
Guidelines for Formulating Library Semantics Specifications

Document #: WG21 P1369R0
Date: 2018–11–25
Audience: Authors/reviewers of standard library wording
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Basic principle 2
3 Recommended guidelines 2

3.1 Implementation freedom 2
3.2 Predicates in elements 2
3.3 The Requires: element 3
3.4 The Constraints: element 4

3.5 The Mandates: element 4
3.6 The Expects: element 5
3.7 The Ensures: element 5

4 Preferred order of elements 6
5 Acknowledgments 6
6 Bibliography 6
7 Document history 6

Abstract

This paper provides recommendations for formulating specifications of standard library func-
tions and function templates, whether members or non-members, in C++20 drafts and beyond.

Traffic signals in New York are just rough guidelines.

— DAVID LETTERMAN

I know we can’t abolish prejudice through laws, but we can set up
guidelines for our actions. . . .

— BELVA ANN LOCKWOOD

Simplicity and order are, if not the principal, then certainly the most
important guidelines for human beings in general.

— M. C. (MAURITS CORNELIS) ESCHER

1 Introduction

The recent adoption of [P0788R3] at WG21’s Rappersville 2018–06 meeting resulted in updates
to the text of [structure.requirements]/3. These updates provided some new and some revised
descriptive elements for the specification of standard library functions and function templates,
whether members or non-members.

Since then, there have been questions (e.g., on WG21 mailing lists) regarding best practices
to follow in applying these new and revised descriptive elements. This paper provides such
guidance for at least the short term (C++20 drafts), and suggests some possible future extensions
or adaptations of these recommendations.

Copyright c© 2018 by Walter E. Brown. All rights reserved.

1

mailto:webrown.cpp@gmail.com

2 P1369R0: Guidelines for Formulating Library Semantics Specifications

2 Basic principle

The following principle was approved by LEWG ⇒ LWG ⇒ WG21 as part of [P0788R3]:

“[A]void any specification that demands any particular technology by which im-
plementations must comply with Library specifications. . . . [C]onsider user code
that relies on any specific technology on the part of an implementation to be
ill-formed, with no diagnostic required.”

Abiding by that principle, the next section articulates recommendations for use of the new and
revised descriptive elements1 in specifying the behavior of standard library functions and function
templates in C++20 drafts. These recommendations are likely to evolve as the C++ core language
evolves and as we gain experience with its new and its revised features.2

3 Recommended guidelines3

3.1 Implementation freedom

Guideline:

Specifications should generally avoid implying or requiring specific implementa-
tion techniques or technologies.

Notes:

a) This guideline is intended to allow providers of library functions the widest possible latitude in
choice of implementation techniques and technology.

b) Notation used for specifying declarations (in synopses, etc.) should generally avoid any C++20
concepts- or contracts-related annotations. For example, use no requires-clauses, nor use
such contract-attribute-specifiers as [[expects:·· ·]] or [[ensures:·· ·]]. However, a requires-
clause (or an equivalent shorter form thereof) may appear, at least for now, when subsumption
is an intended part of the specification.

c) If in future WG21 opts to allow such new-to-C++20 notation in specifying declarations, we
should probably at the same time introduce blanket wording4 that sets forth the correspondence
between the desired new notation and the various specification elements that are explicated in
[structure.specifications] and whose use is recommended below.

3.2 Predicates in elements

Guideline:

Predicates in descriptive elements may be formulated via:
• English prose,
• C++ code (in a monospaced font),
• mathematical notation (e.g., subscripts or algebraic expressions), or
• a meaningful combination of these approaches.

1See [structure.specifications]/3 in [N4778] for the exact specification of these and other descriptive elements.
2The standard library has seemed always to be both the first and the last beneficiary (or victim?) of changes in the

core language. ,
3The accompanying notes are labelled solely for ease of reference; there is no intended significance to their order.
4See [algorithms.requirements] for analogous blanket wording in use today.

P1369R0: Guidelines for Formulating Library Semantics Specifications 3

Notes:

a) Clarity of specification is the paramount criterion, with concision a secondary concern when
specifying the intended condition.

b) Previously-introduced identifiers, in monospaced font, may be used in prose as well as in
mathematical notation. For example, if n had been declared as the name of a parameter of the
function being specified, one might write 0 ≤ i < n. Names specified by the standard library
(e.g., those of type traits from clause [meta]) are also available, generally without namespace
qualification.5

c) Use normal English punctuation, such as a period at the end of a sentence, even with
mathematics and/or code.

d) When formulating an expression using C++ code, be clear as to what is being required:

(i) Sometimes it is required only that the expression be well-formed; when this is the case,
say so explicitly via phrasing such as “i < j is well-formed.”

(ii) When the requirement is that the expression is to be evaluated and a bool result obtained,
be equally explicit, such as by stating, “i < j is true.”

(iii) Both forms can co-exist, as in “requires { i < j; } is true.” Provide a requires
keyword when introducing a predicate in the form of such a requires-expression.6

e) Concepts (e.g., from clause [concepts]) may be applied within the context of a descriptive
element.

(i) To specify that only the syntactic constraints specified by a concept C are to be satisfied by
a type T, use a formulation such as “T satisfies C” or “C<T> is true.”

(ii) The phrase “T models C” has the additional connotation that values of T must satisfy the
associated semantic requirements specified by C, else the program would have undefined
behavior.

f) Legacy (C++17-style) concepts (e.g., from [utility.arg.requirements], more accurately nowadays
termed named requirement sets) may be applied within the context of a descriptive element.
Use “meets” to indicate conformance, as in “foo meets the requirements of Cpp17Fooable” or
“foo meets the Cpp17Fooable requirements.”

g) The cases covered by a predicate specified in one descriptive element should never overlap with
the cases covered by a predicate specified in another descriptive element, as it would then be
unclear what consequences, if any, should ensue when such a predicate fails to hold.7

h) The Project Editor, in consultation with the Library and Core Working Groups, always has the
final say in how any particular predicate appears in our various Working Drafts, Technical
Specifications, and International Standards.

3.3 The Requires: element

Guideline:

Avoid using the historical Requires: element in new or revised specifications.

5std::move and std::forward are the most common exceptions that do require namespace qualification.
6Recall that a requires-expression is not the same as a requires-clause. The former is a predicate, while the latter is

an annotation within a declaration.
7While some specific cases of such overlap are called out below, avoidance of such overlap across descriptive elements

is fundamental.

4 P1369R0: Guidelines for Formulating Library Semantics Specifications

Notes:

a) Instead of a Requires: element, use one or more of Constraints:, Expects:, and Mandates:
descriptive elements, but no more than one of each. As further detailed below, the principal
distinctions among these three elements lie (i) in whether and (ii) in when their predicates are
evaluated, and (iii) in what (if anything) is intended to happen when a predicate fails to hold.

b) It’s planned that all Requires: descriptive elements will be replaced (and that all references to
such elements be excised) before finalizing C++20. Please help us achieve that goal by instead
using Constraints:, Expects:, and/or Mandates: elements in all new and revised drafting.

3.4 The Constraints: element

Guideline:

Use a Constraints: element to specify, in the form of a predicate, conditional
participation in overload resolution: participation when the predicate is true,
non-participation when the predicate is false.

Notes:

a) Employ this element in preference to the historical practice of using (abusing?) the Remarks:
element for this purpose.

b) Absence of this element implies unconditional participation in overload resolution.

c) Although there is no immediate diagnostic when a Constraints: predicate fails to hold, there can
be consequential diagnostics. For example, overload resolution can fail because no remaining
candidates were deemed viable.

d) Implementers can choose to apply requires-clauses, enable_ifs, and/or other techniques to
enforce requirements specified by this element.

e) State only the predicate, since the traditional formulaic phrasing “shall not participate in
overload resolution unless . . . ” now applies merely by employing this element.

3.5 The Mandates: element

Guideline:

Use a Mandates: element to specify any predicate that must hold during compi-
lation.

Notes:

a) In this element, failure of a predicate implicitly induces an ill-formed program (i.e., diagnostic
required). Therefore, such traditional phrasing as “the program is ill-formed if . . . ” is unneeded
and should be avoided.

b) It is unspecified whether the ill-formedness is in the immediate context.

c) An implementation is free to define a function as deleted, to employ a static_assert, and/or
to apply other technique(s) to achieve such a specification.

P1369R0: Guidelines for Formulating Library Semantics Specifications 5

3.6 The Expects: element

Guideline:

Use an Expects: element to specify, in the form of a predicate, any condi-
tion(s) (typically termed preconditions) that, to ensure an implementation’s well-
defined behavior, must hold whenever the specified function is called.

Notes:

a) A function that has no Expects: element in its specification is sometimes described as having a
wide contract; a function that does have an Expects: element is sometimes described as having
a narrow contract. Imposing an additional condition is termed narrowing or strengthening the
predicate, while removing a condition is termed widening or weakening the predicate.

b) “Violation of any preconditions specified in a function’s Expects: element results in undefined
behavior” [res.on.required]/2 in [N4778].

c) Implementers can choose to apply [[expects:· · ·]] attributes and/or other programming
techniques to annotate their code, but doing so at all for this descriptive element is strictly at
the discretion of the implementation.

d) Since an implementation is (as ever) not required to diagnose any precondition failure, the
obligation to ensure precondition conformance remains (as ever) with the caller.

e) There shall be no overlap among the cases covered by the Expects:, Throws:, and Error condi-
tions: elements. For example, a Throws: element may not specify an exception to be thrown
when an Expects: precondition fails to hold, as doing so would widen the otherwise-narrow
contract.

f) In the presence of inheritance, the precondition of an overriding function must be no stronger
than the precondition of the corresponding overridden function. To do otherwise violates the
Liskov substitution principle.8

3.7 The Ensures: element

Guideline:

Use an Ensures: element to specify, in the form of a predicate, any conditions
(typically termed postconditions) that the implementation must guarantee to
hold upon successful return from the function being specified.

Notes:

a) To refer to the return value in this element’s predicates, use such phrasing as “With return
value r, . . . ” or “. . . , where r is the return value.”

b) Do not use this descriptive element to specify the return value. Use the Returns: element (or,
sometimes, the Effects: element) for that purpose.

c) Implementers can choose to apply [[ensures:· · ·]] attributes and/or other programming
techniques to annotate their code, but doing so for this descriptive element is strictly at the
discretion of the implementation.

d) As requested of the Project Editor in [P0788R3], traditional Postconditions: elements have
already been editorially renamed as Ensures: elements. See [N4778] (and revisions thereof) for
the results of such renaming.

e) Historically, we have sometimes implied postconditions via some of the wording within Effects:
elements. Avoid doing so in new specifications, and try to tease apart these (and other) existing
conjoined elements as they are encountered.

8See https://en.wikipedia.org/wiki/Liskov_substitution_principle.

https://en.wikipedia.org/wiki/Liskov_substitution_principle

6 P1369R0: Guidelines for Formulating Library Semantics Specifications

f) In the presence of inheritance, the postcondition of an overriding function must be no weaker
than the postcondition of the corresponding overridden function. To do otherwise violates the
Liskov substitution principle.

4 Preferred order of elements

Reproduced from [structure.specifications]/3, the following list presents the current preferred
order of descriptive elements that appertain to specification of function semantics. Keep in mind
that “To save space, elements that do not apply to a function are omitted. For example, if a
function specifies no preconditions, there will be no Expects: element.”

1. Requires: (vestigial)
2. Constraints:
3. Mandates:
4. Expects:

5. Effects:
6. Synchronization:
7. Ensures:
8. Returns:

9. Throws:
10. Complexity:
11. Remarks:
12. Error conditions:

5 Acknowledgments

Many thanks to (in alphabetical order) Casey Carter, Tomasz Kamiński, Thomas Köppe, Zach
Laine, Jens Maurer, Geoffrey Romer, Richard Smith, Hubert Tong, Jonathan Wakely, and the
other reviewers for their thoughtful pre-publication comments.

6 Bibliography

[N4778] Richard Smith: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4778 (pre-San Diego mailing), 2018–10–08. https://wg21.link/n4778.

[P0788R3] Walter E. Brown: “Standard Library Specification in a Concepts and Contracts World.” ISO/IEC
JTC1/SC22/WG21 document P0788R3 (post-Rappersville mailing), 2018–06–07. https://wg21.
link/p0788r3.

7 Document history

Rev. Date Changes

0 2018–11–25 • Published as P1369R0, post-San Diego mailing.

https://wg21.link/n4778
https://wg21.link/p0788r3
https://wg21.link/p0788r3

	Title
	Contents
	Abstract
	1 Introduction
	2 Basic principle
	3 Recommended guidelines
	3.1 Implementation freedom
	3.2 Predicates in elements
	3.3 The Requires element
	3.4 The Constraints element
	3.5 The Mandates element
	3.6 The Expects element
	3.7 The Ensures element

	4 Preferred order of elements
	5 Acknowledgments
	6 Bibliography
	7 Document history

