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1 Introduction  
This paper describes a mechanism for handling concurrent exceptions (EH) with executors. The 
mechanism should also work with the parallel algorithms in the C++ Standard Template Library 
(“parallel STL”). This paper’s first version ​P0797R0: Exception Handling in Parallel Algorithms [1]​, 
proposed a mechanism for handling exceptions specifically in parallel STL. Based on comments from 
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the Albuquerque meeting, this proposal has been significantly changed. It has evolved to target 
handling of multiple concurrent exceptions with the proposed executors [2] [3] and futures. Since 
executors are proposed to be used in parallel STL, this proposal solves the problem for parallel STL 
as well. We will discuss the mechanism for parallel STL later in this paper. 

2 Revision History 

2.1 2018-02-12 [P0797R1] JAX Meeting 
● This version is based on feedback comments from ABQ 
● Describes a future based concurrent EH handling that matches closely with executors 

and also handles parallel STL algorithm 
● ABQ meeting feedback handling: 

○  Cancelling parallel execution is a separate issue; while important, we will not 
discuss it here 

○  Exception reduction is considered beneficial 
○  We should leave the door open for non-exception disappointment mechanisms, 

but currently exceptions are the only "official" mechanism. So the safe way is to 
not specify other mechanisms (yet), but make sure they remain possible 

○  Executors are going forward, and are based on futures, so preferably that's 
where exception handling should also be. Since parallel STL will be based on 
executors in the future, integrating parallel exception handling with executors will 
help solving the problem in parallel STL as well. 

○  The case of avoiding dynamic memory allocation during disappointment 
handling is not attacked directly by this idea, but the door is left open for 
situations where that is problematic. 

2.2 2017-10-15 [P0797R0] ABQ Meeting 
● Initial version 
● Describes a proposal for a greedy but limited memory scope EH handling mechanism 

3 The problem 
 

In concurrent execution it is possible for several parallel executions to throw exceptions 
asynchronously. If more than one of these exceptions end up in the same thread of execution, the 
situation is problematic, since C++ allows only one exception to propagate at any time. 

This paper concentrates on handling multiple exceptions arising from parallel executions created 
using executors. Twoway executors return a future which will become ready when all concurrently 
initiated executions have finished (either normally or by throwing an exception). Oneway executors 
have no way to synchronize with the end-results of the executions. The possibility for multiple 
exceptions has to be dealt with, since only one exception can be stored in the future returned from 
the executor. Multiple exception handling in other contexts (like exceptions from arbitrary 



asynchronous executions) may be more complex, and is beyond the scope of this paper.  (For a 
more general discussion of multiple exception handling, see [4].) 

If some executions result in exceptions, it is possible that some other executions may not yet 
have started. Executors do not guarantee how much parallelism they use, so it may be 
nondeterministic how many executions are actually initiated in parallel simultaneously. This applies 
both to successful executions, and to executions ending in exceptions. The number of exceptions 
that may arise concurrently is unknown in advance, and may depend also on how much parallelism 
the executor uses. A single modern CPU may support hundreds of parallel executions in hardware. 
This makes memory management for an unknown number of exception objects at least somewhat 
problematic. Dynamic memory allocation during exception handling is risky, especially with so many 
possible exception objects. 

The nondeterminism in the amount of parallelism used raises additional problems. On one hand, 
it would be useful to stop invoking new executions as early as possible to avoid wasting time and 
CPU resources. On the other hand, if some possible exceptions are an indication of a more severe 
problem than others, it would be useful to select the one exception that best represents the situation. 
However, this would require executing all the requested executions as far as possible, because 
otherwise all possible exceptions are not detected. 

The possibility of multiple exceptions arising from a single parallel bulk execution is problematic 
for the return value as well. A future can only contain one exception, so either a single most 
representative exception should be stored in the future, or an exception containing all received 
exceptions should be stored, so that the user can later analyze all the exceptions. A combination of 
these two might also be convenient. The mechanism proposed in this paper accounts for all these 
variations. 

In some environments, exceptions might not be a suitable disappointment handling/signalling 
mechanisms for various reasons. (For example, exception handling may incur unacceptable 
performance penalties. It may be technically challenging on some hardware, such as GPUs.) This 
paper also briefly discusses how other disappointment mechanisms might be used together with 
executors for concurrent disappointment handling. 

 

4 The State of the Art 
 

The design of the current executors proposal is laid out in Executors Design Document [3], and A 
Unified Executors Proposal for C++ [2]. 

The current executor proposal [2] ​does not require handling for concurrent exceptions from the 
execution(s) of the user function, only exceptions thrown from the execution function​. Both single and 
bulk oneway executors are defined “not [to] propagate any exception thrown by [the execution]” 
(1.1.6). On the other hand, “[t]he treatment of exceptions thrown by oneway submitted functions is 
specific to the concrete executor type” (1.1.6). This is logical, since oneway executors do not return a 
future through which an exception could be propagated, and their implementation does not 
necessarily have any return channel for users to get information back from the execution. 

For both twoway and "then" versions of single executors, [2] specifies that the executor “stores 
the result ... or any exception thrown by [the execution], in the associated shared state of the 
resulting Future” (1.1.7, 1.1.8). Again, this is logical, since there is only one created concurrent 
execution, and thus one possible exception that could be propagated out of the execution. 



Twoway bulk executors (and "then" executors) are a more interesting case, as they may end up 
with multiple concurrent exceptions. For them, [2] says that “once all invocations … finish execution, 
[the executor] stores r [(the result object)], or any exception thrown by an invocation ..., in the 
associated shared state of the resulting Future" (1.1.10, 1.1.11). The proposal does not define what 
“any exception” means, but presumably it means an arbitrary single exception chosen from the 
encountered exceptions. 

For static_thread_pool executors, [2] specifically defines that “if the submitted function ... exits 
via an exception, the static_thread_pool calls std::terminate()” (1.7.3.3) 

The choice to call std::terminate() when encountering exceptions in a concurrent context is used 
elsewhere in C++ as well. If an exception attempts to escape an execution inside a std::thread, 
terminate() is called. And of course, in a sequential context, terminate() is called if a destructor 
throws an exception during stack unwinding (causing multiple simultaneous exceptions). When 
concurrency is achieved through std::async(), resulting exceptions are embedded in the future 
returned from the async() call. This does not cause terminate() to be called in any situation, but 
exceptions may end up being ignored if the future is destroyed without its wait() having been called. 

Having multiple exceptions in one place causes a need to somehow store them together for 
analysis (and possibly propagation inside a single exception). Current C++ provides no such 
mechanisms. std::nested_exception allows a single exception to be embedded inside another 
exception, but that is not suitable for multiple exceptions.  This is because nested_exception only 
allows rethrowing the nested exception, not analyzing its type. 

On the other hand, the current Parallelism TS 2 draft [5] contains exception_list (6.2), which can 
be used for storing (and throwing) multiple exceptions. That type is used to report exceptions from a 
task_block (8.5). Additionally, [6] says that “exception_list is underspecified” (2.2) and that some of 
its features are still under consideration. 

4.1 Behavior of other parallel programming models 
In OpenMP with its fork-join architecture, the rule is that if an exception escapes a parallel region, the 
OpenMP system will terminate and forgo unwinding. Exceptions may be caught and even rethrown 
within the parallel region, as they do not escape the parallel region. OpenMP since Version 4 also 
has various cancellation points (usually blocking locations such as I/O as well as a new cancellation 
directive) where in-progress exceptions may be checked (though there is no guarantee), so as to 
enable notification of other threads to begin termination [9]. 

Khronos’s SYCL standard is a modern C++ programming model based on OpenCL, suitable for 
heterogenous dispatch, and follows the C++11/14/17/20 progression [7]. Codeplay’s implementation 
of the SYCL language, called ComputeCpp, implements the original exception system of the 
Parallelism TS (providing a​n iterable exception_list of std::exception_ptr objects). OpenCL itself does 
not have an exception mechanism being based on C99 (although it has a callback on error 
mechanism), which means SYCL does not handle exceptions from the execution itself, however it 
does handle concurrent exceptions thrown from the asynchronous SYCL runtime. SYCL handles 
these by collecting them in an exception_list and then propagating them to a user provided function 
for handling or reduction.  

HPX is similar to SYCL but aimed at distributed computing while following closely ISO C++ 
progression. It implements both the exception_list concept, but also a future based exception 
mechanism.  

HSA is also investigating an EH mechanism as it is a layer that enables a number of high-level 
language implementations including C++ and OpenMP. HSA EH does not use a final snapshot of all 



the exceptions generated, but uses a greedy model that releases exceptions as soon as they are 
generated.  

5 Proposed Solution and discussion 
This paper proposes a set of new exception handling properties for the executors property 
mechanism [2]: ​no_exceptions​, ​single_exception​, ​single_exception_reduction​, and 
multiple_exceptions​. These properties control how an executor will handle concurrent exceptions, 
and executors can choose to support only those properties they can implement. Alike many of the 
other properties in the executors proposal, the properties described above are mutually exclusive 
with regards to each other, meaning an executor can only satisfy one at any given time. 

Other executor properties also affect how exception handling properties behave. Important other 
properties are ​directionality (oneway, twoway, then), ​and ​cardinality (single, bulk)​. Other properties 
(​blocking, continuations, future task submission, forward progress guarantees, thread mapping, ​and 
memory allocation​) seem (at least for now) to be independent of exception handling properties. For 
the purposes of exception handling, ​twoway​ and ​then​ properties behave equivalently, so if only 
twoway​ is mentioned below, it also includes ​then​. 

From now on in this paper, executor properties are written in ​italics​ to make the text clearer. 

5.1 Exception Properties 
The ​no_exceptions​ property is the most straightforward. Executors with the ​no_exception​ property do 
not support propagating exceptions to the user. (If exceptions are thrown from invoked executions, 
no_exception​ executors may either call std::terminate, or react to exceptions in a manner specific to 
the concrete executor type.) Oneway executors might typically only support the ​no_exceptions 
property, if they have no back channel to report exceptions to the user. The ​no_exceptions​ property 
would also suit executors for which it is difficult or too expensive to support exception handling, such 
as GPU-based executors. Other executors may also support this property, allowing optimizations in 
cases where users know exceptions will not occur. 

The ​multiple_exceptions​ property lets the executor propagate out multiple exceptions. The ​bulk 
executor does this by populating a std::exception_list object with encountered exceptions, and 
embedding this exception_list into the resulting future as an exception. This makes it impossible to 
catch any of those exceptions by their type, since the type of the exception in the future is just 
std::exception_list. Only ​twoway​ and ​then​ executors may support the ​multiple_exceptions​ property, 
since only those executors provide result futures. 



 
The ​single_exception​ property lets executors propagate out at most one exception. For ​single 

executors this property is natural, since they only invoke a single concurrent execution, potentially 
resulting in a single exception. ​Single​ executors implement this property simply by embedding the 
resulting exception in the result future, just as the current executors proposal specifies. Similarly to 
multiple_exceptions,​ only ​twoway​ and ​then​ executors may support the ​single_exception​ property. 

 
If users want at most a single exception from ​bulk​ executors, the resulting potentially multiple 

exceptions must be reduced to a single exception. The ​single_exception_reduction​ property achieves 
this. Users give a ​reduction function​ to the ​single_exception_reduction​ property as a parameter 
(similarly to custom allocators with the memory allocation property in the current executor proposal). 
The reduction function is a Callable that takes an std::exception_list as a parameter, selects or 
creates a suitable single exception that represents the situation however it sees fit, and returns the 
single exception as an std::exception_ptr. That resulting exception is then embedded in the 
executor's result future. 

If users wish to keep the entire original exception list, they may provide a reduction function that 
uses std::nested_exception to embed the exception_list into the selected single exception. 



 
To keep the exception properties as orthogonal to other properties as possible, it is possible to 

use the ​multiple_exceptions​ property with ​single​ executors as well (even if only one exception can 
result from a single execution). In this case, a std::exception_list with a single embedded exception is 
embedded in the result future. 

 
Finally, again for orthogonality, it is possible to use the ​single_exception_reduction​ property with 

single​ executors as well (even though there's only one potential exception, and thus no need for 



reduction). In this case the only exception is stored in a std::exception_list, passed to the provided 
reduction function, and the resulting exception is embedded in the result future. 

 
Summary of constraints on which properties can go with what executors: 

● Users may require the ​no_exceptions, single_exception_reduction​, and 
multiple_exceptions​ properties from any ​twoway​ or ​then​ executor without having to know 
whether the executor is a ​single​ or ​bulk​ executor. 

● Users may only associate the ​single_exception​ property with ​single​ executors, since with 
bulk​ executors a reduction function is needed to reduce multiple exceptions into one. 

● Oneway​ executors only support the ​no_exceptions​ property. 
 
We propose that the default exception handling property for both ​single​ and ​bulk​ ​oneway 

executors is ​no_exceptions​. For ​single​ ​twoway​ executors it is ​single_exception​. For ​bulk twoway 
executors, the default is ​multiple_exceptions​. 

The table below summarizes how exception handling properties tie together with combinations 
of other properties (✔ = combination is supported, (✔) = combination is supported but not typical, 
Ü= combination is normally not supported): 

 

 no_exception
s 

multiple_exception
s 

single_exceptio
n 

single_exception
_reduction 

single, oneway ✔ Ü Ü Ü 

bulk, oneway ✔ Ü Ü Ü 

single, twoway/then ✔ (✔) ✔ (✔) 

bulk, twoway/then ✔ ✔ Ü ✔ 



 
Below is a code example showing how the proposed exception handling could be used: 
 
// User-provided reduction function 

std::exception_ptr my_reduction(std::exception_list l); 

 

template<class Executor> 

void do_parallel(Executor const& ex) 

{ 

// ...create task, shape, and parameter and result factories 

auto result_fut = 

execution::require(ex, execution::bulk, execution::twoway, 

 execution::single_exception_reduction(my_reduction) 

 ).bulk_twoway_execute(task, shape, result_fact, 

    param_fact); 

try { result_fut.wait(); } 

catch (my_exception const& e) { ... } 

// ... 

} 

 

// Use multiple_exceptions to get a list of exceptions 

template<class Executor> 

void parallel_stl(Executor const& ex, std::vector<int>& vec) 

{ 

auto ex2 = execution::require(ex, execution::multiple_exceptions); 

try 

{ 

sort(std::execution::par.on(ex2), 

  vec.begin(), vec.end(), &comparison_that_throws); 

 for_each(std::execution::par.on(ex2), 

vec.begin(), vec.end(), 

   [](auto e){ if (...) throw ...; }); 

} 

catch (std::exception_list const& e) 

{ 

   // Iterate list to react to exceptions 

} 

} 

5.2 Exception Reduction 
In this proposal, exception reduction is proposed to be performed with a user-provided function, 
which takes an exception_list containing all encountered exceptions as its parameter, and returns an 
exception_ptr pointing to the exception, which should be propagated to the user. This section briefly 
discusses some topics related to exception reduction. For a more thorough discussion, see [1] 
(sections 5.5 - 5.7). 



The idea of exception reduction is to come up with a single exception that best represents the 
total "exceptional" situation that manifests as a set of concurrent exceptions. It is quite likely that 
there is no single strategy for this that would apply to all use cases. For example, in some cases 
exception reduction may be as simple as ranking the exception types and choosing the exception 
with the highest rank. In other cases, it might be that the "importance" of an exception depends also 
on how many exceptions of that type have been received. And it is of course also possible that the 
"most representative" exception is not among the exceptions in the list, but rather would be a 
completely new exception created by the reduction function. Finally, even if simple ranking is enough 
to choose the outcome of reduction, it could still be necessary to collect and combine information 
from all exceptions of the highest rank to embed that information in the resulting exception. [1] 
contains two concrete example uses cases for exception reduction (sections 6.2 and 6.3). 

One further reduction strategy is to find the most derived common base class for all the 
exceptions, and replace the set of exceptions with a single exception object of that type. This kind of 
reduction can be convenient as it provides a general way of reducing an arbitrary set of exceptions. 
On the other hand, this kind of reduction loses information about the types of individual exceptions. It 
does not allow certain exception types to have a higher precedence than others. If a fatal exception 
and a minor exception are reduced, the result is their common base class, which abstracts the types 
of individual exceptions away. Catching this base class exception object does not reveal whether a 
fatal exception has occurred. Further discussion on this strategy can also be found in [1] (section 
5.7). 

In this proposal, it is expected that reduction functions are called only once for each set of 
executions, after all encountered exceptions have been collected into an exception_list. This strategy 
makes sure that reduction functions have all the information for performing analysis on exceptions. 
However, another option would be to allow intermediate partial reductions to be performed on 
subsets of exceptions, and final reduction to be based on the results of these intermediate 
reductions, allowing parallel reduction. These alternatives are discussed further in Alternatives 
considered, and it is a topic for future discussion. 

5.3 Effect on parallel STL 
C++17 added parallel versions of most STL algorithms, where the given execution policy determines 
how the algorithm is allowed to parallelize its operation. Currently any exception from a parallel STL 
algorithm causes std::terminate() to be called. 

The sequential STL algorithms allow exceptions to be used to signal failure (disappointment) to 
complete the algorithm. These exceptions may be thrown from iterator operations, invoked operators 
(like assignment, comparison, etc.), or from functions provided by the programmer (predicates, etc.). 
In sequential STL throwing an exception is the only way to abandon the execution of the algorithm (in 
addition to successful completion). 

If parallel STL algorithm execution policies are based on executors, then the exception handling 
properties proposed in this paper can be used to control exceptions resulting from parallel STL 
algorithms as well. Using the properties the user can specify whether there can be any exceptions at 
all, and whether to receive a single exception (through reduction) or multiple exceptions (in an 
exception_list). Similarly the parallel STL algorithms can use the exception properties to adapt their 
behaviour (for example, to use ​oneway​ executors if ​no_exceptions​ property is associated with the 
provided executor). 

A note concerning the use of exception_list for multiple exceptions in parallel STL: The original 
Parallelism TS allowed for an exception_list of exception_ptr, effectively a vector of exception_ptrs. 



This was shown to be problematic in P0394 for both the consumer who would have trouble 
disambiguating useful information, and from the producer in implementing such a complex system. It 
was discovered that of all the parallel STL implementations, only Codeplay’s SYCL had in fact 
implemented the original exception system. At the SG1 meeting in Oulu, the group decided  that 
lacking a better replacement, it would be best to simply reduce it to terminate with no unwinding. A 
further amendment also binded the exception to the execution policy, instead of binding to the 
algorithm. This was deemed to enable future exception policy systems. Other methods were 
discussed, including having dual parallel algorithms (ones that throw exceptions, and a nothrow 
version) but that was deemed by many to be unacceptable. As a result, in current ratified C++17 any 
exception in parallel STL algorithms causes std::terminate() to be called. This was regarded as a 
"safe strict choice" when there was no time to come up with a better solution. However with the 
introduction of executors it’s now possible to provide a safe default whilst also providing other options 
for users who chose it. 

5.4 Use of other disappointment mechanisms 
Since it is possible that all platforms cannot easily support exception handling (or exception handling 
causes too much overhead), there are proposals for other "disappointment" handling mechanisms 
(std::expected<>, etc.) [8]. Even though this paper concentrates on handling of concurrent 
exceptions, possibility of using other disappointment mechanisms is discussed briefly. 

If exception handling is not supported by the executor, the executor can signal this by only 
supporting the ​no_exceptions​ property. For ​oneway​ executors, signalling disappointment is not an 
issue since there's no back channel for the results of execution. 

For ​twoway​ and ​then​ versions of ​single​ ​no_exceptions ​executors it is possible to use the result 
future to store a return type supporting disappointments (like std::expected<>) to pass information 
about the single potential disappointment back to the user. The user can do this by specifying an 
appropriate return type, so no special support in the executors is needed. 

Twoway​ and ​then​ versions of ​bulk​ executors use a shared result object (created from the 
user-provided result factory) to collect results of the multiple executions, and this result object is 
embedded in the result future. Again, since the result object is provided by the user, other 
disappointment mechanisms can be used by storing the disappointments in the result object. Again, 
no support from the executors is needed, since the user controls the functions executed in parallel as 
well as the result object. 

6 Alternatives considered 
All exception handling properties in this paper (​no_exceptions, single_exception, 
single_exception_reduction, ​and​ multiple_exceptions​) are different approaches to handling multiple 
encountered exceptions. Alternatively, it would be possible to have just one exception handling 
property, which is always given a reduction function, and let the chosen reduction function to decide 
how to react to multiple exceptions. I.e., for ​no_exceptions, ​reduction function could call 
std::terminate(). For ​multiple_exceptions, ​it would return the exception_list. For ​single_exception​ it 
would pick the only exception in the exception list and return it (and the ​single_exception_reduction 
case already uses a reduction function). This proposal uses four separate exception handling 
properties, because this allows executors to support only some subset of exception handling 
properties. Additionally, and executor can be queried for its exception handling property, and 
decisions can be made based on that information. These would become impossible or at least much 



more complicated, if there was only one exception handling property. Also multiple properties allow 
an implementation to provide different executor types, which are optimized or specialized for a 
particular exception handling property. 

This proposal uses the proposed std::exception_list to collect encountered exceptions and to 
pass them to reduction functions. In the case of the ​multiple_exceptions​ property, an exception_list is 
also embedded in the result future. As mentioned in [6] (section 2.2), the current interface on 
exception_list is quite limited, and probably not suitable for general exception reduction (especially 
since the result of exception reduction might in some cases still be an exception_list, so users should 
be able to create exceptions_lists and fill them with exceptions). Further analysis is needed for the 
set of ideal operations in exception_list. If std::exception_list cannot provide necessary operations, a 
new exception container type would be needed for the mechanism proposed in this paper. 

Somewhat similarly to the exception_list problem, the std::exception_ptr type in the current 
standard is quite limited in functionality, and does not provide enough support for exception analysis 
needed in exception reduction. Currently, C++ does not provide any means for converting 
std::exception_ptr to a normal pointer pointing to the exception object (the only way is to re-throw the 
exception and catch it through a reference, which causes unacceptable overhead). There have been 
suggestions to add an exception_ptr_cast or similar to create ordinary pointers from 
std::exception_ptr (similar to dynamic_cast). This would allow reduction functions to iterate through 
encountered exceptions, query their types, access the actual exception objects, and base reduction 
on that information. If std::exception_ptr does not allow these operations, it would be necessary to 
store exceptions as a collection of std::exception*, which would limit exception support to types 
derived from std::exception. 

Canceling parallel executions (both not initiating remaining un-started executions and possibly 
interrupting already started in-progress executions) in case of disappointments is a separate issue 
and is not discussed in this paper. However, cancellation affects also encountered exceptions. On 
one hand, it is reasonable not to initiate new executions if the whole operation is already known to fail 
(because of already encountered exceptions). On the other hand, not initiating the remaining 
executions could hide exceptions that would have been considered more important than the ones 
already encountered. For this reason, it should be considered whether the user (and possibly the 
reduction function) should be notified if there were parallel executions that were not run to completion 
or not started at all. 

The proposal is currently based on the idea that exception reduction is performed once when all 
encountered exceptions have been collected. This allows exception reduction to use all available 
information to decide the result of reduction, and minimizes amount of nondeterminism in reduction. 
However, this also prevents intermediate (possibly parallel) partial reduction along the way, which 
could sometimes be useful. If partial reduction is allowed, in the extreme executors could perform 
intermediate reduction on just pairs of exceptions, making reduction into a user-provided comparison 
function choosing from two exceptions. This would allow maximum parallelism in reduction, but 
would limit information in each reduction step to two (arbitrary) exceptions. This would only work, if 
exceptions form a strict weak ordering so that the "most important" one can be determined by 
pairwise comparison. On the other hand, allowing intermediate reductions could have a positive 
effect on memory requirements, since all encountered exceptions wouldn't necessarily be 
propagated to a single place for reduction. There has been discussion back and forth on this issue, 
and it is one clear topic for future work. One possible solution could be to allow intermediate partial 
reduction, but add a boolean flag parameter telling reduction functions whether final or intermediate 
reduction is taking place. This would allow reduction functions to adapt their strategy accordingly (for 
example, intermediate reductions could mainly collect information for the final reduction). 



The current proposal doesn’t impose a limit to the number of concurrent exceptions which are 
handled and stored in the exception_list. However, concurrently dynamically allocating memory for 
exceptions can potentially be costly, or even not possible in the case of many GPUs. For these cases 
it’s desirable to specify a fixed limit on the number of exceptions, or more specifically the memory 
available to store exceptions. One approach to this would be to allow the exception_list to be 
constructible using a fixed size limit where it would preallocate memory for storing exceptions. Then 
have an execution policy, an executor property or an execution context property which allows users 
to specify a fixed size which is then used when constructing the exception_list. This raises the 
concern about how to handle an overflow of exceptions, i.e. what to do when the fixed size limit is 
reached. A way to handle this would be to simply drop any exceptions after the limit has been 
reached and perhaps increment an atomic counter recording the number of exceptions which were 
dropped. Another option could be to have memory reserved in the exception_list for an exception 
which encapsulates the number of exceptions which were dropped. 

7 Future Directions 
Further study is needed to improve the interface of std::exception_ptr and the proposed 
std::exception_list so that they provide enough functionality for exception reduction. 

More study is also needed to determine how executor exception handling and cancellation of 
executions can best be combined, so that unnecessary overhead is avoided, but the user is informed 
about potentially hidden exceptions. 

This current paper presents certain combinations of the cardinality and directionality executor 
properties (​oneway​, ​twoway​, ​single​, ​bulk​) and the exception handling properties (​no_exceptions​, 
single_exception​, ​single_exception_reduction​, ​multiple_exceptions​) as supported or not supported. 
As the exact nature of how properties interoperate with each other and how the side effects of one 
property on another is reflected in the design of executors is still to be decided, this concept of 
supported or not supported is mainly theoretical to represent the valid combinations. How this is 
reflected in the executors interface shall follow the design of the executors proposal. 

Finally future work is needed for deciding whether to allow partial intermediate reductions or 
require the reduction function to be called only once for each set of executions. 

 

8 Straw polls 
From this paper we aim to identify out of all the challenges presented here what is considered 

most important, and what is most desirable approach: 
● Is it reasonable to hope for additional support in std::exception_ptr, so that it could be 

used in exception reduction? 
● Is it enough to perform exception reduction only after all encountered exceptions have 

been collected, or should there be a way to signal that parallel partial reduction is also 
allowed? 

● How important is it to have the option for both a dynamic and fixed size exception_list. 
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