
P1428R0 Stroustrup signed/unsigned

1

Doc. No. P1428R0
Date: 2018-01-18

Programming Language C++
Audience LEWG and EWG

Reply to: Bjarne Stroustrup (bs@ms.com)

Subscripts and sizes should be signed

Bjarne Stroustrup

The problem
I write this in support of status quo in the WP: std::span’s index and size types are signed.

Usually, there is no need to write papers in favor of status quo, but in San Diego, the LEWG decided

Option 4: add std::ssize() alongside std::size(), change span::size() to unsigned, no additional
members. (P1227, reduced)

7/18/12/5/6

…

VV: Does option 4 have consensus?
TW: 25 to 11--yes.

As stated, changes the type of sizes but not subscripts, but apparently some believed that this also
changed the type of subscripts. A vote to just change the type of span::size() failed, but not by much:

Option 2: span::size() is unsigned (P1089)
14/11/6/6/8

At an evening session, many prominent committee members spoke against that change (see minutes); I
was among them and I (still) think that the decision to move to unsigned sizes for span is wrong and
shortsighted. Eight “strongly against” votes almost guarantee that the issue will re-emerge, so I am
putting my thoughts on record.

Please note that my reasons are in support of status quo in the current WP, not a suggestion to change
anything in the C++20 time-frame.

I see two primary arguments for using unsigned subscripts and sizes:

• That’s what we have been doing since the adoption of the STL in 1996.
• Sizes cannot be negative

and two primary reasons for using signed subscripts and sizes:

• Signed values are the result of most integer calculations
• In C and C++, unsigned does not model natural numbers

P1428R0 Stroustrup signed/unsigned

2

I will dig into the arguments and consider alternatives, but my conclusion stands:

Use signed subscripts and sizes for span as it was deliberately designed to do.

The original use of unsigned for the STL was a bad mistake and should be corrected (eventually).

Why we have unsigned subscripts in the STL
As far as I remember (the STL is 25 years old so my memory may not be completely accurate) three
reasons were given for the STL using unsigned types for subscripts

• (As opposed to pointer subscripts) vector subscripts can’t be negative, so unsigned is obviously
the right type.

• We get one more bit to play with so we can get larger vectors; this is important on machines
with 16-bit address spaces.

• Range checking needs only one check (no need to check for less than 0).

I have heard such rationales many times over the years, but

• C/C++’s unsigned is a very odd set of types. They do not model natural numbers. In particular,
they have modular arithmetic and conversions to/from signed ints that can be very surprising.
Beware of any argument using the word “obvious”.

• Even the first version of the STL that I have tracked down specified that even though vector’s
max_size() was of the unsigned X::size_type it was specified as the largest positive value of the
vector’s signed difference_type or we could construct vectors with elements beyond the
accessible range. So much for that extra bit (extra range).

• Checking signed 0<=x && x<max (often evaluated as (0<=x) & (x<max) to avoid branching) is not
slower than unsigned x<max on a modern computer. The number of loads in the two cases are
identical and unless the instruction pipeline and the arithmetic units are saturated, the speed
will be identical. Please check; I couldn’t check all hardware/compiler combinations.

Basically, we were wrong on all three counts. The questions then become:

• Does it matter?
• Can we do anything about it?
• Is span a good place to start?

My suggested answers are

• Yes
• Yes, but only very carefully
• Yes

Problems with unsigned
Mixing signed and unsigned numbers is a common source of confusion and bugs. Most coding
guidelines recommend against mixing them. However, there are two main sources of unsigned values
getting mixed with signed ones:

P1428R0 Stroustrup signed/unsigned

3

• People trying to ensure that only nonnegative numbers are passed where negative values don’t
make sense

• Loop variables and sizes

The use of unsigned for subscripts and sizes is creates a need for mixed signed and unsigned arithmetic
and comparisons. Thus, it forces violations of sane coding guidelines (or amazing workarounds) and sets
a bad example, that are enthusiastically followed by programmers unacquainted with the subtleties of
unsigned.

Consider

 unsigned area(unsigned x, unsigned y) // calculate area
 {
 return x*y;
 }

This appears to makes sense; after all lengths and areas can’t be negative. However, this definition
doesn’t prevent area(-2,3). Naturally, in real code the negative value is unlikely to be a literal (that a
compiler could warn against. Instead

 auto a = area(height1-height2, length1-length2);

If height1<height2, we have a reasonably realistic example.

The problems with mixing signed and unsigned values in loops is the focus of the rest of this paper.
Fundamentally, an unsigned is not just a natural number (a nonnegative integer); it is a nonnegative
number with modular arithmetic, and that can bite.

Please note that EWG has voted to review and possibly fix mixed signed/unsigned comparisons to give
mathematically correct answers (e.g., -1<2u really should be true). This is another example of work to
escape the mistakes of the late 20th century.

Problems with unsigned sizes
Consider

vector<int> v(-2);

This is (of course a range error), but why? The reason is that the vector constructor takes an unsigned so
-2 is interpreted as a very large (positive) number. That error is caught by a run-time check. The use of
unsigned did not eliminate the need for that check.

We are not always this lucky:

unsigned char x = -200;
 vector<int> v (x);

This executes correctly because x is the valid subscript 56. Somebody might even have wanted that to
work; who knows? However, I suspect that negative sizes are almost invariable bugs, often subtle bugs.

P1428R0 Stroustrup signed/unsigned

4

The major problem is that unsigned sizes yield mixed signed/unsigned expressions. Consider a simple
naive loop:

for (int i = 0; i<v.size(); ++i) v[i]=7;

Some (but not all) compilers warn that the i<v.size() comparison mixes signed and unsigned and is
therefore suspect. There is hardly ever a real problem, so those warnings are annoying and confuse
novices. “Obviously,” I should have written:

for (vector<int>::size_type i = 0; i<v.size(); ++i) v[i]=7;

Had v.size() been signed, the loop as written would have been perfectly fine.

More about loops below.

We sometimes (often?) do arithmetic with sizes; notably we subtract sizes to find differences. For
example:

 unsigned u1 = -2;
 unsigned u2 = -4;

 cout << is_signed<decltype(u1-u2)>::value << " " << u1-u2 << "\n";
 cout << is_signed<decltype(u2-u1)>::value << " " << u2-u1 << "\n";

Now, we are all experts here and immediately spot the problem (right?), but the output of the second
line could cause confusion.

Problems with unsigned subscripts
Consider

vector<int> v(100);
auto x = v[-2];

This is (of course a range error), but why? It is not because v is subscripted by the negative integer -2.
The subscript to vector::operator[] is an unsigned value so that’s not possible. Instead, -2 is the valid
subscript 4294967294 which just happens to be too large for that vector. It’s a run-time error (subscript
too large). Compilers should warn, but since there is no type error, not every compiler does. We are not
always this lucky:

unsigned char x = -200;
 auto c = v[x];

This executes correctly because x is the valid subscript 56. In a real program were the value of x was
obtained in a slightly more indirect manner I suspect this would be a surprising result – a logic error.

Consider a simple naive loop:

for (int i = 0; i<v.size(); ++i) v[i]=7;

P1428R0 Stroustrup signed/unsigned

5

Some (but not all) compilers warn that the i<v.size() comparison mixes signed and unsigned and is
therefore suspect. There is hardly ever a problem, so those warnings are annoying and confuse novices.
“Obviously,” I should have written

for (vector<int>::size_type i = 0; i<v.size(); ++i) v[i]=7;

but that’s verbose and non-obvious to anyone but an STL expert. It is also a maintenance hazard: why
should I have to mention the element type of the vector to write a loop?

for (vector<decltype(v[0])>::size_type i = 0; i<v.size(); ++i) v[i]=7;

Anyone?

 Yes, we have algorithms and range-for, but people still write lots of loops.

The warnings are not completely misguided; here is an infinite loop:

for (unsigned char i = 0; i!=v.size(); ++i) v[i] = 7;

We don’t often see char or short loop variables, though.

Here is an example that is occasionally seen in the wild:

for (size_t i = n-1; i >= 0; --i) { /* ... */ }

Obviously an unsigned is always larger than zero.

The problem is that unsigned is not just a natural number (a nonnegative integer); it is a nonnegative
number with modular arithmetic, and that can bite.

Consider calculating a starting point from other subscripts

for (size_t pos = max(start,pos-length); i<last; ++i) …

(if the unsigned length is larger than the unsigned pos, pos goes HUGE) or calculating an end point from
other subscripts

for (size_t i = 0; i<last; ++i)
for (size_t j = 0; i<i-j; ++i) … // near infinite loop

Using subscripts in the loop body is common and error-prone for unsigned subscripts

for (size_t i = 0; i<last; ++i)
for (size_t j = 0; i<last; ++i) v[i-j] = 7; // huge subscript

I have heard claims that using unsigned loop variables leads to less good code than signed ones, but I
have not been able to find evidence for that in modern compilers.

Essentially all of these examples, could happen with unsigned subscripts and signed sizes instead: the
root problem is mixing signed and unsigned values.

P1428R0 Stroustrup signed/unsigned

6

Span
Why does std::span have signed subscripts and sizes? The designers of span (originally gsl::span) had
several aims:

• The primary intended use for span was as a replacement for {pointer,offset} pairs and pointer
arithmetic (incl. subscripting) is signed. It seemed unwise to introduce potential conversion
problems related to signed/unsigned differences.

• Modular arithmetic can cause surprising behavior.
• Modular arithmetic makes “overflow” well-defined behavior and thus inhibits error detection

and handling.
• span is not a container, so the analogy to vector is not compelling; on the other hand, span is

closely related to pointers (some versions of the idea have been called “fat pointers”). In other
words, a span is at a different (lower) level of abstraction that vector and other containers.

• This was an opportunity to “do it right” as opposed to adding another example of the problem.
• This was an opportunity to start an effort to convert the STL away from its mistaken use of

unsigned for subscripts.

Unsigned sizes
Unfortunately, sizeof yields an unsigned (and it would be hard to change that), but we don’t have to
follow that for all types with something to do with sizes.

Compatibility
We have had unsigned container sizes for 25+ years. We have had people use unsigned to represent
non-negative values for longer than that. Changing that is going to be hard. Having a type that differs in
its use of signed sizes and subscripts is going to be a bother for people who tries to use span exactly as a
container (but if they do, they are setting themselves up for other conceptional problems) or who are
trying to write generic code that (somehow) is sensitive to the signed/unsigned distinction. On the other
hand, the current span saves them from traditional signed/unsigned problems. So, there is a tradeoff; I
think the tradeoff favors the correct (signed) solution.

A “unicorn type”
At the evening session, Chandler Carruth suggested we could define a “unicorn type” that simply did the
right thing in combination with both signed and unsigned types. I like that idea. I wrote a primitive (uni)
type to try out the idea, but I’m not proposing it because I consider my solution ugly and incomplete, I
cannot be sure that it really is a drop-in alternative to the current uses of unsigned, and I would prefer
not to use subtle types for really basic and frequent operations: int is good enough. Even if we had a
really good uni, we shouldn’t start its introduction by breaking span so that we could fix it later.

Conclusion
std::span is doing “the right thing”(tm). We should not “fix it” to do the wrong thing”(tm) just like the
STL containers do. Instead, we should use span as the vanguard of a change to do the mathematically
right thing throughout. This is an opportunity, possibly the only opportunity we’ll get. If we lead, tools
and teaching materials will follow because we would be moving to a simpler world.

P1428R0 Stroustrup signed/unsigned

7

Acknowledgements
Thanks to Herb Sutter and Neil MacIntosh for constructive comments on early drafts of this paper.

	Subscripts and sizes should be signed
	Bjarne Stroustrup
	The problem
	Why we have unsigned subscripts in the STL
	Problems with unsigned
	Problems with unsigned sizes
	Problems with unsigned subscripts
	Span
	Unsigned sizes
	Compatibility
	A “unicorn type”
	Conclusion
	Acknowledgements

