
p0052r10 - Generic Scope Guard and RAII Wrapper for the
Standard Library

Peter Sommerlad and Andrew L. Sandoval
with contributions by Eric Niebler and Daniel Krügler

2019-02-19

Document Number: p0052r10 (update of N4189, N3949, N3830, N3677)
Date: 2019-02-19
Project: Programming Language C++
Audience: LWG

1 History

1.1 Changes from P0052R9

— adjust clause numbers to n4800: 20->15, 23->19, and the table numbers for the Cpp17concepts
as well. Note to editor: the latex contains the corresponding stable names in comments for
most occurrences if not in the main text.

— strike "Requires:" in non-item-description paragraphs putting requirements on class template
arguments after the synopsis (for scope_guard and unique_resource)

— rephrase the use of "shall" in new style Mandates, Expects, and Constraints sections of a
specification, by "is" or equivalent. (see also P1369).

— add semicolon in front of otherwise in scope_guard constructors Effects clause.

— remove template argument from injected class name in Constraints clause of scope_guard
constructors.

— rephrase Constraint clauses that use code into using words, like "is true".

— add unique_resource default constructor and adjust specification as told by LWG.

— adjust punctuation as instructed by LWG.

— clarify saying "resource or deleter" in some places

— remove superfluous paragraph number in longer Effects clauses.

— rewrite Effects clause of make_unique_resource_checked as commonly phrased by LWG:

1

2 p0052r10 2019-02-19

"Effects: Returns an object constructed with members initialized from std::forward<R>(resource),
std::forward<D>(d), and !bool(resource == valid). Any failure during the construction of the
return value will not call d(resource) if bool(resource == invalid) is true."

— Added default constructor for unique_resource as proposed by p1411, to ease integration,
once LEWG blesses it.

1.2 Changes from P0052R8
Incorporates changes suggested in wording review from LWG meeting in Batavia, August 2018.

— update specification section names and sequence as of changes made to the working paper after
Rapperswil (Requires->(Mandates (compile-time), Expects(contract)), Remarks->Constraints,
etc. Keep "Requires" for parts that use the Cpp17 "old concepts".

— introduce RESOURCE in unique_resource specification to simplify wording. Note to reviewers
unique_resource::get() does not need to use RESOURCE, because reference_wrapper has
an implicit conversion operator.

— used "old concept" names from the current working paper, e.g., Cpp17Destructible.

— remove comma after "Throws Nothing,"

— make unique_resource constructor non-explicit (it is not unary).

— rename execute_on_destruction member of unique_resource to execute_on_reset.

Many thanks to Tim Song for his final walk over the text.

1.3 Changes from P0052R7
Found a bug in my implementation of unique_resource’s move constructor that was unfortunately
also present in the spec R7. If we move from an already release()d unique_resource and the
deleter’s copy constructor throws the deleter is called on the moved resource, even so it was
already released. Updated the note to also say it guarantees not only no leaking but also no
double-release of the resource.

1.4 Changes from P0052R6
While no semantic changes, review by LWG and several other people, most notably Tim Song,
suggested many improvements to the wording.

— remove the phrasing for potentially targeting a TS and minor editorial fixes, i.e., moving the
Remarks sections towards the end of a description.

— rephrased general requirement to the constructor parameter f for the scope guard classes’
constructors according to Tim Song’s suggestions. [scope.scope_guard] p4. Do not require
f() to not throw exceptions for scope_success, because it will never be called directly, still
require it to be valid, because we no longer require well-defined behavior in general (several
iterations with Tim Song).

— added || is_nothrow_constructible_v<EF,EFP&> to the noexcept constructor condition for
scope guards to match the actual behavior (Tim Song).

p0052r10 2019-02-19 3

— require is_constructible_v<X,XX> for <EF, EFP>, and <R1,RR> and <D,DD> in the construc-
tors of the classes to avoid initializing a reference from a then dangling rvalue-reference, even
if the actual initialization is done differently and provide a note explaining the motivation
(Tim Song).

— spell out in detail what scope_guard(scope_guard&&) is doing. (Tim Song)

— added a requirement on type EF to be MoveConstructible or CopyConstructible for scope_-
guard ’s move constructors if EF is an object type.(Tim Song’s suggestion)

— Fixed the missing remove_reference_t<> around R when defining R1 to be a reference_-
wrapper (Tim Song).

— rephrased p3 in [scope.unique_resource.class] according to Alisdair Meredith’s suggestion.

— corrected code in specification of unique_resource move assignment operator to use R1
instead of R, since R1 is the type of the member resource, and replace std::forward()
with std::move() and to rely only on std::is_nothrow_move_assignable_v in noexcept
specification explanation and if constexpr condition.

— simplified and corrected overload restriction in constructor of unique_resource by getting rid
of the exposition only variable template, according to Tim Song’s feedback.

— add "calls" to deleter() in reset()

— added requirement to unique_resource constructor to clarify that calling d() is always
possible and fixed effects to unwrap resource, if it is stored in a reference_wrapper (thanks
Tim Song).

— change the requirements of unique_resource::operator= to use MoveAssignable/CopyAssignable
instead of the traits (Tim Song)

— changed std::forward<D>(rhs.deleter) to std::move(rhs.deleter) in the effects of the
move-constructor of unique_resource, because D can not be a reference type. (thanks Tim
Song). Can do that also for resource, because if R is a reference the member variable is a
reference_wrapper. (changed at least twice, but now move should be OK, since R1 can never
be a reference type).

— simplify get() because reference_wrapper auto-converts to const reference.

— adjust title of [scope.make_unique_resource]

— added requires clause to unique_resource::reset(RR) to allow for running the deleter on
the function argument in case of an exception (thanks Tim Song).

— default argument for template parameter S in make_unique_resource_checked is now decay_-
t<R> (thanks Tim Song).

— comparison in make_unique_resource_checked is now required to not throw an exception.

— In Jacksonville LWG was discussion the need for decay_t<R> in make_unique_resource_-
checked and asked for an lvalue version of a call in the example. That is not what it should be
used for anyway. I made some experiments and made the decision that was already previously
made (if I remember correctly) to only support copying of the resource in that factory function.
Therefore, decay_t is IMHO the right thing to do. and therefore I also did not add an example

4 p0052r10 2019-02-19

using an lvalue for its first argument.

— Tim Song recognized that the remarks and requires clauses of the scope guard constructors
are written like they would be always perfect forwarding, which they are not (when move
construction could fail they copy). I split the cases to show forwarding (which is actually
moving when possible without throwing) vs. copying.

— Since Tim Song convinced me that taking the address of fclose or close is not allowed by
C++ (or at least will no longer with C++20 as of Jacksonville, I changed the examples and
also my test code to wrap them in lambdas instead.

1.5 Changes from P0052R5
Wording reviewed and recommended on by LWG

— added noexcept specification for move assignment.

— feature test macro added __cpp_lib_scope

— drop unique_resource deduction guide that unwraps reference_wrapper

— add a non-normative note to explain potential scope guard misuse if capturing local by reference
that is returned. BSI raised this issue, but does not intend to ask this paper to solve that
corner case.

— the code in the special factory function’s effects was broken, but can be fixed in an implementa-
tion. Changed the specification into words, so that implementers can do the right thing. Note,
previous versions of the paper had a specification with an extra bool constructor parameter to
unique_resource achieving that mechanism.

— fixed some minor editorial things and forgotten changes

— separated definitions of unique_resource member functions returning the resource.

— simplified specification of reset using if constexpr according to Jonathan Wakely without
inventing an exposition only function. (this must be re-checked)

— more fancy attempt to specify the need for implementations to internally use reference_-
wrapper in unique_resource if the resource type is a reference (to support assignment) by
specifying a separate type in the unique_resource synopsis for resource and clarifying the
note saying to use reference_wrapper.

— removed remains of swap() that got not deleted.

— simplified unique_resource specification as suggested by Stephan T. Lavavej

1.6 Changes from P0052R4
Wording reviewed and recommended on by LWG

— Add missing deduction guides

— Call expressions are OK.

— No consensus to re-add the implicit conversion operator to unique_resource

— clarification of wording in many places

p0052r10 2019-02-19 5

1.7 Changes from P0052R3

— Take new section numbering of the standard working paper into account.

— require noexcept of f() for scope_exit and scope_fail explicitly

— implementation could be tested with C++17 compiler and class template constructor argument
deduction thus the paper no longer claims help or not being sure.

1.8 Changes from P0052R2

— Take into account class template ctor argument deduction. However, I recommend keeping the
factories for LFTS 3 to allow for C++14 implementations. At the time of this writing, I do
not have a working C++17 compliant compiler handy to run corresponding test cases without
the factories. However, there is one factory function make_unique_checked that needs to stay,
because it addresses a specific but seemingly common use-case.

— Since scope_success is a standard library class that has a possible throwing destructor section
[res.on.exception.handling] must be adjusted accordingly.

— The lack of factories for the classes might require explicit deduction guides, but I need help to
specify those accordingly since I do not have a working C++17 compiler right at hand to test
it.

1.9 Changes from P0052R1
The Jacksonville LEWG, especially Eric Niebler gave splendid input in how to improve the classes
in this paper. I (Peter) follow Eric’s design in specifying scope_exit as well as unique_resource in a
more general way.

— Provide scope_fail and scope_success as classes. However, we may even hide all of the
scope guard types and just provide the factories.

— safe guard all classes against construction errors, i.e., failing to copy the deleter/exit-function,
by calling the passed argument in the case of an exception, except for scope_success.

— relax the requirements for the template arguments.

Special thanks go to Eric Niebler for providing several incarnations of an implementation that
removed previous restrictions on template arguments in an exception-safe way (Eric: "This is
HARD."). To cite Eric again: "Great care must be taken when move-constructing or move-assigning
unique_resource objects to ensure that there is always exactly one object that owns the resource and
is in a valid, Destructible state." Also thanks to Axel Naumann for presenting in Jacksonville and to
Axel, Eric, and Daniel Krügler for their terrific work on wording improvements.

1.10 Changes from P0052R0
In Kona LWG gave a lot of feedback and especially expressed the desire to simplify the constructors
and specification by only allowing nothrow-copyable RESOURCE and DELETER types. If a reference is
required, because they aren’t, users are encouraged to pass a std::ref/std::cref wrapper to the
factory function instead.

6 p0052r10 2019-02-19

— Simplified constructor specifications by restricting on nothrow copyable types. Facility
is intended for simple types anyway. It also avoids the problem of using a type-erased
std::function object as the deleter, because it could throw on copy.

— Add some motivation again, to ease review and provide reason for specific API issues.

— Make "Alexandrescu’s" "declarative" scope exit variation employing uncaught_exceptions()
counter optional factories to chose or not.

— propose to make it available for standalone implementations and add the header <scope> to
corresponding tables.

— editorial adjustments

— re-established operator* for unique_resource.

— overload of make_unique_resource to handle reference_wrapper for resources. No overload
for reference-wrapped deleter functions is required, because reference_wrapper provides the
call forwarding.

1.11 Changes from N4189

— Attempt to address LWG specification issues from Cologne (only learned about those in the
week before the deadline from Ville, so not all might be covered).

— specify that the exit function must be either no-throw copy-constructible, or no-throw
move-constructible, or held by reference. Stole the wording and implementation from
unique_ptr’s deleter ctors.

— put both classes in single header <scope>

— specify factory functions for Alexandrescu’s 3 scope exit cases for scope_exit. Deliber-
ately did’t provide similar things for unique_resource.

— remove lengthy motivation and example code, to make paper easier digestible.

— Corrections based on committee feedback in Urbana and Cologne.

1.12 Changes from N3949

— renamed scope_guard to scope_exit and the factory to make_scope_exit. Reason for make_-
is to teach users to save the result in a local variable instead of just have a temporary that
gets destroyed immediately. Similarly for unique resources, unique_resource, make_unique_-
resource and make_unique_resource_checked.

— renamed editorially scope_exit::deleter to scope_exit::exit_function.

— changed the factories to use forwarding for the deleter/exit_function but not deduce a
reference.

— get rid of invoke’s parameter and rename it to reset() and provide a noexcept specification
for it.

p0052r10 2019-02-19 7

1.13 Changes from N3830

— rename to unique_resource_t and factory to unique_resource, resp. unique_resource_-
checked

— provide scope guard functionality through type scope_guard_t and scope_guard factory

— remove multiple-argument case in favor of simpler interface, lambda can deal with complicated
release APIs requiring multiple arguments.

— make function/functor position the last argument of the factories for lambda-friendliness.

1.14 Changes from N3677

— Replace all 4 proposed classes with a single class covering all use cases, using variadic templates,
as determined in the Fall 2013 LEWG meeting.

— The conscious decision was made to name the factory functions without "make", because they
actually do not allocate any resources, like std::make_unique or std::make_shared do

2 Introduction

The Standard Template Library provides RAII (resource acquisition is initialization) classes for
managing pointer types, such as std::unique_ptr and std::shared_ptr. This proposal seeks to
add a two generic RAII wrappers classes which tie zero or one resource to a clean-up/completion
routine which is bound by scope, ensuring execution at scope exit (as the object is destroyed) unless
released early or in the case of a single resource: executed early or returned by moving its value.

3 Acknowledgements

— This proposal incorporates what Andrej Alexandrescu described as scope_guard long ago and
explained again at C++ Now 2012 ().

— This proposal would not have been possible without the impressive work of Peter Sommerlad
who produced the sample implementation during the Fall 2013 committee meetings in Chicago.
Peter took what Andrew Sandoval produced for N3677 and demonstrated the possibility of
using C++14 features to make a single, general purpose RAII wrapper capable of fulfilling all
of the needs presented by the original 4 classes (from N3677) with none of the compromises.

— Gratitude is also owed to members of the LEWG participating in the Fall 2015(Kona),Fall
2014(Urbana), February 2014 (Issaquah) and Fall 2013 (Chicago) meeting for their support,
encouragement, and suggestions that have led to this proposal.

— Special thanks and recognition goes to OpenSpan, Inc. (http://www.openspan.com) for
supporting the production of this proposal, and for sponsoring Andrew L. Sandoval’s first
proposal (N3677) and the trip to Chicago for the Fall 2013 LEWG meeting. Note: this version
abandons the over-generic version from N3830 and comes back to two classes with one or no
resource to be managed.

8 p0052r10 2019-02-19

— Thanks also to members of the mailing lists who gave feedback. Especially Zhihao Yuan, and
Ville Voutilainen.

— Special thanks to Daniel Krügler for his deliberate review of the draft version of this paper
(D3949).

— Thanks to participants in LWG in various meetings, especially STL, Lisa Lippincott, Casey
Carter, many others, and Marshall Clow for help with phrasing the wording.

— Very special thanks to Tim Song for his elaborate feedback on the wording after Jacksonville
and his willingness to go over it several times. Hopefully R7 of this paper will be close enough
to make it into the standard.

— Thanks to LWG in Kona reviewing it and blessing it to forward. Especial thanks to Paul E.
McKenney for taking splendid notes about the edits required and to Dan Sunderland and Jeff
Garland for checking that I edited correctly.

p0052r10 2019-02-19 9

4 Motivation

While std::unique_ptr can be (mis-)used to keep track of general handle types with a user-specified
deleter it can become tedious and error prone. Further argumentation can be found in previous
papers. Here are two examples using <cstdio>’s FILE * and POSIX<fcntl.h>’s and <unistd.h>’s
int file handles.

void demonstrate_unique_resource_with_stdio() {
auto fclose=[](auto file){::fclose(file);}; // not allowed to take address
const std::string filename = "hello.txt";
{ auto file=make_unique_resource(::fopen(filename.c_str(),"w"),fclose);

::fputs("Hello World!\n", file.get());
ASSERT(file.get()!= NULL);

}
{ std::ifstream input { filename };

std::string line { };
getline(input, line);
ASSERT_EQUAL("Hello World!", line);
getline(input, line);
ASSERT(input.eof());

}
::unlink(filename.c_str());
{

auto file = make_unique_resource_checked(::fopen("nonexistingfile.txt", "r"),
(FILE*) NULL, fclose);

ASSERT_EQUAL((FILE*)NULL, file.get());
}

}
void demontrate_unique_resource_with_POSIX_IO() {

const std::string filename = "./hello1.txt";
auto close=[](auto fd){::close(fd);};
{ auto file=make_unique_resource(::open(filename.c_str(),

O_CREAT|O_RDWR|O_TRUNC,0666), close);
::write(file.get(), "Hello World!\n", 12u);
ASSERT(file.get() != -1);

}
{ std::ifstream input { filename };

std::string line { };
getline(input, line);
ASSERT_EQUAL("Hello World!", line);
getline(input, line);
ASSERT(input.eof());

}
::unlink(filename.c_str());
{

auto file = make_unique_resource_checked(::open("nonexistingfile.txt",
O_RDONLY), -1, close);

ASSERT_EQUAL(-1, file.get());
}

}

10 p0052r10 2019-02-19

We refer to Andrej Alexandrescu’s well-known many presentations as a motivation for scope_exit,
scope_fail, and scope_success. Here is a brief example on how to use the 3 proposed factories.

void demo_scope_exit_fail_success(){
std::ostringstream out{};
auto lam=[&]{out << "called ";};
try{

auto v=make_scope_exit([&]{out << "always ";});
auto w=make_scope_success([&]{out << "not ";}); // not called
auto x=make_scope_fail(lam); // called
throw 42;

}catch(...){
auto y=make_scope_fail([&]{out << "not ";}); // not called
auto z=make_scope_success([&]{out << "handled";}); // called

}
ASSERT_EQUAL("called always handled",out.str());

}

5 Impact on the Standard

This proposal is a pure library extension. A new header, <scope> is proposed, but it does not
require changes to any standard classes or functions. Since it proposes a new header, no feature
test macro seems required. It does not require any changes in the core language, and it has been
implemented in standard C++ conforming to C++17. Depending on the timing of the acceptance
of this proposal, it might go into a library fundamentals TS under the namespace std::experimental
or directly in the working paper of the standard. I suggest both shipping vehicles.

6 Design Decisions

6.1 General Principles
The following general principles are formulated for unique_resource, and are valid for scope_exit
correspondingly.

— Transparency - It should be obvious from a glance what each instance of a unique_resource
object does. By binding the resource to it’s clean-up routine, the declaration of unique_-
resource makes its intention clear.

— Resource Conservation and Lifetime Management - Using unique_resource makes it possible
to "allocate it and forget about it" in the sense that deallocation is always accounted for after
the unique_resource has been initialized.

— Exception Safety - Exception unwinding is one of the primary reasons that unique_resource
and scope_exit/scope_fail are needed. Therefore, the specification asks for strong safety
guarantee when creating and moving the defined types, making sure to call the deleter/exit
function if such attempts fail.

— Flexibility - unique_resource is designed to be flexible, allowing the use of lambdas or existing
functions for clean-up of resources.

p0052r10 2019-02-19 11

6.2 Prior Implementations
Please see N3677 from the May 2013 mailing (or http://www.andrewlsandoval.com/scope_exit/)
for the previously proposed solution and implementation. Discussion of N3677 in the (Chicago)
Fall 2013 LEWG meeting led to the creation of unique_resource and scope_exit with the general
agreement that such an implementation would be vastly superior to N3677 and would find favor
with the LEWG. Professor Sommerlad produced the implementation backing this proposal during
the days following that discussion.

N3677 has a more complete list of other prior implementations.

N3830 provided an alternative approach to allow an arbitrary number of resources which was
abandoned due to LEWG feedback

The following issues have been discussed by LEWG already:

— Should there be a companion class for sharing the resource shared_resource ? (Peter thinks
no. Ville thinks it could be provided later anyway.) LEWG: NO.

— Should scope_exit() and unique_resource::invoke() guard against deleter functions that
throw with try deleter(); catch(...) (as now) or not? LEWG: NO, but provide noexcept
in detail.

— Does scope_exit need to be move-assignable? LEWG: NO.

— Should we make the regular constructor of the scope guard templates private and friend the
factory function only? This could prohibit the use as class members, which might sneakily be
used to create "destructor" functionality by not writing a destructor by adding a scope_exit
member variable.
It seems C++17’s class template constructor argument deduction makes the need for most
of the factory functions obsolete and thus this question is no longer relevant. However, I
recommend keeping the factories for the LFTS-3 if accepted to allow backporting to C++14.

— Should the scope guard classes be move-assignable? Doing so, would enable/ease using them
as class members. I do not think this use is good, but may be someone can come up with a
use case for that.
LEWG already answered that once with NO, but you never know if people change their mind
again.

The following issues have been recommended by LWG already:

— Make it a facility available for free-standing implementations in a new header <scope>
(<utility> doesn’t work, because it is not available for free-standing implementations)

12 p0052r10 2019-02-19

6.3 Open Issues (to be) Discussed by LEWG / LWG
The following issues have been resolved finally by LWG in Toronto. The shipping vehicle should be
C++20.

— which "callable" definition in the standard should be applied (call expression (as it is now)
or via INVOKE (is_callable_v<EF&>). IMHO call expression is fine, since everything is
about side-effects and we never return a useful value from any of the function objects.

— Should we provide a non-explicit conversion operator to R in unique_resource<R,D> ?
Last time people seem to have been strongly against, however, it would make the use of
unique_resource much easier in contexts envisioned by author Andrew Sandoval. Please
re-visit, since it is omitted here.

p0052r10 2019-02-19 13

7 Technical Specifications

The following formulation is based on inclusion to the draft of the C++ standard.

A draft of the standard already has the requested change below that was suggested by Daniel
Krügler:

7.1 Adjust 20.5.4.8 Other functions [res.on.functions]
Since scope_success() might throw an exception and we can not specify that in a required
behavior clause, we need to allow doing so for the standard library’s normative remarks section as
well.

In section 20.5.4.8 Other functions [res.on.functions] modify p2 item (2.4) as follows by adding "or
Remarks: "

(2.4) — if any replacement function or handler function or destructor operation exits via an
exception, unless specifically allowed in the applicable Required behavior: or Remarks:
paragraph.

However the following adjustment is missing, since the standard library promises that all library
classes won’t throw on destruction:

7.2 Adjust 15.5.5.12 Restrictions on exception handling
[res.on.exception.handling]

Change paragraph 3 as follows:
1 Unless otherwise specified, dDestructor operations defined in the C++ standard library shall not

throw exceptions. Every destructor without an exception specification in the C++ standard library
shall behave as if it had a non-throwing exception specification.

7.3 Header
In section 15.5.1.2 Headers [headers] add an entry to table 19 (cpp.library.headers) for the new
header <scope>.

In section 15.5.1.3 Freestanding implementations [compliance] add an extra row to table 22
(cpp.headers.freestanding) and in section [utilities.general] add the same extra row to table 39
(util.lib.summary)

Table 1 — table 22 (cpp.headers.freestanding) and table 39 (util.lib.summary)

Subclause Header
19.nn Scope Guard Support <scope>

7.4 Additional sections
Add a a new section to chapter 19 [utilities] introducing the contents of the header <scope>.

14 p0052r10 2019-02-19

7.5 Scope guard support [scope]
This subclause contains infrastructure for a generic scope guard and RAII (resource acquisition is
initialization) resource wrapper.

7.5.1 Header <scope> synopsis [scope.syn]
namespace std {
template <class EF>

class scope_exit;
template <class EF>

class scope_fail;
template <class EF>

class scope_success;

template <class R, class D>
class unique_resource;

// factory function
template <class R, class D, class S=decay_t<R>>

unique_resource<decay_t<R>, decay_t<D>>
make_unique_resource_checked(R&& r, const S& invalid, D&& d) noexcept(see below);

}

1 The header <scope> defines the class templates scope_exit, scope_fail, scope_success, unique_-
resource and the factory function template make_unique_resource_checked().

2 The class templates scope_exit, scope_fail, and scope_success define scope guards that wrap a
function object to be called on their destruction.

3 The following sections describe the class templates scope_exit, scope_fail, and scope_success.
In each section, the name scope_guard denotes any of these class templates. In descriptions of the
class members scope_guard refers to the enclosing class.

p0052r10 2019-02-19 15

7.5.2 Scope guard class templates [scope.scope_guard]
template <class EF>
class scope_guard {
public:

template <class EFP>
explicit scope_guard (EFP&& f) noexcept(see below);
scope_guard (scope_guard && rhs) noexcept(see below);
~scope_guard () noexcept(see below);
void release() noexcept;

scope_guard (const scope_guard &)=delete;
scope_guard & operator=(const scope_guard &)=delete;
scope_guard & operator=(scope_guard &&)=delete;

private:
EF exit_function; // exposition only
bool execute_on_destruction{true}; //exposition only
int uncaught_on_creation{uncaught_exceptions()}; // exposition only

};

template <class EF>
scope_guard (EF) -> scope_guard <EF>;

1 scope_exit is a general-purpose scope guard that calls its exit function when a scope is exited. The
class templates scope_fail and scope_success share the scope_exit interface, only the situation
when the exit function is called differs.
[Example:

void grow(vector<int>& v){
scope_success guard([]{ cout << "Good!" << endl; });
v.resize(1024);

}

—end example]
2 [Note: If the exit function object of a scope_success or scope_exit object refers to a local variable

of the function where it is defined, e.g., as a lambda capturing the variable by reference, and that
variable is used as a return operand in that function, that variable might have already been returned
when the scope_guard ’s destructor executes, calling the exit function. This can lead to surprising
behavior. —end note]

3 Template argument EF shall be a function object type ([function.objects]), lvalue reference to function,
or lvalue reference to function object type. If EF is an object type, it shall meet the requirements of
Cpp17Destructible (Table 30). Given an lvalue g of type remove_reference_t<EF>, the expression
g() shall be well-formed.

4 The constructor parameter f in the following constructors shall be a reference to a function or a
reference to a function object([function.objects]).

16 p0052r10 2019-02-19

template <class EFP>
explicit
scope_exit(EFP&& f) noexcept(is_nothrow_constructible_v<EF, EFP>

|| is_nothrow_constructible_v<EF, EFP&>);

5 Constraints: is_same_v<remove_cvref_t<EFP>, scope_exit> is false and
is_constructible_v<EF, EFP> is true.

6 Mandates: The expression f() is well-formed.
7 Expects: Calling f() has well-defined behavior and does not throw an exception.
8 Effects: If EFP is not an lvalue reference type and is_nothrow_constructible_v<EF,EFP>

is true, initialize exit_function with std::forward<EFP>(f); otherwise initialize exit_-
function with f. If the initialization of exit_function throws an exception, calls f().

9 Throws: Nothing unless the initialization of exit_function throws.

template <class EFP>
explicit
scope_fail(EFP&& f) noexcept(is_nothrow_constructible_v<EF, EFP>

|| is_nothrow_constructible_v<EF, EFP&>);

10 Constraints: is_same_v<remove_cvref_t<EFP>, scope_fail> is false and
is_constructible_v<EF,EFP> is true.

11 Mandates: The expression f() is well-formed.
12 Expects: Calling f() has well-defined behavior and does not throw an exception.
13 Effects: If EFP is not an lvalue reference type and is_nothrow_constructible_v<EF,EFP>

is true, initialize exit_function with std::forward<EFP>(f); otherwise initialize exit_-
function with f. If the initialization of exit_function throws an exception, calls f().

14 Throws: Nothing unless the initialization of exit_function throws.

template <class EFP>
explicit
scope_success(EFP&& f) noexcept(is_nothrow_constructible_v<EF, EFP>

|| is_nothrow_constructible_v<EF, EFP&>);

15 Constraints: is_same_v<remove_cvref_t<EFP>, scope_success> is false and
is_constructible_v<EF,EFP> is true.

16 Mandates: The expression f() is well-formed.
17 Expects: Calling f() has well-defined behavior.
18 Effects: If EFP is not an lvalue reference type and is_nothrow_constructible_v<EF,EFP>

is true, initialize exit_function with std::forward<EFP>(f); otherwise initialize exit_-
function with f. [Note: If initialization of exit_function fails, f() won’t be called. —end
note]

19 Throws: Nothing unless the initialization of exit_function throws.

p0052r10 2019-02-19 17

scope_guard (scope_guard && rhs) noexcept(see below);

20 Requires: If EF is an object type:

—(20.1) if is_nothrow_move_constructible_v<EF> is true, EF shall meet the requirements of
Cpp17MoveConstructible (Table 26),

—(20.2) otherwise EF shall meet the requirements of Cpp17CopyConstructible (Table 27).
21 Constraints: (is_nothrow_move_constructible_v<EF> || is_copy_constructible_v<EF>).
22 Effects: If is_nothrow_move_constructible_v<EF> initializes exit_function with

std::forward<EF>(rhs.exit_function), otherwise initializes exit_function with rhs.exit_-
function. Initializes execute_on_destruction from rhs.execute_on_destruction and
uncaught_on_creation from rhs.uncaught_on_creation. If construction succeeds, call
rhs.release(). [Note: Copying instead of moving provides the strong exception guarantee.
—end note]

23 Ensures: execute_on_destruction yields the value rhs.execute_on_destruction yielded
before the construction. uncaught_on_creation yields the value rhs.uncaught_on_creation
yielded before the construction.

24 Throws: Any exception thrown during the initialization of exit_function.
25 Remarks: The expression inside noexcept is equivalent to

is_nothrow_move_constructible_v<EF> || is_nothrow_copy_constructible_v<EF>.

~scope_exit() noexcept(true);

26 Effects: Equivalent to:
if (execute_on_destruction)

exit_function();

~scope_fail() noexcept(true);

27 Effects: Equivalent to:
if (execute_on_destruction

&& uncaught_exceptions() > uncaught_on_creation)
exit_function();

~scope_success() noexcept(noexcept(exit_function()));

28 Effects: Equivalent to:
if (execute_on_destruction

&& uncaught_exceptions() <= uncaught_on_creation)
exit_function();

29 [Note: If noexcept(exit_function()) is false, exit_function() may throw an exception,
notwithstanding the restrictions of [res.on.exception.handling]. —end note]

30 Throws: Any exception thrown by exit_function().

void release() noexcept;

31 Effects: Equivalent to execute_on_destruction = false.

18 p0052r10 2019-02-19

7.6 Unique resource wrapper [scope.unique_resource]
7.6.1 Class template unique_resource [scope.unique_resource.class]

template <class R,class D>
class unique_resource {
public:

unique_resource();
template <class RR, class DD>
unique_resource(RR&& r, DD&& d) noexcept(see below);
unique_resource(unique_resource&& rhs) noexcept(see below);
~unique_resource();
unique_resource& operator=(unique_resource&& rhs) noexcept(see below);
void reset() noexcept;
template <class RR>

void reset(RR&& r);
void release() noexcept;
const R& get() const noexcept;
see below operator*() const noexcept;
R operator->() const noexcept;
const D& get_deleter() const noexcept;

private:
using R1 = conditional_t< is_reference_v<R>,

reference_wrapper<remove_reference_t<R>>, R >; // exposition only
R1 resource; // exposition only
D deleter; // exposition only
bool execute_on_reset{true}; // exposition only

};

template<typename R, typename D>
unique_resource(R, D)

-> unique_resource<R, D>;

1 [Note: unique_resource is a universal RAII wrapper for resource handles. Typically, such resource
handles are of trivial type and come with a factory function and a clean-up or deleter function that
do not throw exceptions. The clean-up function together with the result of the factory function
is used to create a unique_resource variable, that on destruction will call the clean-up function.
Access to the underlying resource handle is achieved through get() and in case of a pointer type
resource through a set of convenience pointer operator functions. —end note]

2 The template argument D shall meet the requirements of a Cpp17Destructible (Table 30) function
object type (19.14 [function.objects]), for which, given a lvalue d of type D and a lvalue r of
type R, the expression d(r) shall be well-formed. D shall either meet the Cpp17CopyConstructible
requirements (Table 27), or D shall meet the Cpp17MoveConstructible requirements (Table 26) and
is_nothrow_move_constructible_v<D> shall be true.

3 For the purpose of this sub-clause, a resource type T is an object type that meets the Cpp17CopyConstructible
(Table 27) requirements, or is an object type that meets the Cpp17MoveConstructible (Table 26
) requirements and is_nothrow_move_constructible_v<T> is true, or is an lvalue reference to a
resource type. R shall be a resource type.

4 For the scope of this clause let RESOURCE be defined as follows:

p0052r10 2019-02-19 19

—(4.1) resource.get() if is_reference_v<R> is true,

—(4.2) resource otherwise.

7.6.2 unique_resource constructors [scope.unique_resource.ctor]

unique_resource()

1 Constraints: is_default_constructible_v<R> && is_default_constructible_v<D> is true.
2 Effects: Value-initializes resource and deleter; execute_on_reset is initialized with false.

template <class RR, class DD>
unique_resource(RR&& r, DD&& d) noexcept(see below)

3 Constraints: is_constructible_v<R1,RR> && is_constructible_v<D,DD> &&
(is_nothrow_constructible_v<R1, RR> || is_constructible_v<R1,RR&>) &&
(is_nothrow_constructible_v<D , DD> || is_constructible_v<D ,DD&>) .
[Note: The first two conditions prohibit initialization from a rvalue-reference when either R1
or D is a specialization of reference_wrapper. —end note]

4 Mandates: The expression d(r), d(RESOURCE) and deleter(RESOURCE) is well-formed.
5 Expects: Calling d(r), d(RESOURCE) or deleter(RESOURCE) has well-defined behavior and

does not throw an exception.
6 Effects: If is_nothrow_constructible_v<R1,RR> is true, initializes resource with std::forward<RR>(r),

otherwise initializes resource with r. Then, if is_nothrow_constructible_v<D,DD> is true,
initializes deleter with std::forward<DD>(d), otherwise initializes deleter with d. If ini-
tialization of resource throws an exception, calls d(r). If initialization of deleter throws an
exception, calls d(RESOURCE). [Note: The explained mechanism ensures no leaking of resources.
—end note]

7 Throws: Any exception thrown during initialization of resource or deleter.
8 Remarks: The expression inside noexcept is equivalent to

(is_nothrow_constructible_v<R1, RR> || is_nothrow_constructible_v<R1, RR&>) &&
(is_nothrow_constructible_v<D , DD> || is_nothrow_constructible_v<D , DD&>).

unique_resource(unique_resource&& rhs) noexcept(see below)

9 Effects: First, initialize resource as follows:

—(9.1) If is_nothrow_move_constructible_v<R1> is true, from std::move(rhs.resource);

—(9.2) otherwise, from rhs.resource.

[Note: If initialization of resource throws an exception, rhs is left owning the resource and
will free it in due time. —end note]

Then, initialize deleter as follows:

—(9.3) If is_nothrow_move_constructible_v<D> is true, from std::move(rhs.deleter);

—(9.4) otherwise, from rhs.deleter.

If initialization of deleter throws an exception and is_nothrow_move_constructible_v<R1>

20 p0052r10 2019-02-19

is true and rhs.execute_on_reset is true:
rhs.deleter(RESOURCE);
rhs.release();

Finally, execute_on_reset is initialized with exchange(rhs.execute_on_reset,false).
10 [Note: The explained mechanism ensures no leaking and no double release of resources. —end

note]
11 Remarks: The expression inside noexcept is equivalent to

is_nothrow_move_constructible_v<R1> && is_nothrow_move_constructible_v<D>.

7.6.3 unique_resource assignment [scope.unique_resource.assign]

unique_resource& operator=(unique_resource&& rhs) noexcept(see below);

1 Requires: If is_nothrow_move_assignable_v<R1> is true, R1 shall meet the Cpp17MoveAssignable
requirements (Table 28); otherwise R1 shall meet the Cpp17CopyAssignable (Table 29) require-
ments. If is_nothrow_move_assignable_v<D> is true, D shall meet the Cpp17MoveAssignable
requirements (Table 28); otherwise D shall meet the Cpp17CopyAssignable requirements (Table
29).

2 Effects: Equivalent to:
reset();
if constexpr (is_nothrow_move_assignable_v<R1>) {

if constexpr (is_nothrow_move_assignable_v<D>) {
resource = std::move(rhs.resource);
deleter = std::move(rhs.deleter);

} else {
deleter = rhs.deleter;
resource = std::move(rhs.resource);

}
} else {

if constexpr (is_nothrow_move_assignable_v<D>) {
resource = rhs.resource;
deleter = std::move(rhs.deleter);

} else {
resource = rhs.resource;
deleter = rhs.deleter;

}
}
execute_on_reset = exchange(rhs.execute_on_reset, false);

3 [Note: If a copy of a member throws an exception this mechanism leaves rhs intact and *this
in the released state. —end note]

4 Throws: Any exception thrown during a copy-assignment of a member that can not be moved
without an exception.

5 Remarks: The expression inside noexcept is equivalent to
is_nothrow_move_assignable_v<R1> && is_nothrow_move_assignable_v<D>.

p0052r10 2019-02-19 21

7.6.4 unique_resource destructor [scope.unique_resource.dtor]

~unique_resource();
1 Effects: Equivalent to reset().

7.6.5 unique_resource member functions [scope.unique_resource.mfun]

void reset() noexcept;

1 Effects: Equivalent to:
if (execute_on_reset) {

execute_on_reset = false;
deleter(RESOURCE);

}

template <class RR>
void reset(RR && r);

2 Constraints: The selected assignment expression statement assigning resource is well-formed.
3 Mandates: The expression deleter(r) is well-formed.
4 Expects: Calling deleter(r) has well-defined behavior and does not throw an exception.
5 Effects: Equivalent to:

reset();
if constexpr (is_nothrow_assignable_v<R1&,RR>)

resource = std::forward<RR>(r);
else

resource = as_const(r);
execute_on_reset = true;

If copy-assignment of resource throws an exception, calls deleter(r).

void release() noexcept;

6 Effects: Equivalent to execute_on_reset = false.

const R& get() const noexcept;

7 Returns: resource.

see below operator*() const noexcept;

8 Constraints: is_pointer_v<R> is true and is_void_v<remove_pointer_t<R>> is false.
9 Effects: Equivalent to:

return *get();
10 Remarks: The return type is add_lvalue_reference_t<remove_pointer_t<R>>.

R operator->() const noexcept;

11 Constraints: is_pointer_v<R> is true. .
12 Returns: get().

22 p0052r10 2019-02-19

const D & get_deleter() const noexcept;

13 Returns: deleter.

7.6.6 Factory for unique_resource [scope.make_unique_resource]

template <class R, class D, class S=decay_t<R>>
unique_resource<decay_t<R>, decay_t<D>>
make_unique_resource_checked(R&& resource, const S& invalid, D&& d)
noexcept(is_nothrow_constructible_v<decay_t<R>, R> &&

is_nothrow_constructible_v<decay_t<D>, D>);

1 Mandates: The expression (resource == invalid ? true : false) is well-formed.
2 Expects: Evaluation of the expression (resource == invalid ? true : false) has

well-defined behavior and does not throw an exception.
3 Effects: Returns an object constructed with members initialized from std::forward<R>(resource),

std::forward<D>(d), and !bool(resource == invalid). Any failure during construction
of the return value will not call d(resource) if bool(resource == invalid) is true.

4 [Note: This factory function exists to avoid calling a deleter function with an invalid argument.
—end note]

5 [Example: The following example shows its use to avoid calling fclose when fopen fails
auto file = make_unique_resource_checked(

::fopen("potentially_nonexistent_file.txt", "r"),
nullptr, [](auto fptr){::fclose(fptr);});

—end example]

7.6.7 Feature test macro
For the purposes of SG10, we recommend the feature-testing macro name __cpp_lib_scope.

8 Appendix: Example Implementation

See https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/P0052_scope_
exit/src

https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/P0052_scope_exit/src
https://github.com/PeterSommerlad/SC22WG21_Papers/tree/master/workspace/P0052_scope_exit/src

	1 History
	1.1 Changes from P0052R9
	1.2 Changes from P0052R8
	1.3 Changes from P0052R7
	1.4 Changes from P0052R6
	1.5 Changes from P0052R5
	1.6 Changes from P0052R4
	1.7 Changes from P0052R3
	1.8 Changes from P0052R2
	1.9 Changes from P0052R1
	1.10 Changes from P0052R0
	1.11 Changes from N4189
	1.12 Changes from N3949
	1.13 Changes from N3830
	1.14 Changes from N3677

	2 Introduction
	3 Acknowledgements
	4 Motivation
	5 Impact on the Standard
	6 Design Decisions
	6.1 General Principles
	6.2 Prior Implementations
	6.3 Open Issues (to be) Discussed by LEWG / LWG

	7 Technical Specifications
	7.1 Adjust 20.5.4.8 Other functions [res.on.functions]
	7.2 Adjust 15.5.5.12 Restrictions on exception handling [res.on.exception.handling]
	7.3 Header
	7.4 Additional sections
	7.5 Scope guard support [scope]
	7.6 Unique resource wrapper [scope.unique_resource]

	8 Appendix: Example Implementation

