
Doc number: P0514R4
Revises: P0514R2, P0126R2, N4195
Date: 2018-05-03
Project: Programming Language C++, Library Evolution Working Group
Reply-to: Olivier Giroux <ogiroux@nvidia.com>

Efficient concurrent waiting for C++20
Changes	in	this	revision	

1. Applied feedback from JAX.
2. Proactively updated “synchronizes with” to “strongly happens before”.

Abstract	
Context

This revision proposes that a subset of the facilities from prior revisions be adopted for C++20.

The facilities included in this proposal have not seen substantial changes in the last year. The one
facility that was not included in this proposal (synchronic condition_variable_atomic synchronic)
remains in flux, but will now be decoupled from the others.

Abstract

The C++ atomic objects make it all too easy to implement inefficient blocking synchronization,
due to lack of support for waiting in a more efficient way than polling. One problem that results,
is poor system performance under conditions of oversubscription or contention. Another problem
is high energy consumption under contention, regardless of oversubscription conditions.

The specialized atomic_flag object does nothing to help with this problem, despite a name
that suggests it is suitable for this use. Its interface is tightly-fit to the demands of the simplest
spinlocks without contention mitigation beyond what timed back-off can achieve. What is needed
are specialized atomic and synchronization facilities, likely to replace atomic_flag in practice.

Semaphores and a simple abstraction for waiting

Semaphores are lightweight synchronization primitives that control concurrent access to a shared
resource. A binary semaphore, then, is analogous to a mutex with no thread ownership semantics.
This concept is behind our new proposed type:

 struct semaphore_mutex {
 void lock() {
 s.acquire();
 }
 void unlock() {
 s.release();
 }
 private:

 std::binary_semaphore s(1);
 };

A counting semaphore type is also proposed alongside: std::counting_semaphore, to
regulate shared access to a resource that is not mutually-exclusive but bounded by a maximum
degree of concurrency. These types follow Dijkstra’s semaphore concept (wiki).

In addition to new semaphore types, we also propose simpler atomic free functions that enable
incremental change to pre-existing algorithms expressed in terms of atomics, to benefit from the
same efficient support behind semaphores:

 struct simple_lock {
 void lock() {
 bool old;
 while(!b.compare_exchange_weak(old = false, true))
 std::atomic_wait(&b, true);
 }
 void unlock() {
 b = false;
 std::atomic_notify_one(&b);
 }
 private:
 std::atomic<bool> b = ATOMIC_VAR_INIT(false);
 };

Note: in high-quality implementations this necessitates a semaphore table owned by the
implementation, which causes some unavoidable interference due to the aliasing of unrelated
atomic updates.

Reference implementation

It’s here - https://github.com/ogiroux/semaphore.

C++ Proposed Wording

Apply the following edits to N4713, the working draft of the Standard. The feature test macros
__cpp_lib_semaphore and __cpp_lib_atomic_wait should be created.

32.2 Header <atomic> synopsis [atomics.syn]

 // 32.3, type aliases
 using atomic_int_fast64_t = atomic<int_fast64_t>;
 using atomic_uint_fast64_t = atomic<uint_fast64_t>;
 using atomic_int_fast_wait_t = atomic<implementation-defined>;
 using atomic_uint_fast_wait_t = atomic<implementation-defined>;

 // 32.9, fences
 extern "C" void atomic_thread_fence(memory_order) noexcept;
 extern "C" void atomic_signal_fence(memory_order) noexcept;

 // 32.10, waiting and notifying functions
 template <class T>
 void atomic_notify_one(const volatile atomic<T>*);

 template <class T>
 void atomic_notify_one(const atomic<T>*);
 template <class T>
 void atomic_notify_all(const volatile atomic<T>*);
 template <class T>
 void atomic_notify_all(const atomic<T>*);
 template <class T>
 void atomic_wait(const volatile atomic<T>*,
 typename atomic<T>::value_type);
 template <class T>
 void atomic_wait(const atomic<T>*, typename atomic<T>::value_type);
 template <class T>
 void atomic_wait_explicit(const volatile atomic<T>*,
 typename atomic<T>::value_type,
 memory_order);
 template <class T>
 void atomic_wait_explicit(const atomic<T>*,
 typename atomic<T>::value_type, memory_order);
}

32.10 Waiting and notifying functions [atomics.wait]

1 The functions in this subclause provide a mechanism to wait for the value of an atomic object to change, more
efficiently than can be achieved with polling. Waiting functions in this facility may block until they are unblocked
by notifying functions, according to each function’s effects. [Note: Programs are not guaranteed to observe
transient atomic values, an issue known as the A-B-A problem, resulting in continued blocking if a condition is
only temporarily met. – End Note.]

2 The functions atomic_wait and atomic_wait_explicit are waiting functions. The functions
atomic_notify_one and atomic_notify_all are notifying functions.

using atomic_int_fast_wait_t = atomic<implementation-defined>;
using atomic_uint_fast_wait_t = atomic<implementation-defined>;

3 The type aliases atomic_int_fast_wait_t and atomic_uint_fast_wait_t are integral atomic
types. Implementations should ensure that invocations of waiting and notifying functions with these types have
the lowest performance overhead among integer types.

template <class T>
 void atomic_notify_one(const volatile atomic<T>* object);
template <class T>
 void atomic_notify_one(const atomic<T>* object);

4 Effects: unblocks up to execution of a waiting function that blocked after observing the result of an atomic
operation X, if there exists another atomic operation Y, such that X precedes Y in the modification order of
*object, and Y happens-before this call.

template <class T>
 void atomic_notify_all(const volatile atomic<T>* object);
template <class T>
 void atomic_notify_all(const atomic<T>* object);

5 Effects: unblocks each execution of a waiting function that blocked after observing the result of an atomic
operation X, if there exists another atomic operation Y, such that X precedes Y in the modification order of
*object, and Y happens-before this call.

template <class T>

 void atomic_wait_explicit(const volatile atomic<T>* object,
 typename atomic<T>::value_type old,
 memory_order order);
template <class T>
 void atomic_wait_explicit(const atomic<T>* object,
 typename atomic<T>::value_type old,
 memory_order order);

6 Requires: The order argument shall not be memory_order_release nor memory_order_acq_rel.
7 Effects: Repeatedly performs the following steps, in order:

1. Evaluates object->load(order) != old then, if the result is true, returns.
2. Blocks until an implementation-defined condition has been met. [Note: Consequently, it may unblock for

reasons other than a call to a notifying function. - end note]

template <class T>
 void atomic_wait(const volatile atomic<T>* object,
 typename atomic<T>::value_type old);
template <class T>
 void atomic_wait(const atomic<T>* object,
 typename atomic<T>::value_type old);

8 Effects: Equivalent to: atomic_wait_explicit(object, old, memory_order_seq_cst);

Modify 33.1 General [thread.general]

Table 140 – Thread support library summary

 Subclause Header(s)

33.2 Requirements

33.3 Threads <thread>

33.4 Mutual exclusion <mutex> <shared_mutex>

33.5 Condition variables <condition_variable>

33.6 Futures <future>

33.7 Semaphores <semaphore>

33.7 Semaphores [thread.semaphore]

1 Semaphores are lightweight synchronization primitives used to constrain concurrent access to a shared
resource. They are widely used to implement other synchronization primitives and, whenever both are
applicable, can be more efficient than condition variables.

2 A counting semaphore is a semaphore object that models a non-negative resource count. A binary semaphore
is a semaphore object that has only two states, also known as available and unavailable. [Note: A binary
semaphore should be more efficient than a counting semaphore with a unit magnitude count. – end note]

33.7.1 Header <semaphore> synopsis [semaphore.syn]:
namespace std {

 template<ptrdiff_t max_value>

 class basic_semaphore;

 using counting_semaphore = basic_semaphore<implementation-defined>;
 using binary_semaphore = basic_semaphore<1>;
}

33.7.2 Class template basic_semaphore [semaphore.basic]:
1 Class basic_semaphore maintains an internal counter that is initialized when the semaphore is created.

Threads may block waiting until counter >= 1.
2 Semaphores permit concurrent invocation of the release, acquire, try_acquire, try_acquire_for, and

try_acquire_until member functions.

namespace std {

 template<ptrdiff_t least_max_value>
 class basic_semaphore {
 public:
 static constexpr ptrdiff_t max() noexcept;

 explicit constexpr basic_semaphore(ptrdiff_t);
 ~basic_semaphore();

 basic_semaphore(const basic_semaphore&) = delete;
 basic_semaphore(basic_semaphore&&) = delete;
 basic_semaphore& operator=(const basic_semaphore&) = delete;
 basic_semaphore& operator=(basic_semaphore&&) = delete;

 void release(ptrdiff_t = 1);
 void acquire();
 bool try_acquire();
 template <class Clock, class Duration>
 bool try_acquire_until(chrono::time_point<Clock, Duration> const&);
 template <class Rep, class Period>
 bool try_acquire_for(chrono::duration<Rep, Period> const&);
 private:
 ptrdiff_t counter; // exposition only
 };
}

static constexpr ptrdiff_t max() noexcept;

1 Returns: The maximum value of counter. This value shall not be less than that of the template argument
least_max_value. [Note: The value may exceed least_max_value. – end note]

explicit constexpr binary_semaphore(ptrdiff_t desired);

2 Requires: desired >= 0 and desired <= max().
3 Effects: Initializes counter with the value desired.

~binary_semaphore();

4 Requires: For every function call that blocks on counter, a function call that will cause it to unblock and return
shall happen before this call. [Note: This relaxes the usual rules, which would have required all wait calls to
happen before destruction. — end note]

5 Effects: Destroys the object.

void release(ptrdiff_t update = 1);

6 Requires: update >= 0, and counter + update <= max().
7 Effects: counter += update, executed atomically. If any threads are blocked on counter, unblocks them.
8 Synchronization: Strongly happens before invocations of try_acquire() that observe the result of the

effects.

bool try_acquire();

9 Effects:
a) With low probability, returns immediately. [Note: An implementation should ensure that

try_acquire() does not consistently return false in the absence of contending acquisitions. — end
note.]

b) Otherwise, if(counter >= 1) counter -= 1, executed atomically.
10 Returns: true if counter was decremented, otherwise false.

void acquire();

11 Effects: Repeatedly performs the following steps, in order:
a) Evaluates try_acquire() then, if the result is true, returns.
b) Blocks until counter >= 1.

template <class Clock, class Duration>
 bool try_acquire_until(chrono::time_point<Clock, Duration> const& abs_time);

template <class Rep, class Period>
 bool try_wait_for(chrono::duration<Rep, Period> const& rel_time);

12 Effects: Repeatedly performs the following steps, in order:
c) Evaluates try_acquire(). If the result is true, returns true.
d) Blocks until the timeout expires or counter >= 1. If the timeout expired, returns false.

13 Throws: Timeout-related exceptions (33.2.4).

33.7.3 Semaphores with predefined parameters [semaphore.predef]:

using counting_semaphore = basic_semaphore<implementation-defined>;

1 The name counting_semaphore introduces a counting semaphore type with a maximum value that should
be at least as large as the maximum number of threads the implementation can support.

using binary_semaphore = basic_semaphore<1>;

2 The name binary_semaphore introduces a binary semaphore type with a required maximum value of 1.

