
Document Number: P0775r0
Date: 2017-10-03
To: SC22/WG21 CWG/EWG
Reply to: Nathan Sidwell

nathan@acm.org / nathans@fb.com
Re: Working Draft, Extensions to C ++ for Modules, n4681

Module Partitions
Nathan Sidwell

The current wording of n4681 requires a module interface to be a single translation unit. When one
considers a module may itself be a collection of many sub-components, this requirement is restricting,
and not alleviated by composing a module of sub-modules. An extension to the concept of module-
name is proposed, which permits partitioning a module interface and implementation.

1 Background
The current modules draft, n4681, defines a module name as a dotted sequence of identifiers. Although
such a syntax suggests a modular hierarchy, no such concept exists. Module names reside in an entirely
flat namespace, each independent of one another.

Modules are expected to aid construction of complex software, and the natural partitioning of a library
into separate sub-modules would be expected to function. However, it does not fully satisfy the need of
constructing a module from a set of mutually-dependent components.

1.1 Motivating Example
Consider a hypothetical module implementing a compilation system. Such a module will need objects
to represent ‘declarations’ and objects to represent ‘types’. For a C++-like language, tagged-types will
need to reference declarations and declarations will need to reference types. A typical implementation
using existing C++ technology might consist of 2 header files:1

// decl.h
class Type; // forward declaration
class Decl {
 Type *type; // type of the object
 … // other members
};

1 Header protection is not shown.

P0775r0:Module Partitions - 1 - Nathan Sidwell

// type.h
class Decl; // forward declaration
class Type {
 Decl name; // name of the type
 … // other members
};

// compiler.h
#include <decl.h>
#include <type.h>

// decl.cc
#include <decl.h>
#include <type.h>
bool Decl::IsFunction () {
 return type->IsFunction ();
}

Converting this to modules requires could be done in two different ways.

1.2 Single Module
Placing the parts into a module interface unit could be done by textual inclusion, or preprocessor
inclusion. Textual inclusion is likely to result in a large, possibly unwieldy, source file. Such a source
file would have contention in a concurrent development environment.

Alternatively using a #include to incorporate them into a module interface leads one to develop

them knowing the context they must be included from. These header files will no longer stand alone

and be includeable from elsewhere. For one thing, they will probably be decorated with ‘export’

keywords to expose the appropriate pieces of interface to the user. But more importantly, module-
linkage entities will most likely be link-incompatible with external-linkage entities.2

1.3 Multiple Sub-modules
Using sub-modules for the separate parts of an interface would rely on forward-declaration via
proclaimed-ownership-declarations. However, it will still have the following drawbacks:

1. Moving entities between sub-modules is a visible breaking change in module ownership.3 This
may be undesirable.

2 The proposed changes to the vendor-neutral C++ ABI insert an additional mangling component for module-linkage
symbols that encodes the module name.

3 The amended ODR rules imply that symbols for exported entities could encode module ownership in some manner. The
ABI changes used by Clang & GCC do not encode ownership for exports so that backwards compatibility to non-
modular external symbols can be maintained.

P0775r0:Module Partitions - 2 - Nathan Sidwell

2. There is no source code guidance that these particular set of sub-modules are only intended to
be used together (via a container module), by the user. This is both a documentation problem,
and an efficiency problem, as the compilation system would not automatically know to optimize
the container module for its own inclusion.

For instance, presume the following module interfaces:4

// compiler.cc5

export module compiler;
export {
 import compiler.decl;
 import compiler.type;
}

// compiler-decl.cc
export module compiler.decl;
import compiler.type : extern class Type;
export class Decl { … };

// compiler-type.cc
export module compiler.type;
import compiler.decl : extern class Decl;
export class Type { … };

A user importing ‘compiler’ would separately import ‘compiler.decl’ and

‘compiler.type’. Unless instructed via implementation-specific command-line switches, it would

not merge those two sub-modules by value into a compiler module.

2 Proposal
p0529r0 (2016-11-23, R.Smith) presented a scheme to specify partitions of a module interface. It added

a new context-sensitive keyword, partition, and used an implementation-defined scheme to map

string-literals to the file system.

This proposal does not introduce new keywords, and provides a simple way to partition an interface
into multiple translation units. This proposal does not suggest a string-literal module naming system.
P0778r0 makes such a suggestion and the changes suggested here could be mapped onto that proposal.

The fundamental idea is to add structure to the module-name construct. This structure informs the
compilation system of which parts of the name are to be used to designate module-ownership, and
which parts provide partitioning of the module interface.

4 I am using the proclaimed-ownership-declaration syntax suggested in p0788r0.
5 I remain agnostic about particular file suffixes. Refer to p0778r0 for further discussion.

P0775r0:Module Partitions - 3 - Nathan Sidwell

Rather than the module-name just being a dotted sequence of identifiers, a trailing :identifier

may be present. This suffix denotes a module partition.

Coupled with this would be the following concepts:

1. The identifiers before the ‘:’ specify the base module name.

2. The base module name defines the ownership of declarations with non-internal linkage.

3. A module-name lacking a partition component is an unpartitioned module.

4. A module-name with a partition component is a module partition.

5. A module partition may only be imported into modules with the same base module name.

6. The module interface unit (used by users of the module) does not use a partitioned name (this
follows from Item 5).

These concepts make module partitions an implementation detail of any particular module. Entity
declarations may be moved between partitions of the same module without breaking ABI compatibility.
Whether the compiler artifact emitted by compiling an unpartitioned module interface unit includes the
module partitions by reference, or value, is an implementation choice. Importing by value is likely to
lead to compilation performance improvements as end users importing the module will then only read a
single file.

With this, the above example could be modularized as follows:

// compiler-decl.cc
export module compiler:decl;
export class Type; // forward declaration
export class Decl {
 Type *type; // type of the object
 … // other members
};

// compiler-type.cc
export module compiler:type;
export class Decl; // forward declaration
export class Type {
 Decl name; // name of the type
 … // other members
};

// compiler.cc
export module compiler;
export {
 import :decl;

P0775r0:Module Partitions - 4 - Nathan Sidwell

 import :type;
}

// compiler-decl-impl.cc
module compiler:decl;
import :type;
bool Decl::IsFunction () {
 return type->IsFunction ();
}

Notice it is syntactically impossible to import a partition of a foreign module. There would no longer
appear a need for proclaimed-ownership-declarations.

3 Changes to Modules-TS Draft
Amend the additional bullet for [basic,6]/8 as:

– they are module-names composed of the same dotted sequence of identifiers and module-
partition, if any.

Amend [basic.def.odr,6.2]/5:6

5 Exactly one definition, or visible defining import, of a class is required in a translation
unit if the class is used in a way that requires the class type to be complete. …

Change the additional seventh bullet added to [basic.def.odr,6.2]/6:

– if a declaration of D that is not a proclaimed-ownership-declaration appears in the purview
of a module (10.7), all other such declarations of D shall appear in the purview of the same
base module and there can be at most one definition of D in the purview of owning base
module.

Change the amendments to [basic.scope.namespace,6.3.6]/1 as:

… follows the member’s point of declaration. If the name X of a namespace member with
non-internal-linkage7 is declared in a namespace-definition of a namespace N in the
module interface unit of a module M, or a module interface unit partition MP, the
potential scope of X includes the namespace-definitions of N in every module unit of M or
module partition unit MP respectively and every module or module partition unit that
imports MP and, if the name X is exported, in every translation unit that imports M.
[Example: …

Modify the bullet added to [basic.lookup.argdep,6.4.2]/4:

6 This appears to be an existing defect, orthogonal to module partitions.
7 The current wording appears to make internal-linkage names visible in module implementation units. This is believed

an error.

P0775r0:Module Partitions - 5 - Nathan Sidwell

– Any function or function template that is owned by a module M or base-module BM, other
than the global module (10.7), that is declared in the module interface unit of M or an
imported partition of BM, and that has the same innermost enclosing non-inline
namespace as some entity owned by M or BM in the set of associated entities, is visible
within its namespace even if it is not exported.

Change the grammar added to ‘program and linkage [basic.link,6.5]/1’ as follows:

toplevel-declaration:
module-declaration

 proclaimed-ownership-declaration
declaration

module-declaration:
exportopt module module-name attribute-specifier-seqopt ;

proclaimed-owernship-declaration
 extern module module-name : declaration

module-name:
base-module-name-qualifier-seqopt identifier module-partitionopt

base-module-name:
 module-name-qualifier-seqopt identifier

module-name-qualifier-seq:
 module-name-qualifier .

module-name-qualifier-seqopt identifier .

module-name-qualifier
 identifier

module-partition:
 : identifier

Amend the new bullet to:

– When a name has module linkage, the entity it denotes is owned by a base module M and
can be referred to by name from other scopes of the same base module unit (10.7) or from
scopes of other module units of M.

Modify [basic.link,6.5]/6:

… the block scope declaration declares that same entity and receives the linkage of the
previous declaration. If that entity was exported by an imported from a different base-
module, the program is ill-formed. If there is more …

P0775r0:Module Partitions - 6 - Nathan Sidwell

Modify the grammar changes in [dcl.dcl,10]/1:

...

module-import-declaration:
import base-module-name attribute-specifier-seqopt ;
import module-partition attribute-specifier-seqopt ;

In [dcl.module,10.7] amend the new paragraph 4:

4 A module partition is a module unit whose name contains a module-partition. A
namespace-scope declaration D of an entity (other than a module)8 in the purview of a
module or module partition M is said to be owned by base module BM. Equivalently, the
base module BM is the owning base-module of D.

In [dcl.module.interface,10.7.1] amend paragraph 1:

… All entities with linkage other than internal linkage declared in the purview of the
module interface unit of a module M are visible in the purview of all module
implementation units of M and all module units of the same base module that directly or
indirectly import M. The entity and the declaration introduced by an export-declaration are
said to be exported.

In [dcl.module.import,10.7.2] amend paragraph 1:

1 A module-import-declaration shall appear only at global scope. A module-import-
declaration makes exported declarations from the interface of the nominated module visible
to name lookup in the current translation unit, in the same namespaces and contexts as in
the nominated module. A module-import-declaration naming a module-partition names a
partition of the current base module. …

Modify [dcl.module.export,10.7.3]/1:

1 An exported module-import-declaration nominating a module M’ in the purview of a
module M makes all exported names of M’ visible to any translation unit importing M. A
module partition shall not export an imported partition. [Note: A module interface unit
(for a module M) containing a non-exported module-import-declaration does not make the
imported names transitively visible to translation units importing the module M — end
note]

Delete [dcl.module.proclaim,10.7.4]

8 Also noted in p0774r0, this appears to be superfluous wording, regardless of the concept of module-partitions.

P0775r0:Module Partitions - 7 - Nathan Sidwell

	1 Background
	1.1 Motivating Example
	1.2 Single Module
	1.3 Multiple Sub-modules

	2 Proposal
	3 Changes to Modules-TS Draft

