
Document number: P0650R2

Date: 2018-02-11

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet Escribá <vicente.botet@nokia.com>

Abstract

This paper proposes to add the following type of classes with the associated customization points and some algorithms that work
well with them.

Functor,
Applicative
Monad
Monad-Error

This paper concentrates on the basic operations. More will come later if the committee accept the design (See Future Work
section).

History
Introduction
Motivation and Scope
Proposal
Design Rationale
Proposed Wording
Implementability
Open points
Future work
Acknowledgements
References

Remove smart pointer as types modeling Functor, Monad,... as pointers don't preserve value.
TODO More on Applicatives
TODO More on monad::compose

C++ Monadic interface

Table of Contents

History

Revision 2

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#history
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#motivation-and-scope
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#future-work
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/monads/d0650r2.md#references

This is a minor revision

Adapt to new std::unexpected interface as for P0323R3.
Get rid of xxx::tag to detect the concept.

Creation in response to request of the committee to split the expected proposal P0323R0 into a expected class P0323R0 and a
monadic interface (this document).

Most of you know Functor, Applicative, Monad and MonadError from functional programming. The underlying types of the types
modeling Functor, Applicative, Monad and MonadError are homogeneous, that is, the functions have a single type.

In the following notation [T] stands for a type wrapping instances of a type T , possibly zero or N instances. (T -> U)

stands for a function taking a T as parameter and returning a U .

Next follows the signatures proposed by this paper.

functor::transform : [T] x (T->U) -> [U]
functor::map : (T->U) x [T] -> [U]

applicative::ap : [T] x [(T->U)] -> [U]
applicative::pure<A> : T -> [T]

monad::unit<A> : T -> [T]
monad::bind : [T] x (T->[U]) -> [U] //mbind
monad::unwrap : [[T]] -> [T] // unwrap
monad::compose : (B->[C]) x (A->[B])-> (A->[C])

monad_error::make_error<M>: E -> error_type_t<M,E>
monad_error::catch_error: [T] x (E->T) -> [T] where E = error_type_t<[T]>
monad_error::catch_error: [T] x (E->[T]) -> [T]

Adapted from P0323R0 taking in account the proposed non-member interface.

This example shows how to define a safe divide operation checking for divide-by-zero conditions. Using exceptions, we might write
something like this:

Revision 1

Revision 0

Introduction

Motivation and Scope

From Expected proposals

Safe division

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0323r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0323r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0323r0.pdf

struct DivideByZero: public std::exception {...};
double safe_divide(double i, double j)
{
 if (j==0) throw DivideByZero();
 else return i / j;
}

With expected<T,E> , we are not required to use exceptions, we can use std::error_condition which is easier to
introspect than std::exception_ptr if we want to use the error. For the purpose of this example, we use the following
enumeration (the boilerplate code concerning std::error_condition is not shown):

enum class arithmetic_errc
{
 divide_by_zero, // 9/0 == ?
 not_integer_division // 5/2 == 2.5 (which is not an integer)
};

Using expected<double, error_condition> , the code becomes:

expected<double, error_condition> safe_divide(double i, double j)
{
 if (j==0) return unexpected(arithmetic_errc::divide_by_zero); // (1)
 else return i / j; // (2)
}

(1) The implicit conversion from unexpected<E> to expected<T,E> and (2) from T to expected<T,E> prevents
using too much boilerplate code. The advantages are that we have a clean way to fail without using the exception machinery, and
we can give precise information about why it failed as well. The liability is that this function is going to be tedious to use. For
instance, the exception-based

function i + j/k is:
double f1(double i, double j, double k)
{
 return i + safe_divide(j,k);
}

but becomes using expected<double, error_condition> :

expected<double, error_condition> f1(double i, double j, double k)
{
 auto q = safe_divide(j, k)
 if (q) return i + *q;
 else return q;
}

This example clearly doesn’t respect the “clean code” characteristic and the readability doesn’t differ much from the “C return
code”. Hopefully, we can see expected<T,E> through functional glasses as a monad. The code is cleaner using the function
functor::transform . This way, the error handling is not explicitly mentioned but we still know, thanks to the call to
transform , that something is going underneath and thus it is not as silent as exception.

expected<double, error_condition> f1(double i, double j, double k)
{
 return functor::transform(safe_divide(j, k), [&](double q) {
 return i + q;
 });
}

The transform function calls the callable provided if expected contains a value, otherwise it forwards the error to the
callee. Using lambda function might clutter the code, so here the same example using functor:

expected<double, error_condition> f1(double i, double j, double k)
{
 return functor::transform(safe_divide(j, k), bind(plus, i, _1));
}

We can use expected<T, E> to represent different error conditions. For instance, with integer division, we might want to fail if
the two numbers are not evenly divisible as well as checking for division by zero. We can overload our safe_divide function
accordingly:

expected<int, error_condition> safe_divide(int i, int j)
{
 if (j == 0) return unexpected(arithmetic_errc::divide_by_zero);
 if (i%j != 0) return unexpected(arithmetic_errc::not_integer_division);
 else return i / j;
}

Now we have a division function for integers that possibly fail in two ways. We continue with the exception oriented

//function i/k + j/k:
int f2(int i, int j, int k)
{
 return safe_divide(i,k) + safe_divide(j,k);
}

Now let’s write this code using an expected<T,E> type and the functional transform already used previously.

expected<int,error_condition> f(int i, int j, int k)
{
 return monad::bind(safe_divide(i, k), [=](int q1) {
 return functor::transform(safe_divide(j,k), [=](int q2) {
 return q1+q2;
 });
 });
}

The compiler will gently say he can convert an expected<expected<int, error_condition>, error_condition> to
expected<int, error_condition> . This is because the function functor::transform wraps the result in
expected and since we use twice the map member it wraps it twice. The function monad::bind (do not confound with
std::bind) wraps the result of the continuation only if it is not already wrapped. The correct version is as follow:

expected<int, error_condition> f(int i, int j, int k)
{
 return monad::bind(safe_divide(i, k), [=](int q1) {
 return monad::bind(safe_divide(j,k), [=](int q2) {
 return q1+q2;
 });
 });
}

The error-handling code has completely disappeared but the lambda functions are a new source of noise, and this is even more
important with n expected variables. Propositions for a better monadic experience are discussed in section [Do-Notation],
the subject is left open and is considered out of scope of this proposal.

The major advantage of expected<T,E> over optional<T> is the ability to transport an error, but we didn’t come yet to an
example that retrieve the error. First of all, we should wonder what a programmer do when a function call returns an error:

1. Ignore it.
2. Delegate the responsibility of error handling to higher layer.
3. Trying to resolve the error.

Because the first behavior might lead to buggy application, we won’t consider it in a first time. The handling is dependent of the
underlying error type, we consider the exception_ptr and the error_condition types.

We spoke about how to use the value contained in the expected but didn’t discuss yet the error usage.

A first imperative way to use our error is to simply extract it from the expected using the error() member function. The
following example shows a divide2 function that return 0 if the error is divide_by_zero :

expected<int, error_condition> divide2(int i, int j)
{
 auto e = safe_divide(i,j);
 if (!e && e.error().value() == arithmetic_errc::divide_by_zero) {
 return 0;
 }
 return e;
}

This imperative way is not entirely satisfactory since it suffers from the same disadvantages than value() .

Again, a functional view leads to a better solution. The catch_error member calls the continuation passed as argument if the
expected is erroneous.

Error retrieval and correction

expected<int, error_condition> divide3(int i, int j)
{
 auto e = safe_divide(i,j);
 return monad_error::catch_error(e, [](const error_condition& e){
 if(e.value() == arithmetic_errc::divide_by_zero)
 {
 return 0;
 }
 return unexpected(e);
 });
}

An advantage of this version is to be coherent with the monad::bind and functor::map functions. It also provides a more
uniform way to analyze error and recover from some of these. Finally, it encourages the user to code its own “error-resolver”
function and leads to a code with distinct treatment layers.

This paper proposes to add the following type of classes with the associated customization points and the algorithms that work well
with them.

Functor,
Applicative
Monad
Monad-Error

These are the basic operations. More will come later if the committee adopt the design (See Future Work section).

Most of the design problems for this library are related to the names, signatures and how this type of classes are customized. See
CUSTOM for a description of an alternative approach to customization points. This proposal is based on this alternative approach,
but it could be adapted to other approaches once we decide which is the mechanism we want to use.

The signature of the more C++ transform function is different from the usual Functor map function.

transform : [T] x (T->U) -> [U]
map : (T->U) x [T] -> [U]

transform has the advantage to be closer to the STL signature.

The advantage of the map is that it can be extended to a variadic number of Functors.

map : (T1x...xTn->U) x [T1] x ... x [Tn]-> [U]

Proposal

Design Rationale

Functor

functor::transform versus functor::map

https://github.com/viboes/std-make/blob/master/doc/proposal/customization/customization_points.md

Both seem to be useful, and so we propose both in this paper.

TODO Add some motivation and rationale for ap .

We don't define an additional applicative::pure function as we have already type_constructuble::make P0338R2.

We don't define an additional monad::unit function as we have already type_constructuble::make P0338R2.

C++ has the advantage to be able to overload on the parameters of the signature.

bind can be overloaded with functions that return a Monad or functions that return the ValueType as it proposed for
std::experimental::future::then .

The authors don't see any inconvenient in this overload, but would prefer to have an additional function that supports this ability, so
that we know that chain will only work with functions that return a Monad.

Note that the user could use transform and bind to get this overload.

The bind function accepts functions that take the ValueType as parameter. std::experimental::future::then

function parameter takes a future<T> .

This is an alternative way to define a Monad.

We define it in function of monad::bind and define monad::bind in function of monad::unwrap .

This is the composition of monadic functions.

These concepts have some functions that cannot be customized using overload (ADL), as the dispatching type is not a function

Applicative

applicative::ap

applicative::pure

Monad

monad::unit

monad::bind

monad::bind function parameter parameter

monad::unwrap

monad::compose

Customization

ADL versus traits

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf

parameters,e.g. pure<TC>(C) or make_error<TC>(E) .

We have also some customization points that are types, as error_type<T>::type

The authors prefer to have a single customization mechanism, and traits is the one that allows to do everything.

Boost.Hana uses a similar mechanism.

See CUSTOM where we describe the advantages and liabilities of each approach.

Boost.Hana has chosen to customize each operation individually. The approach of this proposal is closer to how other languages
have addressed the problem, that is, customize all operations at once.

There are advantages and liabilities to both approaches. See CUSTOM where we describe the advantages and liabilities of each
approach.

Some type of classes can be customized using different customization points. E.g. Monad can be customized by either defining
bind or unwrap . The other customization points being defined in function of others.

This proposal uses an emulation to what Haskel calls minimal complete definition, that is a struct that defines some operations
given the user has customized the minimal ones.

There is a tradition in functional languages as Haskell with names that could be not the more appropriated for C++.

We have already a clear meaning of map in the standard library, the associative ordered container std::map ? The proposed
functor::map function is in scope std::experimental::functor::map so there is no possible confusion. Haskell

uses fmap instead of functor::map as it has no namespaces, but we have them in C++. Boost.Hana doesn't provides it.

Haskell uses pure as factory of an applicative functor. The standard library uses make_ for factories. In addition we have
already the proposed type_constructible::make P0338R2 that plays the same role.

Boost.Hana uses lift . However Boost.Hana provides also a Core make facility not associated to any concept.

We have already a clear meaning of bind in the standard library function std::bind , which could be deprecated in a future
as we have now lambda expressions. The proposed bind (Haskell uses mbind) is in scope
std::experimental::monad::bind so there is no possible confusion. Boost.Hana uses chain instead. Boost.Hana

All at once or one by one

Allow alternative way to customize a type of classes

About names

functor::map alternatives

applicative::pure versus type_constructible::make

applicative::ap versus applicative::apply

monad::unit versus type_constructible::make

monad::bind versus monad::chain

http://boostorg.github.io/hana/index.html
https://github.com/viboes/std-make/blob/master/doc/proposal/customization/customization_points.md
http://boostorg.github.io/hana/index.html
https://github.com/viboes/std-make/blob/master/doc/proposal/customization/customization_points.md
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf
http://boostorg.github.io/hana/index.html
http://boostorg.github.io/hana/index.html
http://boostorg.github.io/hana/index.html

locates all the function isn namespace boost::hana .

We could define bind in function of a possibly then function (or whatever is the appropriated name) when the type provides
access to the ValueType as it is the case for std::future and all the ValueOrError types P0786R0. However the authors
don't know how to do it in the general case.

[THEN] original proposal had a future::unwrap function that unwraps a wrapped future . Haskell uses join .
Boost.Hana uses flatten .

Haskell uses throw_error as factory for monaderror errors. If we choose make to wrap a value, it seems coherent to use
make_error instead of throwerror as C++ has exceptions. We are not throwing an error but building it.We have the proposed
type_constructible::make P0338R2 that plays the same role.

Given that C++ has not the possibility to add new operators with a specific precedence and associativity, it is difficult to reuse one
of the current operators to make the map or bind operations more friendly. We need a left associative operator. Some have tried
with operator|() for functor::map and operator>= for monad::bind . However these operator have no the
precedence we would need and the user would need to use parenthesis more often than expected.

The authors consider this is good for playing with the concepts, but are not good for the C++ standard.

Haskell is a functional language where everything is an expression. It has a specific syntax sugar for the monadic bind operation. It
is the do-notation, which makes the Haskell language to look more like an imperative language.

We have already the operator co_await in the Coroutine TS. While this works well for a lot of Monads, it doesn't works well
for Monads representing non-determinism.

There is another ongoing proposal for operator try applicable to ValueOrError types, but this doesn't covers all the Monads
neither.

We could have a proposal to include some kind of do-notation that is more adapted to the C++ language, or adapt the
operator co_await to take care of non-determinism. The authors don't know how to do it yet.

This paper is based on an alternative customization approach CUSTOM. While this is not an imperative this approach helps to
define such concepts.

Both Applicative and Monad have factory function applicative::pure and monad::unit . We have already such a
factory function isolated in the TypeConstructible concept via type_constructible::make .

monad::unwrap versus monad::flatten versus monad::join

monad_error::throw_error versus monad_error::make_error

Operators

operators namespace

Language based syntactic sugar

Customization

Factory functions

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0786r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf
https://github.com/viboes/std-make/blob/master/doc/proposal/customization/customization_points.md

We could define those specific factory functions by functions that forward to the factory::make function, but there is not too
much interest in duplicating such factories. We can just nest the factory namespace in applicative meaning that any
Applicative is a TypeConstructible.

These changes are entirely based on library extensions and do not require any language features beyond what is available in
C++17. There are however some classes in the standard that need to be customized.

This paper depends in some way on the helper classes proposed in P0343R1, as e.g. the place holder _t and the associated
specialization for the type constructors optional<_t> .

The proposed changes are expressed as edits to N4617 the Working Draft - C++ Extensions for Library Fundamentals V2.

Add a "Functor Types" section

A Functor is a type constructor that supports the transform function. A type constructor TC meets the requirements of
Functor if:

TC is a TypeConstructor
for any T EqualityComparable DefaultConstructible, and Destructible, invoke_t<TC,T> satisfies the requirements of
EqualityComparable DefaultConstructible, and Destructible,
the expressions shown in the table below are valid and have the indicated semantics, and
TC satisfies all the other requirements of this sub-clause.

In Table X below, t denotes an rvalue of type invoke<TC,T> , f denotes a rvalue of type F where F satisfies
Callable.

Expression Return Type Operational Semantics

invoke_t<TC, VT...> T

type_constructor_t<T> TC

functor::transform(t, f) invoke_t<TC,U> Applies `f` to the contents of `t` and wraps the result with the functor. Equivalent to
`functor::adjust_if(x, always(true), f)`

functor::adjust_if(t, p,
f)

invoke_t<TC,U> Applies `f` to the contents of `t` if the predicate `p` applied to the contents of `t` is
`true` or just the contents of `t`; then wraps the previous result with the functor.
Equivalent to `functor::transform(x, [&](auto x) { if pred(x) return f(x) else return x; })`.

Impact on the standard

Proposed Wording

Functor Types

Functor requirements

Header synopsis [functor.synop]

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0343r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf

namespace std {
namespace experimental {
inline namespace fundamentals_v3 {
namespace functor {

 // class traits
 template <class TC, class Enabler=void>
 struct traits {};

 template <class T, class F>
 `see below` transform(T&& x, F&& f);
 template <class T, class P, class F>
 `see below` adjust_if(T&& x, P&& p, F&& f);

 struct mcd_transform;
 struct mcd_adjust_if;

}

 template <class T>
 struct is_functor;
 template <class T>
 inline constexpr bool is_functor_v = is_functor<T>::value;
 template <class T>
 struct is_functor<const T> : is_functor<T> {};
 template <class T>
 struct is_functor<volatile T> : is_functor<T> {};
 template <class T>
 struct is_functor<const volatile T> : is_functor<T> {};
}
}
}

namespace functor {
 template <class T, class Enabler=void>
 struct traits {};
}

Remark The Enabler parameter is a way to allow conditional specializations.

namespace functor {
 template <class T, class F>
 auto transform(T&& x, F&& f)
}

Let TC be type_constructor<decay_t<T>>

Effects: forward the call to the traits<TC>::transform

Class Template traits [functor.traits]

Function Template transform [functor.transform]

Remark: The previous function shall not participate in overload resolution unless:

T has a type constructor TC that satisfies Functor,
F is a Callable taking as parameter the ValueType of T and result U ,

The result of transform is the rebinding of T with the result of the invocation of f with the value of x .

transform : [T] x T->U -> [U]

namespace functor {
 template <class T, class P, class F>
 auto adjust_if(T&& x, P&& p, F&& f);
}

Let TC be type_constructor<decay_t<T>>

Effects: forward the call to the traits<TC>::adjust_if

Remark: The previous function shall not participate in overload resolution unless:

T has a type constructor TC that satisfies Functor,
F is a Callable taking as parameter the ValueType of T and result U ,
P is a Predicate taking as parameter the ValueType of T ,

The result of adjust_if is the rebinding of T with the result of the invocation of f with the value of x .

adjust_if : [T] x T->bool x T->U -> [U]

namespace functor {
 struct mcd_transform
 {
 template <class T, class P, class F>
 auto adjust_if(T&& x, P&& p, F&& f);
 };
}

This minimal complete definition defines adjust_if in function of transform .

namespace functor {
 template <class T, class P, class F>
 auto mcd_transform::adjust_if(T&& x, P&& p, F&& f);
}

Equivalent to:

Function Template adjust_if [functor.adjust_if]

class mcd_transform [functor.mcd_transform]

class mcd_transform:: adjust_if [functor.mcdtransform.adjustif]

return functor::transform(x, [&](auto x) { if pred(x) return f(x) else return x; });

namespace functor {
 struct mcd_adjust_if
 {
 template <class T, class F>
 auto transform(T&& x, F&& f);
 };
}

This minimal complete definition define transform in function of adjust_if .

namespace functor {
 template <class T, class F>
 auto mcd_adjust_if::transform(T&& x, F&& f);
}

Equivalent to:

return functor::adjust_if(x, always(true), f);

where always(true) is a function object that return always true .

 template <class T>
 struct is_functor;

Add a "Applicative Types" section

A Applicative is a type constructor that supports the Functor requirements, the TypeConstructible requirements and supports the
ap function.

A type constructor TC meets the requirements of Applicative if:

TC is a Functor and TypeConstructible,
the expressions shown in the table below are valid and have the indicated semantics, and
TC satisfies all the other requirements of this sub-clause.

In Table X below, a denotes an rvalue of type invoke<TC,T> , f denotes a rvalue of type invoke<TC,T> where F

satisfies Callable.

class mcd_adjust_if [functor.mcdadjustif]

class mcd_adjust_if::transform [functor.mcdadjustif.transform]

Template class is_functor [functor.is_functor]

Applicative Functor Types

Applicative requirements

Expression Return Type Operational Semantics

invoke_t<TC, VT...> T

type_constructor_t<T> TC

applicative::ap(a, f) rebind_t<TC,U> Applies the contents of `f` to the contents of `a`.

namespace std {
namespace experimental {
inline namespace fundamentals_v3 {
namespace applicative {
 using namespace functor;

 // class traits
 template <class TC, class Enabler=void>
 struct traits {};

 template <class A, class F>
 `see below` ap(A&& x, F&& f);
}

 template <class T>
 struct is_applicative;
 template <class T>
 inline constexpr bool is_applicative_v = is_applicative<T>::value;
 template <class T>
 struct is_applicative<const T> : is_applicative<T> {};
 template <class T>
 struct is_applicative<volatile T> : is_applicative<T> {};
 template <class T>
 struct is_applicative<const volatile T> : is_applicative<T> {};
}
}
}

namespace functor {
 template <class T, class Enabler=void>
 struct traits {};
}

Remark The Enabler parameter is a way to allow conditional specializations.

namespace applicative {
 template <class A, class F>
 auto ap(A&& x, F&& f)
}

Header synopsis [functor.synop]

Class Template traits [functor.traits]

Function Template ap [applicative.ap]

Let TC be type_constructor<decay_t<A>>

Effects: forward the call to the traits<TC>::ap .

Remark: The previous function shall not participate in overload resolution unless:

A has a type constructor TC that satisfies Applicative,
F has a type constructor TC that satisfies Applicative,
value_type_t<F> is a Callable taking as parameter the ValueType of T and result U ,

The result of ap is the rebinding of T with the result of the invocation of the contents of f with the value of x .

ap : [T] x [T->U] -> [U]

 template <class T>
 struct is_applicative;

Add a "Monad Types" section

A Monad is a type constructor that in addition to supporting Applicative supports the bind function. A type constructor TC

meets the requirements of Monad if:

TC is an TypeConstructor
for any T EqualityComparable DefaultConstructible, and Destructible, invoke_t<TC,T> satisfies the requirements of
EqualityComparable DefaultConstructible, and Destructible,
the expressions shown in the table below are valid and have the indicated semantics, and
TC satisfies all the other requirements of this sub-clause.

In Table X below, m denotes an rvalue of type invoke<TC,T> , f denotes a Callable rvalue of type F . In Table X below,
m denotes an rvalue of type invoke<TC,T> , f denotes a rvalue of type F where F satisfies Callable(T)>.

Expression Return Type Operational Semantics

invoke_t<TC, VT...> T

type_constructor_t<T> TC

monad::bind(m, f) invoke_t<TC,U> Applies `f` to the contents of `m` if any.

monad::unwrap(nm) invoke_t<TC,T> Extract the contents of `nm` if any.

Template class is_applicative [applicative.is_applicative]

Monad Types

Monad requirements

Header synopsis [monad.synop]

namespace std {
namespace experimental {
inline namespace fundamentals_v3 {
namespace monad {
 using namespace applicative;

 // class traits
 template <class TC, class Enabler=void>
 struct traits {};

 template <class T, class F>
 `see below` bind(T&& x, F&& f);
 template <class T>
 `see below` unwrap(T&& x);

 struct mcd_bind;
 struct mcd_unwrap;

}

 template <class T>
 struct is_monad;
 template <class T>
 inline constexpr bool is_monad_v = is_monad <T>::value;
 template <class T>
 struct is_monad<const T> : is_monad<T> {};
 template <class T>
 struct is_monad<volatile T> : is_monad<T> {};
 template <class T>
 struct is_monad<const volatile T> : is_monad<T> {};
}
}
}

namespace monad {
 template <class T, class Enabler=void>
 struct traits {};
}

Remark The Enabler parameter is a way to allow conditional specializations.

namespace monad {
 template <class M, class F>
 auto bind(M&& x, F&& f)
}

Let TC be type_constructor<decay_t<M>>

Let T be value_type<decay_t<M>>

Class Template traits [monad.traits]

Function Template transform [monad.bind]

Effects: forward the call to the traits<TC>::bind . This function must return the result of calling to the f parameter with the
contained value type, if any; Otherwise it must return a monad of the same type that F returns without a value type.

Remark: The previous function shall not participate in overload resolution unless:

M has a type constructor TC that satisfies monad,
F satisfies Callable<F, invoke_t<TC,U>(T)> where T is the ValueType of M for some type U ,

The result of bind is the result of the invocation of f with the value of x if any, otherwise an invoke_t<TC,U>(T)

instance without a value.

bind : [T] x T->[U] -> [U]

namespace monad {
 template <class M>
 auto unwrap(M&& x)
}

Let TC be type_constructor<decay_t<M>>

Effects: forward the call to the traits<TC>::unwrap . This function should flatten input Monad on a Monad that has one less
nested level.

Remark: The previous function shall not participate in overload resolution unless:

M has a type constructor TC that satisfies Monad,
M has the form form TC<TC<T>> where T is value_type_t<value_type_t<decay_t<M>>>

The result of unwrap is the monad TC<T> .

unwrap : [[T]] -> [T]

namespace monad {
 struct mcd_bind
 {
 template <class T>
 auto unwrap(T&& x);
 };
}

This minimal complete definition define unwrap in function of bind .

namespace monad {
 template <class T>
 auto mcd_bind::unwrap(T&& x);
}

Function Template unwrap [monad.unwrap]

Class mcd_bind [monad.mcd_bind]

Class mcd_bind::unwrap [monad.mcd_bind.unwrap]

Equivalent to:

monad::bind(x, identity, f);

where identity is a unary function object that return its parameter.

namespace monad {
 struct mcd_unwrap
 {
 template <class T, class F>
 auto bind(T&& x, F&& f);
 };
}

This minimal complete definition defines bind in function of unwrap and transform .

namespace monad {
 template <class T, class F>
 auto mcd_unwrap(T&& x, F&& f);
}

Equivalent to:

monad::unwrap(functor::transform(x, f));

 template <class T>
 struct is_monad;

Add a "Monad Error Types" section

A MonadError is a type constructor that in addition to supporting Monad supports the make_error and the catch_error

functions. A type constructor TC meets the requirements of MonadError if:

TC is an Monad
the expressions shown in the table below are valid and have the indicated semantics, and
TC satisfies all the other requirements of this sub-clause.

In Table X below, m denotes an rvalue of type invoke<TC,T> , f denotes a Callable rvalue of type F . In Table X below,

Class mcd_unwrap [monad.mcd_unwrap]

Class mcd_unwrap::bind [monad.mcd_unwrap.bind]

Template class is_monad [monad.is_monad]

Monad Error Types

MonadError requirements

m denotes an rvalue of type invoke<TC,T> , f denotes a rvalue of type F where F satisfies Callable(T)>.

Expression Return
Type

Operational Semantics

invoke_t<TC, VT...> T

type_constructor_t<T> TC

error_type_t<TC> E

monad_error::make_error(e) Err a instance of a type depending on error_type_t<TC> that is convertible to any
invoke_t.

monad_error::catch_error(m,
f)

M Applies f to the error of m if any. Otherwise it return m.

namespace std {
namespace experimental {
inline namespace fundamentals_v3 {
namespace monad_error {
 using namespace monad;

 // class traits
 template <class TC, class Enabler=void>
 struct traits {};

 template <class M>
 struct error_type
 {
 using type = typename traits<M>::template error_type<M>;
 };

 template <class M>
 using error_type_t = typename error_type<M>::type;

 template <class T, class F>
 `see below` catch_error(T&& x, F&& f);
}

 template <class T>
 struct is_monad_error;
 template <class T>
 inline constexpr bool is_monad_error_v = is_monad_error<T>::value;
 template <class T>
 struct is_monad_error<const T> : is_monad_error<T> {};
 template <class T>
 struct is_monad_error<volatile T> : is_monad_error<T> {};
 template <class T>
 struct is_monad_error<const volatile T> : is_monad_error<T> {};
}
}
}

Header synopsis [monad_error.synop]

namespace monad_error {
 template <class T, class Enabler=void>
 struct traits {};
}

Remark The Enabler parameter is a way to allow conditional specializations.

namespace monad_error {
 template <class M, class F>
 auto catch_error(M&& x, F&& f)
}

Let TC be type_constructor<decay_t<M>>

Let T be value_type<decay_t<M>>

Let E be error_type<decay_t<M>>

Effects: forward the call to the traits<TC>::catch_error . This function must return the result of calling to the f

parameter with the contained error type, if any; Otherwise it must returns the parameter x .

Remark: The previous function shall not participate in overload resolution unless:

M has a type constructor TC that satisfies monad,
F satisfies Callable<F, M(E)> where E is the ErrorType of M ,

The result of catch_error is the result of the invocation of f with the error of x if any, otherwise x .

catch_error : [T]:E x E->[T] -> [T]:E

namespace monad_error {
 template <class M, class F>
 auto recover(M&& x, F&& f)
}

Let TC be type_constructor<decay_t<M>>

Let T be value_type<decay_t<M>>

Let E be error_type<decay_t<M>>

Effects: forward the call to the traits<TC>::catch_error . This function must return the result of calling to the f

parameter with the contained error type, if any; Otherwise it must returns the parameter x .

Remark: The previous function shall not participate in overload resolution unless:

M has a type constructor TC that satisfies monad,
F satisfies Callable<F, T(E)> where E is the ErrorType of M and T is the value type of M ,

The result of recover is the result of the invocation of f with the error of x wrapped on a M if any, otherwise x .

Class Template traits [monad_error.traits]

Function Template catch_error [monaderror.catcherror]

Function Template recover [monad_error.recover]

recover : [T]:E x E->T -> [T]:E

namespace monad_error {
 template <class M, class F>
 auto adapt_error(M&& x, F&& f)
}

Let TC be type_constructor<decay_t<M>>

Let T be value_type<decay_t<M>>

Let E be error_type<decay_t<M>>

Effects: forward the call to the traits<TC>::catch_error . This function must return the result of calling to the f

parameter with the contained error type, if any; Otherwise it must returns the parameter x .

Remark: The previous function shall not participate in overload resolution unless:

M has a type constructor TC that satisfies monad,
F satisfies Callable<F, G(E)> where E is the ErrorType of M and G is another error type,

The result of adapt_error is the result of the invocation of f with the error of x wrapped on a TC if any, otherwise
the value wrapped with TC .

catch_error : [T]:E x E->G -> [T]:G

 template <class T>
 struct is_monad_error;

Add Specializations of Functor, Applicative, Monad and MonadError.

ValueOrError objects can be seen as Functor, Applicative and Monad.

Function Template adapt_error [monaderror.adapterror]

Template class is_monad_error [monaderror.ismonad_error]

Customization for ValueOrError Types

namespace value_or_error {
 struct as_functor {
 template <class T, class F>
 static constexpr auto transform(T&& x, F&& f) {
 return value_or_error::transform(forward<T>(x), forward<F>(f));
 }
 };
 struct as_applicative {
 template <class T, class F>
 static constexpr auto ap(F&& f, T&& x) {
 return value_or_error::ap(forward<F>(f), forward<T>(x));
 }
 };

 struct as_monad {
 template <class M, class F>
 static constexpr auto bind(M&& x, F&& f) {
 return value_or_error::bind(forward<M>(x), forward<F>(f));
 }
 };
 struct as_monad_error {
 template <class M, class F>
 static constexpr auto catch_error(M&& x, F&& f) {
 return value_or_error::catch_error(forward<M>(x), forward<F>(f));
 }
 };
}
namespace functor {
 template <class N>
 struct traits<N, meta::when<
 is_value_or_error<N>::value && is_type_constructible<N>::value
 >> : value_or_error::as_functor {};
}
namespace applicative {
 template <class N>
 struct traits<N, meta::when<
 is_value_or_error<N>::value && is_type_constructible<N>::value
 >> : value_or_error::as_applicative {};
}

namespace monad {
 template <class N>
 struct traits<N, meta::when<
 is_value_or_error<N>::value && is_type_constructible<N>::value
 >> : value_or_error::as_monad {};
}

namespace monad_error {
 template <class N>
 struct traits<N, meta::when<
 is_value_or_error<N>::value && is_type_constructible<N>::value
 >> : value_or_error::as_monad_error {};
}

Customization for Expected Objects

Add Specialization of expected [expeced.object.monadic_spec].

namespace functor {
 template <class T, class E>
 struct traits<expected<T,E>>
 {
 template <class Expected, class F>
 static constexpr auto transform(Expected&& x, F&& f);
 };
}
namespace applicative {
 template <class T, class E>
 struct traits<expected<T,E>>
 {
 template <class Expected, class F>
 static auto ap(F&& f, Expected&& x);
 };
}
namespace monad {
 template <class T, class E>
 struct traits<expected<T,E>>
 {
 template <class M, class F>
 static constexpr auto bind(M&& x, F&& f);
 };
}
namespace monad_error {
 template <class T, class E>
 struct traits<expected<T,E>>
 {
 template <class M>
 using error_type = typename M::error_type;

 template <class M, class ...Xs>
 static constexpr auto make_error(Xs&& ...xs);

 template <class M, class F>
 static constexpr auto catch_error(M&& x, F&& f);
 };
}

This proposal can be implemented as pure library extension, without any language support, in C++17.

The authors would like to have an answer to the following points if there is any interest at all in this proposal:

Do we want the proposed customization approach?
Do we want separated proposals for each type class?
Should a ValueOrError P0786R0 be considered a MonadError?
Should std::vector be considered a Functor?

Implementability

Open points

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0786r0.html

Based on what Boost.Hana provides already, extend the basic functionality with useful algorithms.

functor::adjust : [T] x CT x (T->U) -> [U]
functor::fill : [T] x U -> [U]
functor::replace_if : [T] x (T->bool) x T -> [T]
functor::replace : [T] x CT x T -> [T]

applicative::lift : [T] x (T->bool) x (T->U) -> [U]

monad::then : [[T]] -> [T] // do
monad::next : [T] x ([T]->U) -> [U] // then
monad::next : [T] x ([T]->[U]) -> [U]

The proposed Functor, Applicative, Monad are homogeneous, that is all the elements have the same type. However ProductTypes
are heterogeneous and we can see them as something like heterogeneous Functors, Applicatives and Monads. The function
applied could be either a ProductType of the corresponding functions (N-Functor, N-Applicative, N-Monad), or polymorphic
functions (P-Functor, P-Applicative, P-Monad).

Monadic types don't compose very well when they are nested the ones on the others. We need some kind of transformer that
facilitates their composition. See Haskell Transformers.

Future work

Add more algorithms

Functor algorithms

Applicative algorithms

Monad algorithms

Add Functor, Applicative and Monad on heterogeneous types

Add Transformers

See how to add Alternative Haskell type class

Add Monoids and MonadPlus type classes

Add Foldable type classes

Acknowledgements

http://boostorg.github.io/hana/index.html

Thanks to Louis for his work on the monadic interface of Boost.Hana.

Special thanks and recognition goes to Technical Center of Nokia - Lannion for supporting in part the production of this proposal.

Boost.Hana Boost.Hana library

http://boostorg.github.io/hana/index.html

N4617 N4617 - Working Draft, C++ Extensions for Library Fundamentals, Version 2 DTS

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf

P0088R0 Variant: a type-safe union that is rarely invalid (v5)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf

P0323R0 A proposal to add a utility class to represent expected monad (Revision 2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0323r0.pdf

P0323R3 A proposal to add a utility class to represent expected monad (Revision 4)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r3.pdf

P0338R2 C++ generic factories

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf

P0343R1 - Meta-programming High-Order functions

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0343r1.pdf

P0786R0 ValuedOrError and ValueOrNone types

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0786r0.html

SUM_TYPE Sum Types https://github.com/viboes/std-make/blob/master/doc/proposal/sum_type/SumType.md

CUSTOM An Alternative approach to customization points

https://github.com/viboes/std-make/blob/master/doc/proposal/customization/customization_points.md

[THEN]

References

http://boostorg.github.io/hana/index.html
http://boostorg.github.io/hana/index.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4617.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0088r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0323r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0323r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0338r2.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0343r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0786r0.html
https://github.com/viboes/std-make/blob/master/doc/proposal/sum_type/SumType.md
https://github.com/viboes/std-make/blob/master/doc/proposal/customization/customization_points.md

