
Constexpr in std::pointer_traits

Document #: P1006R1
Date: 2018-10-07
Project: Programming Language C++
Audience: LWG
Reply-to: Louis Dionne <ldionne@apple.com>

1 Revision history

• R0 – Initial draft

• R1

– Add wording in the specification of std::pointer_traits, not only the synopsis.

– Add caveat that user-provided specializations of std::pointer_traits<T*> now need
to provide a constexpr pointer_to method.

2 Abstract

As part of the constexpr reflection effort, and in particular making std::vector constexpr, we
need to make std::pointer_traits constexpr (it is used in the implementation).

3 Difficulties

The standard currently defines a base template std::pointer_traits and a specialization of it for
raw pointers (std::pointer_traits<T*>). Marking the base template as constexpr would imply
that all specializations of it need to be marked constexpr too, since specializations of templates
in namespace std for user-defined types need to retain the same interface as the base template.
Indeed, per [namespace.std] 15.5.4.2.1/2 in [N4762]:

Unless explicitly prohibited, a program may add a template specialization for any
standard library class template to namespace std provided that (a) the added declaration
depends on at least one program-defined type and (b) the specialization meets the
standard library requirements for the original template.

However, forcing all specializations of std::pointer_traits to be marked constexpr will preclude
useful fancy pointer implementations from using it, such as offset_ptr. offset_ptr is a pointer
represented as an offset from this, which is used in memory mapped files and similar contexts.

1

mailto:ldionne@apple.com


The problem with offset_ptr is that it uses a reinterpret_cast internally, which isn’t allowed
in constant expressions (and the barrier to allowing that is very high).

So marking the base template constexpr is not an option without changing [namespace.std].
The only other option is to mark the specialization of std::pointer_traits for raw pointers
(std::pointer_traits<T*>) as constexpr, which does not seem to violate [namespace.std]
because it is not a user-provided specialization.

Also note that in practice, we don’t expect (and have no use for) std::vector being constexpr-
friendly for allocators other than the default allocator, which means that we don’t really care about
making more than std::pointer_traits<T*> constexpr. This is the direction this paper takes.

However, it does mean that user-provided specializations of std::pointer_traits<T*>, where T is
a user-defined type, need to abide by the added constexpr requirement.

4 Proposed wording

This wording is based on the working draft [N4762]. Change in [pointer.traits] 19.10.3/1:
namespace std {

template<class Ptr> struct pointer_traits {
using pointer = Ptr;
using element_type = see below ;
using difference_type = see below ;

template<class U> using rebind = see below ;

static pointer pointer_to(see below r);
};

template<class T> struct pointer_traits<T*> {
using pointer = T*;
using element_type = T;
using difference_type = ptrdiff_t;

template<class U> using rebind = U*;

static constexpr pointer pointer_to(see below r) noexcept;
};

}

Change in [pointer.traits.functions] 19.10.3.2:

19.10.3.2 Pointer traits member functions [pointer.traits.functions]
static pointer pointer_traits::pointer_to(see below r);
static constexpr pointer pointer_traits<T*>::pointer_to(see below r) noexcept;

Remarks: If element_type is cv void, the type of r is unspecified; otherwise, it is
element_type&.

2



Returns: The first member function returns a pointer to r obtained by calling Ptr::pointer_-
to(r) through which indirection is valid; an instantiation of this function is ill-formed if
Ptr does not have a matching pointer_to static member function. The second member
function returns addressof(r).

5 Acknowledgements

Thanks to Ion Gaztañaga for discussing the troubles of offset_ptr and constexpr with me.

6 References

[N4762] Richard Smith, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4762.pdf

3

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4762.pdf

	1 Revision history
	2 Abstract
	3 Difficulties
	4 Proposed wording
	5 Acknowledgements
	6 References

