
Document number: P0797R1
Date: 2018-02-12 (Jacksonville)
Project: Programming Language C++, WG21, SG1,SG14, LEWG, LWG
Authors: Matti Rintala, Michael Wong, Carter Edwards, Patrice Roy, Gordon Brown, Mark

Hoemmen
Email: ​matti.rintala@tut.fi​, ​michael@codeplay.com​, ​mhoemme@sandia.gov
Reply to: Matti Rintala

Handling Concurrent Exceptions with
Executors

1 Introduction ​1

2 Revision History ​2
2.1 2018-02-12 [P0797R1] JAX Meeting ​2
2.2 2017-10-15 [P0797R0] ABQ Meeting ​2

3 The problem ​2

4 The State of the Art ​3
4.1 Behavior of other parallel programming models ​4

5 Proposed Solution and discussion ​5
5.1 Exception Properties ​5
5.2 Exception Reduction ​9
5.3 Effect on parallel STL ​10
5.4 Use of other disappointment mechanisms ​11

6 Alternatives considered ​11

7 Future Directions ​13

8 Straw polls ​13

9 Acknowledgement ​14

10 References ​14

1 Introduction
This paper describes a mechanism for handling concurrent exceptions (EH) with executors. The
mechanism should also work with the parallel algorithms in the C++ Standard Template Library
(“parallel STL”). This paper’s first version ​P0797R0: Exception Handling in Parallel Algorithms [1]​,
proposed a mechanism for handling exceptions specifically in parallel STL. Based on comments from

mailto:matti.rintala@tut.fi
mailto:michael@codeplay.com
mailto:mhoemme@sandia.gov

the Albuquerque meeting, this proposal has been significantly changed. It has evolved to target
handling of multiple concurrent exceptions with the proposed executors [2] [3] and futures. Since
executors are proposed to be used in parallel STL, this proposal solves the problem for parallel STL
as well. We will discuss the mechanism for parallel STL later in this paper.

2 Revision History

2.1 2018-02-12 [P0797R1] JAX Meeting
● This version is based on feedback comments from ABQ
● Describes a future based concurrent EH handling that matches closely with executors

and also handles parallel STL algorithm
● ABQ meeting feedback handling:

○ Cancelling parallel execution is a separate issue; while important, we will not
discuss it here

○ Exception reduction is considered beneficial
○ We should leave the door open for non-exception disappointment mechanisms,

but currently exceptions are the only "official" mechanism. So the safe way is to
not specify other mechanisms (yet), but make sure they remain possible

○ Executors are going forward, and are based on futures, so preferably that's
where exception handling should also be. Since parallel STL will be based on
executors in the future, integrating parallel exception handling with executors will
help solving the problem in parallel STL as well.

○ The case of avoiding dynamic memory allocation during disappointment
handling is not attacked directly by this idea, but the door is left open for
situations where that is problematic.

2.2 2017-10-15 [P0797R0] ABQ Meeting
● Initial version
● Describes a proposal for a greedy but limited memory scope EH handling mechanism

3 The problem

In concurrent execution it is possible for several parallel executions to throw exceptions
asynchronously. If more than one of these exceptions end up in the same thread of execution, the
situation is problematic, since C++ allows only one exception to propagate at any time.

This paper concentrates on handling multiple exceptions arising from parallel executions created
using executors. Twoway executors return a future which will become ready when all concurrently
initiated executions have finished (either normally or by throwing an exception). Oneway executors
have no way to synchronize with the end-results of the executions. The possibility for multiple
exceptions has to be dealt with, since only one exception can be stored in the future returned from
the executor. Multiple exception handling in other contexts (like exceptions from arbitrary

asynchronous executions) may be more complex, and is beyond the scope of this paper. (For a
more general discussion of multiple exception handling, see [4].)

If some executions result in exceptions, it is possible that some other executions may not yet
have started. Executors do not guarantee how much parallelism they use, so it may be
nondeterministic how many executions are actually initiated in parallel simultaneously. This applies
both to successful executions, and to executions ending in exceptions. The number of exceptions
that may arise concurrently is unknown in advance, and may depend also on how much parallelism
the executor uses. A single modern CPU may support hundreds of parallel executions in hardware.
This makes memory management for an unknown number of exception objects at least somewhat
problematic. Dynamic memory allocation during exception handling is risky, especially with so many
possible exception objects.

The nondeterminism in the amount of parallelism used raises additional problems. On one hand,
it would be useful to stop invoking new executions as early as possible to avoid wasting time and
CPU resources. On the other hand, if some possible exceptions are an indication of a more severe
problem than others, it would be useful to select the one exception that best represents the situation.
However, this would require executing all the requested executions as far as possible, because
otherwise all possible exceptions are not detected.

The possibility of multiple exceptions arising from a single parallel bulk execution is problematic
for the return value as well. A future can only contain one exception, so either a single most
representative exception should be stored in the future, or an exception containing all received
exceptions should be stored, so that the user can later analyze all the exceptions. A combination of
these two might also be convenient. The mechanism proposed in this paper accounts for all these
variations.

In some environments, exceptions might not be a suitable disappointment handling/signalling
mechanisms for various reasons. (For example, exception handling may incur unacceptable
performance penalties. It may be technically challenging on some hardware, such as GPUs.) This
paper also briefly discusses how other disappointment mechanisms might be used together with
executors for concurrent disappointment handling.

4 The State of the Art

The design of the current executors proposal is laid out in Executors Design Document [3], and A
Unified Executors Proposal for C++ [2].

The current executor proposal [2] ​does not require handling for concurrent exceptions from the
execution(s) of the user function, only exceptions thrown from the execution function​. Both single and
bulk oneway executors are defined “not [to] propagate any exception thrown by [the execution]”
(1.1.6). On the other hand, “[t]he treatment of exceptions thrown by oneway submitted functions is
specific to the concrete executor type” (1.1.6). This is logical, since oneway executors do not return a
future through which an exception could be propagated, and their implementation does not
necessarily have any return channel for users to get information back from the execution.

For both twoway and "then" versions of single executors, [2] specifies that the executor “stores
the result ... or any exception thrown by [the execution], in the associated shared state of the
resulting Future” (1.1.7, 1.1.8). Again, this is logical, since there is only one created concurrent
execution, and thus one possible exception that could be propagated out of the execution.

Twoway bulk executors (and "then" executors) are a more interesting case, as they may end up
with multiple concurrent exceptions. For them, [2] says that “once all invocations … finish execution,
[the executor] stores r [(the result object)], or any exception thrown by an invocation ..., in the
associated shared state of the resulting Future" (1.1.10, 1.1.11). The proposal does not define what
“any exception” means, but presumably it means an arbitrary single exception chosen from the
encountered exceptions.

For static_thread_pool executors, [2] specifically defines that “if the submitted function ... exits
via an exception, the static_thread_pool calls std::terminate()” (1.7.3.3)

The choice to call std::terminate() when encountering exceptions in a concurrent context is used
elsewhere in C++ as well. If an exception attempts to escape an execution inside a std::thread,
terminate() is called. And of course, in a sequential context, terminate() is called if a destructor
throws an exception during stack unwinding (causing multiple simultaneous exceptions). When
concurrency is achieved through std::async(), resulting exceptions are embedded in the future
returned from the async() call. This does not cause terminate() to be called in any situation, but
exceptions may end up being ignored if the future is destroyed without its wait() having been called.

Having multiple exceptions in one place causes a need to somehow store them together for
analysis (and possibly propagation inside a single exception). Current C++ provides no such
mechanisms. std::nested_exception allows a single exception to be embedded inside another
exception, but that is not suitable for multiple exceptions. This is because nested_exception only
allows rethrowing the nested exception, not analyzing its type.

On the other hand, the current Parallelism TS 2 draft [5] contains exception_list (6.2), which can
be used for storing (and throwing) multiple exceptions. That type is used to report exceptions from a
task_block (8.5). Additionally, [6] says that “exception_list is underspecified” (2.2) and that some of
its features are still under consideration.

4.1 Behavior of other parallel programming models
In OpenMP with its fork-join architecture, the rule is that if an exception escapes a parallel region, the
OpenMP system will terminate and forgo unwinding. Exceptions may be caught and even rethrown
within the parallel region, as they do not escape the parallel region. OpenMP since Version 4 also
has various cancellation points (usually blocking locations such as I/O as well as a new cancellation
directive) where in-progress exceptions may be checked (though there is no guarantee), so as to
enable notification of other threads to begin termination [9].

Khronos’s SYCL standard is a modern C++ programming model based on OpenCL, suitable for
heterogenous dispatch, and follows the C++11/14/17/20 progression [7]. Codeplay’s implementation
of the SYCL language, called ComputeCpp, implements the original exception system of the
Parallelism TS (providing a​n iterable exception_list of std::exception_ptr objects). OpenCL itself does
not have an exception mechanism being based on C99 (although it has a callback on error
mechanism), which means SYCL does not handle exceptions from the execution itself, however it
does handle concurrent exceptions thrown from the asynchronous SYCL runtime. SYCL handles
these by collecting them in an exception_list and then propagating them to a user provided function
for handling or reduction.

HPX is similar to SYCL but aimed at distributed computing while following closely ISO C++
progression. It implements both the exception_list concept, but also a future based exception
mechanism.

HSA is also investigating an EH mechanism as it is a layer that enables a number of high-level
language implementations including C++ and OpenMP. HSA EH does not use a final snapshot of all

the exceptions generated, but uses a greedy model that releases exceptions as soon as they are
generated.

5 Proposed Solution and discussion
This paper proposes a set of new exception handling properties for the executors property
mechanism [2]: ​no_exceptions​, ​single_exception​, ​single_exception_reduction​, and
multiple_exceptions​. These properties control how an executor will handle concurrent exceptions,
and executors can choose to support only those properties they can implement. Alike many of the
other properties in the executors proposal, the properties described above are mutually exclusive
with regards to each other, meaning an executor can only satisfy one at any given time.

Other executor properties also affect how exception handling properties behave. Important other
properties are ​directionality (oneway, twoway, then), ​and ​cardinality (single, bulk)​. Other properties
(​blocking, continuations, future task submission, forward progress guarantees, thread mapping, ​and
memory allocation​) seem (at least for now) to be independent of exception handling properties. For
the purposes of exception handling, ​twoway​ and ​then​ properties behave equivalently, so if only
twoway​ is mentioned below, it also includes ​then​.

From now on in this paper, executor properties are written in ​italics​ to make the text clearer.

5.1 Exception Properties
The ​no_exceptions​ property is the most straightforward. Executors with the ​no_exception​ property do
not support propagating exceptions to the user. (If exceptions are thrown from invoked executions,
no_exception​ executors may either call std::terminate, or react to exceptions in a manner specific to
the concrete executor type.) Oneway executors might typically only support the ​no_exceptions
property, if they have no back channel to report exceptions to the user. The ​no_exceptions​ property
would also suit executors for which it is difficult or too expensive to support exception handling, such
as GPU-based executors. Other executors may also support this property, allowing optimizations in
cases where users know exceptions will not occur.

The ​multiple_exceptions​ property lets the executor propagate out multiple exceptions. The ​bulk
executor does this by populating a std::exception_list object with encountered exceptions, and
embedding this exception_list into the resulting future as an exception. This makes it impossible to
catch any of those exceptions by their type, since the type of the exception in the future is just
std::exception_list. Only ​twoway​ and ​then​ executors may support the ​multiple_exceptions​ property,
since only those executors provide result futures.

The ​single_exception​ property lets executors propagate out at most one exception. For ​single

executors this property is natural, since they only invoke a single concurrent execution, potentially
resulting in a single exception. ​Single​ executors implement this property simply by embedding the
resulting exception in the result future, just as the current executors proposal specifies. Similarly to
multiple_exceptions,​ only ​twoway​ and ​then​ executors may support the ​single_exception​ property.

If users want at most a single exception from ​bulk​ executors, the resulting potentially multiple

exceptions must be reduced to a single exception. The ​single_exception_reduction​ property achieves
this. Users give a ​reduction function​ to the ​single_exception_reduction​ property as a parameter
(similarly to custom allocators with the memory allocation property in the current executor proposal).
The reduction function is a Callable that takes an std::exception_list as a parameter, selects or
creates a suitable single exception that represents the situation however it sees fit, and returns the
single exception as an std::exception_ptr. That resulting exception is then embedded in the
executor's result future.

If users wish to keep the entire original exception list, they may provide a reduction function that
uses std::nested_exception to embed the exception_list into the selected single exception.

To keep the exception properties as orthogonal to other properties as possible, it is possible to

use the ​multiple_exceptions​ property with ​single​ executors as well (even if only one exception can
result from a single execution). In this case, a std::exception_list with a single embedded exception is
embedded in the result future.

Finally, again for orthogonality, it is possible to use the ​single_exception_reduction​ property with

single​ executors as well (even though there's only one potential exception, and thus no need for

reduction). In this case the only exception is stored in a std::exception_list, passed to the provided
reduction function, and the resulting exception is embedded in the result future.

Summary of constraints on which properties can go with what executors:

● Users may require the ​no_exceptions, single_exception_reduction​, and
multiple_exceptions​ properties from any ​twoway​ or ​then​ executor without having to know
whether the executor is a ​single​ or ​bulk​ executor.

● Users may only associate the ​single_exception​ property with ​single​ executors, since with
bulk​ executors a reduction function is needed to reduce multiple exceptions into one.

● Oneway​ executors only support the ​no_exceptions​ property.

We propose that the default exception handling property for both ​single​ and ​bulk​ ​oneway

executors is ​no_exceptions​. For ​single​ ​twoway​ executors it is ​single_exception​. For ​bulk twoway
executors, the default is ​multiple_exceptions​.

The table below summarizes how exception handling properties tie together with combinations
of other properties (✔ = combination is supported, (✔) = combination is supported but not typical,
Ü= combination is normally not supported):

 no_exception
s

multiple_exception
s

single_exceptio
n

single_exception
_reduction

single, oneway ✔ Ü Ü Ü

bulk, oneway ✔ Ü Ü Ü

single, twoway/then ✔ (✔) ✔ (✔)

bulk, twoway/then ✔ ✔ Ü ✔

Below is a code example showing how the proposed exception handling could be used:

// User-provided reduction function

std::exception_ptr my_reduction(std::exception_list l);

template<class Executor>

void do_parallel(Executor const& ex)

{

// ...create task, shape, and parameter and result factories

auto result_fut =

execution::require(ex, execution::bulk, execution::twoway,

 execution::single_exception_reduction(my_reduction)

).bulk_twoway_execute(task, shape, result_fact,

 param_fact);

try { result_fut.wait(); }

catch (my_exception const& e) { ... }

// ...

}

// Use multiple_exceptions to get a list of exceptions

template<class Executor>

void parallel_stl(Executor const& ex, std::vector<int>& vec)

{

auto ex2 = execution::require(ex, execution::multiple_exceptions);

try

{

sort(std::execution::par.on(ex2),

 vec.begin(), vec.end(), &comparison_that_throws);

 for_each(std::execution::par.on(ex2),

vec.begin(), vec.end(),

 [](auto e){ if (...) throw ...; });

}

catch (std::exception_list const& e)

{

 // Iterate list to react to exceptions

}

}

5.2 Exception Reduction
In this proposal, exception reduction is proposed to be performed with a user-provided function,
which takes an exception_list containing all encountered exceptions as its parameter, and returns an
exception_ptr pointing to the exception, which should be propagated to the user. This section briefly
discusses some topics related to exception reduction. For a more thorough discussion, see [1]
(sections 5.5 - 5.7).

The idea of exception reduction is to come up with a single exception that best represents the
total "exceptional" situation that manifests as a set of concurrent exceptions. It is quite likely that
there is no single strategy for this that would apply to all use cases. For example, in some cases
exception reduction may be as simple as ranking the exception types and choosing the exception
with the highest rank. In other cases, it might be that the "importance" of an exception depends also
on how many exceptions of that type have been received. And it is of course also possible that the
"most representative" exception is not among the exceptions in the list, but rather would be a
completely new exception created by the reduction function. Finally, even if simple ranking is enough
to choose the outcome of reduction, it could still be necessary to collect and combine information
from all exceptions of the highest rank to embed that information in the resulting exception. [1]
contains two concrete example uses cases for exception reduction (sections 6.2 and 6.3).

One further reduction strategy is to find the most derived common base class for all the
exceptions, and replace the set of exceptions with a single exception object of that type. This kind of
reduction can be convenient as it provides a general way of reducing an arbitrary set of exceptions.
On the other hand, this kind of reduction loses information about the types of individual exceptions. It
does not allow certain exception types to have a higher precedence than others. If a fatal exception
and a minor exception are reduced, the result is their common base class, which abstracts the types
of individual exceptions away. Catching this base class exception object does not reveal whether a
fatal exception has occurred. Further discussion on this strategy can also be found in [1] (section
5.7).

In this proposal, it is expected that reduction functions are called only once for each set of
executions, after all encountered exceptions have been collected into an exception_list. This strategy
makes sure that reduction functions have all the information for performing analysis on exceptions.
However, another option would be to allow intermediate partial reductions to be performed on
subsets of exceptions, and final reduction to be based on the results of these intermediate
reductions, allowing parallel reduction. These alternatives are discussed further in Alternatives
considered, and it is a topic for future discussion.

5.3 Effect on parallel STL
C++17 added parallel versions of most STL algorithms, where the given execution policy determines
how the algorithm is allowed to parallelize its operation. Currently any exception from a parallel STL
algorithm causes std::terminate() to be called.

The sequential STL algorithms allow exceptions to be used to signal failure (disappointment) to
complete the algorithm. These exceptions may be thrown from iterator operations, invoked operators
(like assignment, comparison, etc.), or from functions provided by the programmer (predicates, etc.).
In sequential STL throwing an exception is the only way to abandon the execution of the algorithm (in
addition to successful completion).

If parallel STL algorithm execution policies are based on executors, then the exception handling
properties proposed in this paper can be used to control exceptions resulting from parallel STL
algorithms as well. Using the properties the user can specify whether there can be any exceptions at
all, and whether to receive a single exception (through reduction) or multiple exceptions (in an
exception_list). Similarly the parallel STL algorithms can use the exception properties to adapt their
behaviour (for example, to use ​oneway​ executors if ​no_exceptions​ property is associated with the
provided executor).

A note concerning the use of exception_list for multiple exceptions in parallel STL: The original
Parallelism TS allowed for an exception_list of exception_ptr, effectively a vector of exception_ptrs.

This was shown to be problematic in P0394 for both the consumer who would have trouble
disambiguating useful information, and from the producer in implementing such a complex system. It
was discovered that of all the parallel STL implementations, only Codeplay’s SYCL had in fact
implemented the original exception system. At the SG1 meeting in Oulu, the group decided that
lacking a better replacement, it would be best to simply reduce it to terminate with no unwinding. A
further amendment also binded the exception to the execution policy, instead of binding to the
algorithm. This was deemed to enable future exception policy systems. Other methods were
discussed, including having dual parallel algorithms (ones that throw exceptions, and a nothrow
version) but that was deemed by many to be unacceptable. As a result, in current ratified C++17 any
exception in parallel STL algorithms causes std::terminate() to be called. This was regarded as a
"safe strict choice" when there was no time to come up with a better solution. However with the
introduction of executors it’s now possible to provide a safe default whilst also providing other options
for users who chose it.

5.4 Use of other disappointment mechanisms
Since it is possible that all platforms cannot easily support exception handling (or exception handling
causes too much overhead), there are proposals for other "disappointment" handling mechanisms
(std::expected<>, etc.) [8]. Even though this paper concentrates on handling of concurrent
exceptions, possibility of using other disappointment mechanisms is discussed briefly.

If exception handling is not supported by the executor, the executor can signal this by only
supporting the ​no_exceptions​ property. For ​oneway​ executors, signalling disappointment is not an
issue since there's no back channel for the results of execution.

For ​twoway​ and ​then​ versions of ​single​ ​no_exceptions ​executors it is possible to use the result
future to store a return type supporting disappointments (like std::expected<>) to pass information
about the single potential disappointment back to the user. The user can do this by specifying an
appropriate return type, so no special support in the executors is needed.

Twoway​ and ​then​ versions of ​bulk​ executors use a shared result object (created from the
user-provided result factory) to collect results of the multiple executions, and this result object is
embedded in the result future. Again, since the result object is provided by the user, other
disappointment mechanisms can be used by storing the disappointments in the result object. Again,
no support from the executors is needed, since the user controls the functions executed in parallel as
well as the result object.

6 Alternatives considered
All exception handling properties in this paper (​no_exceptions, single_exception,
single_exception_reduction, ​and​ multiple_exceptions​) are different approaches to handling multiple
encountered exceptions. Alternatively, it would be possible to have just one exception handling
property, which is always given a reduction function, and let the chosen reduction function to decide
how to react to multiple exceptions. I.e., for ​no_exceptions, ​reduction function could call
std::terminate(). For ​multiple_exceptions, ​it would return the exception_list. For ​single_exception​ it
would pick the only exception in the exception list and return it (and the ​single_exception_reduction
case already uses a reduction function). This proposal uses four separate exception handling
properties, because this allows executors to support only some subset of exception handling
properties. Additionally, and executor can be queried for its exception handling property, and
decisions can be made based on that information. These would become impossible or at least much

more complicated, if there was only one exception handling property. Also multiple properties allow
an implementation to provide different executor types, which are optimized or specialized for a
particular exception handling property.

This proposal uses the proposed std::exception_list to collect encountered exceptions and to
pass them to reduction functions. In the case of the ​multiple_exceptions​ property, an exception_list is
also embedded in the result future. As mentioned in [6] (section 2.2), the current interface on
exception_list is quite limited, and probably not suitable for general exception reduction (especially
since the result of exception reduction might in some cases still be an exception_list, so users should
be able to create exceptions_lists and fill them with exceptions). Further analysis is needed for the
set of ideal operations in exception_list. If std::exception_list cannot provide necessary operations, a
new exception container type would be needed for the mechanism proposed in this paper.

Somewhat similarly to the exception_list problem, the std::exception_ptr type in the current
standard is quite limited in functionality, and does not provide enough support for exception analysis
needed in exception reduction. Currently, C++ does not provide any means for converting
std::exception_ptr to a normal pointer pointing to the exception object (the only way is to re-throw the
exception and catch it through a reference, which causes unacceptable overhead). There have been
suggestions to add an exception_ptr_cast or similar to create ordinary pointers from
std::exception_ptr (similar to dynamic_cast). This would allow reduction functions to iterate through
encountered exceptions, query their types, access the actual exception objects, and base reduction
on that information. If std::exception_ptr does not allow these operations, it would be necessary to
store exceptions as a collection of std::exception*, which would limit exception support to types
derived from std::exception.

Canceling parallel executions (both not initiating remaining un-started executions and possibly
interrupting already started in-progress executions) in case of disappointments is a separate issue
and is not discussed in this paper. However, cancellation affects also encountered exceptions. On
one hand, it is reasonable not to initiate new executions if the whole operation is already known to fail
(because of already encountered exceptions). On the other hand, not initiating the remaining
executions could hide exceptions that would have been considered more important than the ones
already encountered. For this reason, it should be considered whether the user (and possibly the
reduction function) should be notified if there were parallel executions that were not run to completion
or not started at all.

The proposal is currently based on the idea that exception reduction is performed once when all
encountered exceptions have been collected. This allows exception reduction to use all available
information to decide the result of reduction, and minimizes amount of nondeterminism in reduction.
However, this also prevents intermediate (possibly parallel) partial reduction along the way, which
could sometimes be useful. If partial reduction is allowed, in the extreme executors could perform
intermediate reduction on just pairs of exceptions, making reduction into a user-provided comparison
function choosing from two exceptions. This would allow maximum parallelism in reduction, but
would limit information in each reduction step to two (arbitrary) exceptions. This would only work, if
exceptions form a strict weak ordering so that the "most important" one can be determined by
pairwise comparison. On the other hand, allowing intermediate reductions could have a positive
effect on memory requirements, since all encountered exceptions wouldn't necessarily be
propagated to a single place for reduction. There has been discussion back and forth on this issue,
and it is one clear topic for future work. One possible solution could be to allow intermediate partial
reduction, but add a boolean flag parameter telling reduction functions whether final or intermediate
reduction is taking place. This would allow reduction functions to adapt their strategy accordingly (for
example, intermediate reductions could mainly collect information for the final reduction).

The current proposal doesn’t impose a limit to the number of concurrent exceptions which are
handled and stored in the exception_list. However, concurrently dynamically allocating memory for
exceptions can potentially be costly, or even not possible in the case of many GPUs. For these cases
it’s desirable to specify a fixed limit on the number of exceptions, or more specifically the memory
available to store exceptions. One approach to this would be to allow the exception_list to be
constructible using a fixed size limit where it would preallocate memory for storing exceptions. Then
have an execution policy, an executor property or an execution context property which allows users
to specify a fixed size which is then used when constructing the exception_list. This raises the
concern about how to handle an overflow of exceptions, i.e. what to do when the fixed size limit is
reached. A way to handle this would be to simply drop any exceptions after the limit has been
reached and perhaps increment an atomic counter recording the number of exceptions which were
dropped. Another option could be to have memory reserved in the exception_list for an exception
which encapsulates the number of exceptions which were dropped.

7 Future Directions
Further study is needed to improve the interface of std::exception_ptr and the proposed
std::exception_list so that they provide enough functionality for exception reduction.

More study is also needed to determine how executor exception handling and cancellation of
executions can best be combined, so that unnecessary overhead is avoided, but the user is informed
about potentially hidden exceptions.

This current paper presents certain combinations of the cardinality and directionality executor
properties (​oneway​, ​twoway​, ​single​, ​bulk​) and the exception handling properties (​no_exceptions​,
single_exception​, ​single_exception_reduction​, ​multiple_exceptions​) as supported or not supported.
As the exact nature of how properties interoperate with each other and how the side effects of one
property on another is reflected in the design of executors is still to be decided, this concept of
supported or not supported is mainly theoretical to represent the valid combinations. How this is
reflected in the executors interface shall follow the design of the executors proposal.

Finally future work is needed for deciding whether to allow partial intermediate reductions or
require the reduction function to be called only once for each set of executions.

8 Straw polls
From this paper we aim to identify out of all the challenges presented here what is considered

most important, and what is most desirable approach:
● Is it reasonable to hope for additional support in std::exception_ptr, so that it could be

used in exception reduction?
● Is it enough to perform exception reduction only after all encountered exceptions have

been collected, or should there be a way to signal that parallel partial reduction is also
allowed?

● How important is it to have the option for both a dynamic and fixed size exception_list.

9 Acknowledgement
Thanks for Michael Wong, Carter Edwards, Patrice Roy, Gordon Brown, Mark Hoemmen,

Ruymán Reyes, and everyone on the Heterogenous C++ discussion group for discussion, ideas, and
comments that were valuable in drafting this paper.

10 References
[1] Matti Rintala, Michael Wong, Carter Edwards, Patrice Roy, Gordon Brown: ​Exception

Handling in Parallel Algorithms. ​P0797R0
[2] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, Carter Edwards, Gordon

Brown, et al: ​A Unified Executors Proposal for C++.​ ​P0443R4
[3] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, Carter Edwards, Gordon

Brown, Michael Wong: ​Executors Design Document​ ​P0761R1
[4] Matti Rintala: ​Techniques for Implementing Concurrent Exceptions in C++​, Doctoral

dissertation, Tampere University of Technology Publication 1075, ISBN 978-952-15-2915-3,
Tampere University of Technology 2012 ​(PDF version)

[5] Jared Hoberock: ​Working Draft, Technical Specification for C++ Extensions for Parallelism
Version 2​. ​N4706

[6] Alisdair Meredith: ​Rebase the Parallelism TS onto the C++17 Standard. ​P0776R1
[7] Khronos OpenCL Working Group — SYCL subgroup: Khronos Group SYCL 1.2.1

Specification. ​(PDF version)
[8] Vicente Botet, JF Bastien. p0323r4 std::expected. ​(PDF version)
[9] Wong et al. Towards an Error Model for OpenMP.
https://link.springer.com/chapter/10.1007%2F978-3-642-13217-9_6

http://wg21.link/p0797r0
http://wg21.link/p0443r4
http://wg21.link/P0761R1
http://www.cs.tut.fi/~bitti/files/rintala-doctoral-thesis.pdf
http://wg21.link/N4706
http://wg21.link/P0776R1
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r4.html

