function:
int divide_by_32(int x)
{

__builtin_assume(x >= 0);
return x/32;

}

Without the assumption, the compiler has to generate code that works correctly for all possible
input values. With the assumption, it can implement the calculation using a single instruction (shift
right by 5 bits). Here is the output generated by clang (trunk) with -O3:

Without __builtin_assume:
mov eax, edi
sar eax, 31
shr eax, 27
add eax, edi
sar eax, 5
ret

With __builtin_assume:
mov eax, edi
shr eax, 5
ret

Another example: consider looping over an array of numbers and performing math on the elements.
Often, there are invariants on the array size such as: it’s a power of two, it’s a multiple of the SIMD
register size, etc (all very common e.g. in audio processing code). Telling the optimiser about such
invariants leads to a much better optimisation and vectorisation of the loop:

void limiter(float* buffer, size_t size)
{

__builtin_assume(size % 8 == 0);
for (size_t i = 0; i < size; ++i)

data[i] = std::clamp(data[i], -1.0f, 1.0f);
}

For this function, clang (trunk) with -O3 generates 70 lines of assembly without the assumption,
and only 42 lines with it.
See [Regehr2014] for more examples and use cases.

2 Proposed solution

2.1 Semantics

The design goal is to provide a portable facility closely following the compiler built-ins __assume and
__builtin_assume, therefore standardising existing practice. The facility should be implementable

2



with the existing built-ins on those compiler implementations who have them, without unnecessarily
constraining implementations who do not. Therefore, we propose the following semantics:

— It is a statement with a single argument, which is a C++ expression contextually convertible
to bool.

— The expression is guaranteed to be unevaluated. Therefore, expressions with side effects are
allowed (which is useful, consider ++ptr != end), and any such side effects are discarded.

— However, the optimiser may analyse the form of the expression, and deduce from that
information used to optimise the program.

— The behaviour is undefined if the expression would not evaluate to true2. This allows the
optimiser to optimise the program based on the assumption that it always will.

— Simply ignoring the whole statement is a conforming implementation, i.e. the optimiser is not
required in any way to make use of that assumption.

3 Proposed syntax
We propose an attribute syntax to spell portable assumptions. __builtin_assume(expression )
instead becomes:

[[assume(expression )]]

First of all, we propose that the word “assume” is used in the spelling this feature. This is the name
already used in existing built-ins, therefore choosing it means standardising existing practice. This
name will be least surprising and most self-explanatory to the user.
The syntax above (using parentheses) is chosen such that it is fully compatible with standard
attribute syntax and therefore backwards-compatible with a compiler that does not support this
feature. We advise against a syntax involving a colon, such as [[assume: expression ]] or other
variations that deviate from existing C++ attribute grammar.
Making this an attribute also makes it clear to the user that ignoring this statement does not change
the observable semantics of a valid C++ program.
It is further consistent with existing optimisation-related attributes ([[likely]], [[unlikely]],
[[carries_dependency]]) as well as existing attributes that increase the space of undefined
behaviour in a C++ program ([[noreturn]]).
We also believe that this syntax has the least impact on the core language as opposed to the
alternatives (see below).

4 Syntax alternatives (not proposed)

4.1 Keyword

An assumption can be characterised as an operator with an unevaluated operand, somewhat similar
to decltype(expression ). We could consider proposing a new keyword for this new operator,
such that __builtin_assume(expression ) instead becomes:

assume(expression )
2Note that there is a subtle difference between behaviour being undefined if the expression would evaluate to

false, or if the expression would not evaluate to true. The latter (proposed here) also includes the assumption
that the expression itself would not result in undefined behaviour if it were evaluated. This enlarges the space of
assumptions that can be stated by the programmer. Thanks to Joshua Berne for pointing this out.

3



However, portable assumptions are a low-level expert feature, with the potential to inject undefined
behaviour into an otherwise valid program. It should be used carefully and sparingly. We therefore
advise against introducing a new keyword for this feature.

4.2 “Magic” library function

Alternatively, we could introduce portable assumptions in the form of a “magic” library function, so
__builtin_assume(expression ) instead becomes:

std::assume(expression );

An advantage is the consistency with the closely related std::assume_aligned [P1007R3], which
was adopted for C++20.
However, such a spelling would introduce a weird novelty into the C++ language: something that
is syntactically a function call, yet does not evaluate its operand. It would essentially be something
like a “namespaced keyword”, and very different in nature to all existing “magic” library functions.
Significant core language changes would be needed to make it work. We also believe that such a
construct would be surprising to C++ developers. We therefore advise against adding this feature
as a library function.

5 Wording
The formal wording for this proposal will be provided in a future revision.

Document history

— R0, 2019-06-17: Initial version.

— R1, 2019-10-06: Updated text to reflect removal of Contracts from C++20; made proposed
attribute syntax backwards-compatible by replacing colon with parentheses.

— R2, 2019-11-25: Changed title to “Portable assumptions”; changed semantics from UB if
expression would evaluate to false to UB if expression would not evaluate to true; changed
syntax section to propose attribute-syntax only, dropping “magic” library function syntax as
a viable alternative.

References

[N4425] Hal Finkel. Generalized Dynamic Assumptions. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2015/n4425.pdf, 2015-04-07.

[P0542R5] Gabriel Dos Reis, Jose Daniel Garcia, John Lakosand Alisdair Meredith, Nathan Myers,
and Bjarne Stroustrup. Support for contract based programming in C++. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html, 2018-06-08.

[P1007R3] Timur Doumler. std::assume_aligned. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2018/p0627r3.pdf, 2018-11-07.

[P1773R0] Timur Doumler. Contracts have failed to provide a portable “assume”. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2017/p1773r0.pdf, 2019-06-17.

[Regehr2014] John Regehr. Assertions Are Pessimistic, Assumptions Are Optimistic. https:
//blog.regehr.org/archives/1096, 2014-02-05.

4

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4425.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0627r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0627r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p1773r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p1773r0.pdf
https://blog.regehr.org/archives/1096
https://blog.regehr.org/archives/1096

	1 Motivation
	2 Proposed solution
	3 Proposed syntax
	4 Syntax alternatives (not proposed)
	5 Wording
	References

