More Natural Arithmetic in C++

Document number: P0999R0O

Date: 2018-04-01

Reply-to: James Dennett <jdennett@google.com>
Audience: SG6, SG12, EWG, CWG.
Synopsis

A minor change to the rules of arithmetic for unsigned types makes them behave as
programmers expect and reduces the amount of unnecessarily undefined behavior in C++ code.

Guiding Principles

Least astonishment: code should be unsurprising to reasonably well-informed readers.
There should be no room for a lower-level language between C++ and assembiler.
Undefined behavior should be present only when justified (e.g., by performance, by
practicality, for conceptual integrity, or by allowing better runtime diagnostics of
unintended behaviors).

Background

A brief recap: C++ has modular arithmetic types (known as “unsigned”) which wrap around
rather than overflowing, and has non-wrapping arithmetic types (known as “signed”) for which
overflow is undefined. Arithmetic modulo n (for a positive integer n > 1) produces a well-known
commutative ring (with identity), with multiplication distributive over addition as expected. C++
also has optional signed types that use two’s complement representations: [atomics.types.int]
provides that for the signed integral specializations of atomic<T>, two’s complement shall be
used ("For signed integer types, arithmetic is defined to use two’s complement representation.”).

At the Jacksonville 2018 meeting of WG21, EWG showed renewed openness to addressing
some longstanding quirks in how signed and unsigned types work together, going so far as to
take a direction poll in favor of moving towards a world in which -1 < 0u. Given this optimism
that we are in a position to incrementally improve fundamental aspects of the language, the time
may be right for the present paper to offer a path towards harmonizing one more aspect of the
signed and unsigned types.

Other papers (such as p0907r0) have proposed changes to require changes to the signed types
to require them to always use 2’s complement representations, and in some cases advocated

mailto:jdennett@google.com

that they should have well-defined (wrapping) behavior instead of overflow. This paper does not
directly address signed types, though if they were to adopt modular arithmetic in the future then
it would apply to them just as it does for the existing (unsigned) modular types. The changes
proposed by this paper would reduce the gap between unsigned types and signed types.

Unsigned types have an unambiguous expression in bits, one that’s so obvious that mentioning
it seems almost redundant: a number x in the range 0...2"-1 is represented by the bit pattern
<b,, b,, ..., by> where x = £b2'. This gives rise to a natural correspondence between certain
operations on bit patterns and arithmetic on the numbers represented by those bit patterns. For
example, [expr.shift]p3 says: “The value of E1 >> E2 is E1 right-shifted E2 bit positions. If E1
has an unsigned type or if E1 has a signed type and a non-negative value, the value of the
result is the integral part of the quotient of E1/2%2.” There is some elegance (if also some
indirection) to defining the semantics of bit shifts via this correspondence. Bit shifts work (for
unsigned types) work as they should, and give arithmetically unsurprising results (per the
principle of least astonishment).

A Non-Motivating Example

We include this example (that we do not propose to change) for comparison to the motivating
example presented below.

double d = 3 / 4;

This is a common error for novice programmers, who expect the resulting value for d to be 0.75
and are surprised when it is 0. For those who have not previously worked in a language where
integral division truncates by default, it is easy forget that the / operator on the type int does
so. While a not infrequent problem, this is viewed largely as an educational challenge rather
than as a defect in the programming language (though some other languages with different
tradeoffs make different choices here, such as using different operators for floating point division
versus truncating integral division). Experienced C++ developers understand that floating point
division behaves very differently than integral division, even while addition, subtraction and
multiplication are largely the same between integral and floating point types (e.g., 3 + 4 ==
3.0 + 4.0,eventhough 3 / 4 = 3.0 / 4.0).

A Motivating Example

In a context in which the semantics of an unsigned integer i are that of a number, rather than a
bit pattern, a well-meaning programmer with experience in other programming languages might
transform
unsigned j = i >> 2;
into the apparently equivalent expression (that arguably expresses intent more directly)
unsigned j = 1 / 4;
For a non-negative value i of a signed type, this transformation is (of course) valid.

Discussion

When we look at arithmetic on unsigned types, all is well for the additive operations and for
multiplication (which distributes over addition and is completely defined by that property and the
fact that 1 is the identity for the multiplicative group of non-zero elements).

Indeed from [expr.shift]p3 the definition of the right-shift operator >> on unsigned numbers
ensures that the first form (i >> 2) yields “the integral part of the quotient of E1/25%"' where E2
is 2, i.e., the integral part of the number i divided by 4.

Recall that, building on a solid mathematical foundation, [basic.fundamental]p4 says “Unsigned
integers shall obey the laws of arithmetic modulo 2" where n is the number of bits in the value
representation of that particular size of integer.” The laws of modular arithmetic are familiar to
children under the name “clock arithmetic”, and are well understood and uncontroversial. At a
more advanced level, modular arithmetic underlies much of modern cryptography, where the
result that (for positive integers a and b) a is invertible modulo b iff they are coprime plays a key
role.

The binary / operator is defined (for arithmetic types) by [expr.mul]p4: “The binary / operator
yields the quotient, and the binary % operator yields the remainder from the division of the first
expression by the second. If the second operand of / or % is zero the behavior is undefined. For
integral operands the / operator yields the algebraic quotient with any fractional part discarded;
if the quotient a/b is representable in the type of the result, (a/b)*b + a%b is equal to a;
otherwise, the behavior of both a/b and a%b is undefined.”

Herein lies the problem this paper aims to address: the rules of modular arithmetic imply that the
transformation in our motivating example creates a use of the / operator with undefined
behavior. Our well-meaning programmer has produced a simpler expression of the intent to
divide by four, but forgetting that the operator has modular semantics they have assumed that it
is real division, or at least not modular division.

More explicitly, given our unsigned integer i, i / 4 is defined as the quotient, i.e., the result of
dividing i by 4. Division in the modular ring Z/2"Z is a partial operation defined by the identity
a/b = ab™, where the notation b™* refers to the multiplicative inverse of b and by convention
juxtaposition indicates multiplication. Cleary this is not defined when b is zero, as we would
expect. More precisely, it is undefined whenever b has a common factor with 2", or equivalently
when b is even. Our divisor 4 is (manifestly) even, and hence the expression i / 4is
undefined.

"In case the typesetting is unclear: this is E1/252 in followed by double quotes, i.e. it is E1/25%", not E1/252".

One obscure optimization is enabled by the use of modular division: If a and b have unsigned
types, a conforming compiler can replace a % b by the constant 0 (using the fact that the
expression has undefined behavior if the result of a / b is not representable, and is 0 when a /
b is defined (because (a / b)*b = (a * b™*)*b = a*(b™* * b) = a*1 = 1).

Proposed Fix

At the cost of some backwards incompatibility and the loss of a possible optimization, we can
make unsigned division in C++ less surprising, more generic, and more useful:

e Change the semantics of division on unsigned types to give the same value as if the
operation were performed in a sufficiently large signed integral type. (Note: this is similar
to the resolution of CWG 1457 in which C++14 requires certain signed shifts to be
evaluated as if they are performed in the corresponding unsigned type. Here we cannot
use “the corresponding” signed type, as we need a signed type large enough to
represent the maximum value of the unsigned type, and in general such a type might not
be available on a given implementation.)

e Update Annex C to note that this is a breaking change for code that depends on
unsigned division with divisors other than 1, as division will no longer be injective and
hence not invertible.

This will also change the current behavior of the % operator on unsigned types, but the existing
behavior where a%b is zero if b is odd and undefined otherwise appears not to have any
applications, and needn’t be preserved for generic code as it’'s not consistent with how %
behaves for non-modular types: code using the C++17 rules already needs to know whether it's
working with a modular type or not. The proposed behavior would make % more useful in code
that handles unsigned types specifically (making it yield values consistent with how it behaves
for signed types), and would also improve consistency for generic code.

Optionally, we might provide an operator that gives access to the legacy, modular behavior such
as via a new function template in the standard library:

template <typename T> T std::modular_inverse<T>(T n);

Requires: n is odd.

Returns: m such that n*m == 1
which allows modular division to be implemented as a/b == a*std::modular_inverse(b).
Alternatively the library could provide std: :modular_divide(a, b); given that
std::modular_inverse(n) == std::modular_divide(1l, n) and
std::modular_divide(a,b) == a*std::modular_inverse(b), either of these is trivially
implementable in terms of the other, and the library could be specified to provide either or both.

Alternatives Considered

1. We could fix the motivating example by defining >> in terms of the modular / operator,
such that a >> b is (by definition) a / 2°. A limitation of this approach is that while it

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1457

ensures the desired equivalence, it leaves a >> b undefined unless b is zero, somewhat
restricting the situations in which it is applicable (to those in which the shift is a no-op).

2. Instead of changing the definition of the % operator for unsigned types, we could restrict
unsigned integral types to being represented as p bits such that 2°-1 is (Mersenne)
prime. Reserving one bit pattern 111...111 for a trap representation leaves 2°-1
remaining values which form a division ring (in fact, a field) under (+,*), ensuring that the
modular division required by C++17 is defined for all non-zero denominators. Compared
to our proposed solution this has the advantage of not tampering with the definition of
division and building C++’s unsigned types on the well-understood mathematical
foundation of finite fields. It does, however, fail to address the divergence between
signed and unsigned division, leaving unsigned operations surprising to non-expert
users.

3. Following P0997 (“Retire Pernicious Language Constructs in Module Contexts"), we
could change the behavior of unsigned integral division to truncation rather than modular
semantics only in module contexts, assuming that a notion of module context is adopted
into C++. That would be a somewhat radical difference between module and
non-module contexts, and might violate this paper’s guiding principle of “least
astonishment.”

Acknowledgements

The author would like to thank Richard “The Smith” Smith for review and for the observation that
Mersenne primes are kind of cool.

References

P0907RO0 “Signed Integers are Two’'s Complement”, JF Bastien.
P0997R0 "Retire Pernicious Language Constructs in Module Contexts", Nathan Myers.

