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1 TL;DR

Make the primary module interface unit consist of two parts: an interface part, and an
implementation part. These parts would be separated by some syntactic marker, e.g.
“module :private;”

2 Introduction

While merging the Atom proposal[P0971R1] with the Modules TS[N4720], a contention
was discovered between the Modules TS’s goal of allowing modules to be defined in a
single file and Atom’s rule for determining what semantic properties are exported.

The Atom rule for semantic properties of exported declarations[P0986R0, §3.1] is simpler
than the rule in the Modules TS, and makes module interface units more robust to
refactoring. However, it removes the ability to do certain things, such as defining a type
but exporting it as incomplete, without using multiple files. The current proposal for
merging modules into C++20[P1103R1] uses the Atom semantic properties rule.

The Atom comparison paper suggests[P0986R0, §3.2] using a module implementation
partition to acheive this, e.g.

Implementation partition:

module m:impl;
struct s {};

Module interface:

export module m;
import :impl;
export using s_ptr = s*;
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This paper proposes an alternative way to reconcile these aims: by allowing a module
interface and a module implementation partition to co-exist in the same file.

3 Proposal

This paper proposes allowing a single inline module implementation partition to be
included in the primary module interface unit. If the primary module interface unit
includes an inline module implementation partition, it will appear after the interface
itself and be separated from the interface by some syntatctic divider.

Even if an inline module implemenation partition is present, the term primary module
interface partition refers only to the interface section of the primary module interface
unit, i.e. the section preceeding the inline module implementation partition.

The structure of the primary module interface unit will then be as follows:

1. Module interface partition

2. Optional inline module implementation partition

When a the primary module interface partition is imported (either via import into a
module implementation partition, or via implicit import into a module implementaiton
unit), its corresponding inline module implementation partition, if present, is also
imported.

4 Example

As a placeholder syntax, this paper uses “module :private;” as the marker that divides
the module interface from the inline implementation partition.

Using inline module implementation partitions, the example from the introduction would
be written as follows:

export module m;
struct s;
export using s_ptr = s*;

module :private;
struct s{};
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5 Marker Syntax

The syntax “module :private;” was chosen as the palceholder syntax because it re-
sembeles the start of a module implementation partition (whilst omitting the module
name becuase re-specifying in the same file would be redundant), uses a keyword for the
partition name to avoid conflicts with other module paritions, and can be identified by
tools without fully parsing the module unit.

Other candidates for the syntax of the marker include:

• module M:private;

• module M:;

• module M;

• module :;

• module :private;

• module private;

• module;

• export module;

• export;

• do export module;

• private module;

• not module;

• import module;

• inline module :private;

• inline module;

6 Wording

Change the [basic.link] grammar as follows:
translation-unit:

preambleopt declaration-seqopt private-module-fragmentopt

private-module-fragment:
module : private ; declaration-seqopt

Add a paragraph in [basic.link]:
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A private-module-fragment shall only appear in a primary module interface
unit ([dcl.module.unit]).

Change paragraph [dcl.inline]p7 as follows:

An exported inline function or variable shall be defined in the translation unit
containing its exported declaration, outside the private-module-fragment (if
any).

Change paragraph [dcl.module.interface]p1 as follows:

An export-declaration shall only appear at namespace scope and only in the
purview of a module interface unit. An export-declaration shall not appear di-
rectly or indirectly within an unnamed namespace or a private-module-fragment.

Change paragraph [dcl.module.global]p5 bullets 1-3 as follows:

[...] whose point of instantiation is in M and is not within a private-module-fragment

[...] whose point of instantiation is in M and is not within a private-module-fragment

[...] lookup result for a dependent name that appears in M and not within a
private-module-fragment (12.7.4)

Change paragraph [dcl.module.context]p3 as follows:

if the template is defined in a module interface unit of a module M and the
point of instantiation is not in a module interface unit of M, the point at the
end of the declaration-seq of the primary module interface unit of M (prior
to the private-module-fragment, if one is present).

Change paragraph [dcl.module.reach]p3 bullet 2 as follows:

[...] it is not discarded (9.11.4), either does not appear within a private-module-fragment
or appears in a private-module-fragment of the module containing the program
point, and appears in a translation unit that is reachable from that program
point.

Change paragraph [temp.point]p8 as follows:

in addition to the points of instantiation described above, for any such
specialization that has a point of instantiation within the declaration-seq of
the translation unit, prior to the private-module-fragment (if any), the point
after the declaration-seq of the translation-unit is also considered a point of
instantiation, and for any such specialization that has a point of instantiation
within the private-module-fragment, the end of the translation unit is also
considered a point of instantiation.
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