
Doc. No.: WG21/P0930
Date: 2018-02-11
Authors: Lee Howes lwh@fb.com,

Andrii Grynenko andrii@fb.com,
Jay Feldblum yfeldblum@fb.com

Reply-to: Lee Howes
E-mail: lwh@fb.com
Audience: SG1

P0930 - ​Semifying Awaitables

Summary
In ​P0904 ​we discussed how SemiFuture and ContinuableFuture can improve the future API,
and how those two classes can plug into a world with executors that have to deal with both bulk
operations, and greedily constructed dependence graphs as we would see in GPU work
queues.

This paper aims to also consider how we should think about the relationship between Futures
and Awaitable types as discussed in ​N4680. ​We look at how the same
SemiFuture/ContinuableFuture model can apply to coroutines, to achieve the same goals, and
how futures may safely represent coroutines for API boundaries where interoperation is a
requirement.

Existing Coroutine Concepts
We rely on the ​Awaitable​ concept from the coroutines TS/​N4680​. For these purposes this can
be defined as “a type that supports ​co_await​” but for clarity we leave it more fleshed out below.
We propose no changes to the ​Awaitable​ types as used in ​N4680​. Most awaitables in use will
be simple callback-based awaitables that can optimise away to nothing. There is no expectation
that such an awaitable will resume on any particular executor or indeed support executors in
any meaningful way. Very roughly:
concept Awaitable {

bool await_ready();

template<class T>

bool await_suspend(coroutine_handle<T>);

void await_resume();

};

mailto:lwh@fb.com

New coroutine concepts
For the purposes of this paper, we define a set of new classes of types.

As noted in ​P0904​, for some libraries it is important to be able to separate the caller’s execution
context from the callee’s. In this world, picture an asynchronous library on which we expect to
co_await​, but in a situation where the library wants to guarantee that when it calls ​resume() ​on
the waiter’s coroutine handle, it is resumed on some well defined executor rather than executed
inline.

That library should return a ​SemiAwaitable​. ​SemiAwaitable​ exists to allow asynchronous APIs
to return an awaitable associated with some coroutine, but with a guarantee that the calling
coroutine will have to ensure that the returned Awaitable will have some executor to complete
on. This guarantees a safe contract between asynchronous coroutine-based APIs and callers.

SemiAwaitable​ is defined as a type that has a ​via​ operation exposed as a customization point
that itself takes an r-value of the ​SemiAwaitable​ type and an executor and that returns an
AsyncAwaitable​ of that executor. The return concept of ​AsyncAwaitable​ will be described next.
A ​SemiAwaitable​ can be constructed from any ​Awaitable​ (or indeed ​AsyncAwaitable​), acting
as a simple execution-context-erasing wrapper.
template<T>

concept SemiAwaitable {

SemiAwaitable(Awaitable<T>);

};

template<OneWayExecutor Ex, SemiAwaitable<T> ConcreteSemiAwaitable>

AsyncAwaitable<Ex> via(ConcreteSemiAwaitable&&, Ex);

In this case ​Ex​ has to be a ​OneWayExecutor​, or it must be an executor that can be converted
into a ​OneWayExecutor​ because the coroutine execution model depends on lazy enqueue.

SemiAwaitable​ is not itself ​Awaitable​, but it is convertible to ​AsyncAwaitable​ with a simple
implementation of ​await_transform​ on any given executor-carrying Awaitable by calling ​via
with the ​SemiAwaitable​ and the caller's executor.

NOTE​: As an optional strengthening of safety rules, we can require that ​Ex​ satisfy the
never_blocking​ property of the executors, or be convertible to such an executor using require.
This removes an executor that executes the function inline with the ​execute ​method as a valid
implementation, but would give a stronger guarantee to the library. In this case the executor
associated with the returned ​AsyncAwaitable​ might not match the type of the one passed to
via.

An ​AsyncAwaitable​ is an ​Awaitable​ that acts at asynchronous boundaries and executor
transitions and is executor aware. When it is resumed and forwards resumption onto the waiter,
it will package the call to the waiter’s ​resume()​ method into a task and launch it on its executor.
The caller will hence be resumed on some known executor - most likely whatever executor it
was running on when it awaited. This acquires the functionality of ​SemiAwaitable​ and
Awaitable​, and can hence be ​co_await​ed and can also be converted to an ​AsyncAwaitable
carrying some other executor type.

template<class T, Executor Ex>

concept AsyncAwaitable : SemiAwaitable<T>, Awaitable<T> {

AsyncAwaitable(/* self type */&&);

// Note that an AsyncAwaitable is not publically constructible

// from arbitrary SemiAwaitables or Awaitables.

Ex get_executor() const;

};

template<OneWayExecutor Ex, SemiAwaitable<T> ConcreteSemiAwaitable>

AsyncAwaitable<Ex> via(ConcreteAsyncAwaitable&& aw, Ex);

A call to ​via(std::move(aa), ex)​ is allowed to return ​std::move(aw)​ if the passed executor
instance, ​ex​, matches the executor attached to ​aw​.

An Awaitable need not have an attached executor. An ​AsyncAwaitable​ must have one, and will
always resume the awaiter's coroutine_handle on the executor attached to the ​AsyncAwaitable​.

Interactions between Futures and Awaitables
As discussed in ​P0930​ we see a separation between ​SemiFuture​ and ​ContinuableFuture​ as
future concepts in the standard. This separation we can now see aligns closely with the
separation we propose for Awaitables, and is proposed for the same reason in both cases.

Furthermore, ​SemiFuture​ is a ​SemiAwaitable​ type in that it has a ​via​ customization point
exposed, which returns an instance of the ​ContinuableFuture​ concept. ​ContinuableFuture​ is
an ​AsyncAwaitable​.

template<class T>

concept SemiFuture : SemiAwaitable {

explicit SemiFuture(/* implementation-defined ContinuableFuture */&&);

// Move constructible

SemiFuture(/*self type*/&&);

// get and get_expected are both destructive.

// get will throw on exception. get_expected will return either a value

// or an exception.

T get() &&;

expected<T, exception_ptr> get_expected() noexcept &&;

// Wait is not destructive.

SemiFuture<T>& wait() noexcept &;

SemiFuture<T>&& wait() noexcept &&;

bool is_ready() noexcept;

};

The ​via​ customization point of ​SemiFuture​ is consistent with that of SemiAwaitable, but will of
course return a ​ContinuableFuture​, both types being narrowed relative to the more general
SemiAwaitable​ definition:
template<OneWayExecutor Ex, SemiFuture<T> ConcreteSemiFuture>

ContinuableFuture<Ex> via(ConcreteSemiFuture&&, Ex);

We add the ability to enqueue continuations on a future using the ​ContinuableFuture​ concept.
ContinuableFuture​ matches the ​AsyncAwaitable​ concept and is trivially awaitable because
we can always await by using a continuation to trigger the callback, so we can fall back to a
default form.
template<class T, Executor Ex>

concept ContinuableFuture : SemiFuture, AsyncAwaitable<Ex> {

using executor_type = Ex;

using semi_future_type = /* implementation-defined */

// Move constructor

ContinuableFuture(/*self type*/&&);

template<...>

ContinuableFuture<ReturnT, Ex> then(F&&);

template<...>

ContinuableFuture<ReturnT, Ex2> bulk_then(

F&& f,

executor_shape_t<Ex> shape,

SharedFactory&& s,

ResultFactory&& r);

bool await_ready();

template<class T>

bool await_suspend(coroutine_handle<T>);

void await_resume();

Ex get_executor() noexcept;

semi_future_type semi() &&;

};

Standardised Future type extended with awaitables
The standard future types specified in ​P0904​ need to be extended with Awaitable support.

SemiFuture​ may be constructed from any ​SemiAwaitable​, which includes other ​SemiFuture​s,
but also ​AsyncAwaitable​ types, including ​ContinuableFuture​, where the executor is erased
from the public interface. This is a generalisation of the support discussed in ​P0904​.

SemiFutures are also constructible from arbitrary Awaitables. This makes wrapping a coroutine
and returning into older continuation-style code very simple. Note that this is safe because the
nature of the ​SemiFuture​ concept guarantees that coroutine’s callback can only satisfy the
future, not end up performing the caller’s work as well.

Calls to ​get()​, ​get_expected() ​and to ​wait()​ are blocking and support forward progress
delegation as discussed in ​P0904​. When a Future is wrapping an Awaitable, the effect of this is
that awaitable types delegate forward progress to the caller, as arbitrary functions do, and this
continues to be true through an underlying call to ​co_await​. Note that this means in particular
that ​.get()​ on such a future is free of synchronization because the coroutine is always running
in the caller’s context, and there is no need for a stored value or shared state between coroutine
and future.

As well as being constructible from values, ​StandardSemiFuture​ is also constructible from
anything that satisfies the ​SemiAwaitable​ concept, including any other ​SemiFuture​ types, and
AsyncAwaitable​s. Finally, it may be constructed from any type that satisfies the Awaitable
concept, and may wrap ​.get()​ and ​.wait()​ efficiently internally with a ​sync_await​ operation
on the awaitable, which implicitly delegates forward progress to the caller of ​.get()​ as
co_await​ itself does. This is a generalisation of the support discussed in ​P0904 ​and​ ​makes
StandardSemiFuture​ a powerful construct for interfacing between coroutine-based and legacy
continuation-based code.
template<class T>

class StandardSemiFuture {

public:

StandardSemiFuture(T);

// This allows us to take a SemiAwaitable and defer conversion

// to an Awaitable until we convert the SemiFuture with via, or do the

// equivalent of sync_await in .get().

template<SemiAwaitable AW>

StandardSemiFuture(AW&&);

// This should be safe as the callback will only complete the future,

// not allow chaining.

template<Awaitable AW>

StandardSemiFuture(AW&&);

// Explicit overload for matched ContinuableFuture as a shared

// implementation will be more efficient than co_await.

StandardSemiFuture(StandardContinuableFuture<T>&&);

template<Callable F, class ReturnT>

StandardSemiFuture<ReturnT> defer(F&&);

// get and get_expected are both destructive.

// get will throw on exception. get_expected will return either a value

// or an exception.

T get() &&;

expected<T, exception_ptr> get_expected() noexcept &&;

// Wait is not destructive.

SemiFuture<T>& wait() noexcept &;

SemiFuture<T>&& wait() noexcept &&;

bool is_ready() noexcept;

};

The standard version of ​ContinuableFuture​ is similarly extended with construction from
AsyncAwaitable​ instances carrying the right executor type.
template<class T, Executor Ex>

class StandardContinuableFuture {

public:

using executor_type = Ex;

using semi_future_type = StandardSemiFuture<T>;

// Move constructor

StandardContinuableFuture(StandardContinuableFuture&&);

template<AsyncAwaitable<Ex> AW>

StandardContinuableFuture (AW&&);

template<Callable F>

StandardContinuableFuture <​invoke_result_t​<F, Args...>, Ex> then(F&& f);

template<Callable F>

StandardContinuableFuture <invoke_result_t<F>, Ex> bulk_then(F&&);

// get and get_expected are both destructive.

// get will throw on exception. get_expected will return either a value

// or an exception.

T get() &&;

expected<T, exception_ptr> get_expected() noexcept &&;

// Wait is not destructive.

StandardContinuableFuture<T, Ex>& wait() noexcept &;

StandardContinuableFuture<T, Ex>&& wait() noexcept &&;

bool is_ready() noexcept;

Ex get_executor() noexcept;

semi_future_type semi() &&;

};

The ability to construct from an ​AsyncAwaitable​ means that a ​StandardContinuableFuture​ is
constructible from any other future type that implements the ​ContinuableFuture​ concept and
shares the same executor.

Synchronization
A ​SemiFuture​, constructed off of an ​Awaitable​ need not have separate shared state at all, it
just acts as type erasure for a ​sync_await​ operation - there is no data race here if the Awaitable
executes lazily and so limited synchronization is necessary unless that Awaitable works
asynchronously anyway. Even when we convert to a ​ContinuableFuture​ using ​via​, we only
need to store the executor and can defer use of that to an asynchronous coroutine wait
operation. Any cost is then minimally what the coroutine implementation would allow. The only
required synchronization should be in the execute method of the executor - the Awaitable
callback will trigger a call to execute, and synchronization is as heavy or as light as the Executor
supports.

A future/promise pair will need some sort of synchronization in the core between setting the
value and retrieving it. This synchronization need not affect the implementation of futures
constructed from awaitables.

