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On	launder()	
For C++17 we currently introduce std::launder() as a result of a NB comment for C++14:  

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3903.html#FI15 

It was discussed as Core Issue 1776: 

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1776 

The first concrete proposal (with motivation for launder) was: 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4303.html  

The wording finally accepted was P0137R1: 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0137r1.html 

 

This issue also affects the following NB comments for C++17:  JP20,  CA12. 

This paper first tries to explain exactly the problem std::launder() tries to solve (a problem that has existed 
for decades). It then also discusses the problems that in my opinion arise from this solution to motivate 
why in my opinion a different solution makes more sense.  

To summarize, instead of introducing std::launder() I strongly recommend to make existing code that 
currently exists using placement new for elements with constant/reference member valid without any 
modification using std::launder().  

Which	Problem	shall	launder()	solve?	
According to the current standard, the following code results into undefined behavior: 

struct X { 
  const int n; 
  double d; 
}; 
X* p = new X{7, 8.8}; 
new (p) X{42, 9.9};   // request to place a new value into p 
int i = p->n;         // undefined behavior (i is probably 7 or 42) 
auto d = p->d;        // also undefined behavior (d is probably 8.8 or 9.9) 

 

The reason is the current memory model, written in  

 

3.8 Object lifetime [basic.life] 

If, after the lifetime of an object has ended and before the storage which the object occupied is 
reused or released, a new object is created at the storage location which the original object 
occupied, a pointer that pointed to the original object, a reference that referred to the original 
object, or the name of the original object will automatically refer to the new object and, once the 
lifetime of the new object has started, can be used to manipulate the new object, if: 
(8.1) — the storage for the new object exactly overlays the storage location which the original 
object occupied, and 
(8.2) — the new object is of the same type as the original object (ignoring the top-level cv-
qualifiers), and 
(8.3) — the type of the original object is not const-qualified, and, if a class type, does not contain 
any non-static data member whose type is const-qualified or a reference type, and 
(8.4) — the original object was a most derived object (1.8) of type T and the new object is a most 
derived object of type T (that is, they are not base class subobjects). 
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A corresponding example is part of the standard:  

 

1.8 The C++ object model [intro.object] 

[ Example: 
struct X { const int n; }; 
union U { X x; float f; }; 
void tong() { 
    U u = {{ 1 }}; 
    u.f = 5.f;                                           // OK, creates new subobject of u 
    X *p = new (&u.x) X {2};            // OK, creates new subobject of u 
    assert(p->n == 2);                         // OK 
    … 
    assert(u.x.n == 2);                       // undefined behavior, u.x does not name new subobject 
} 
—end example ] 

 
Note that this behavior is not new. It exists since C++03.  
 
As a consequence from the corresponding wording in the standard we’d have to ensure for all cases, 
where placement new is used for objects that might have constant or reference members, that the return 
value of placement new always is used with each access to the memory: 
 

struct X { 
  const int n; 
}; 
X* p = new X{7}; 
p = new (p) X{42};    // request to place a new value into p 
int i = p->n;         // OK, i is 42, because p was reinitialized 

                                           by the return value of placement new 
 
How common is this undefined behavior currently? One way is to check whether the return value of 
placement new is used in generic code. 
I only have one number about the Google code base thanks to Titus Winters: 

Of the ~800 instances of placement new I can find, about 40% do not use the resulting pointer 
(and are thus presumably prone to the launder issue you discuss).   

Why	using	the	return	value	of	placement	new	is	a	problem	
Unfortunately, in practice you cannot always easily use the return value of placement new. You might 
need additional objects and the current allocator interface does not support this. 

Placement	new	into	members	
 
One example where using the return value causes overhead is when the storage is an existing member. 
That, for example would be the case for std::optional and std::variant. 
 
Here is a simplified example: 
 

template <typename T> 
class coreoptional 
{ 
  private: 
    T payload; 
  public: 
    coreoptional(const T& t) 
     : payload(t) { 
    } 
    template<typename... Args> 
    void emplace(Args&&... args) { 
      payload.~T(); 
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      ::new (&payload) T(std::forward<Args>(args)...); // * 
    } 
    const T& operator*() const & { 
      return payload;  // ** 
    } 
}; 

 
 
If here T is a structure with constant or reference members: 

struct X { 
  const int _i; 
  X(int i) : _i(i) {} 
  friend std::ostream& operator<< (std::ostream& os, const X& x) { 
    return os << x._i; 
  } 
}; 
 

then the following code results into undefined behavior: 
coreoptional<X> optStr{42}; 
optStr.emplace(77); 
std::cout << *optStr;   // undefined behavior (probably outputs 42 or 77) 

 
The reason is that the output operation calls operator* (see ** above), which uses the memory, where 
placement new placed a new value in, without using the return value (see * above). 
 
In a class like this, you’d have to add an additional pointer member that keeps the return value of 
placement new and is used whenever the value is needed: 
 

template <typename T> 
class coreoptional 
{ 
  private: 
    T payload; 
    T* p;         // to be able to use the return value of placement new 
  public: 
    coreoptional(const T& t) 
     : payload(t) { 
        p = &payload; 
    } 
    template<typename... Args> 
    void emplace(Args&&... args) { 
      payload.~T(); 
      p = ::new (&payload) T(std::forward<Args>(args)...); 
    } 
    const T& operator*() const & { 
      return *p;  // don’t use payload here! 
    } 
}; 

 
std::launder() was introduced to avoid this overhead (see below). 
 

Placement	new	into	allocated	memory	
 
Now you might say that this overhead of adding a pointer member is not a problem for (container) classes 
that allocate memory on the heap, because they anyway internally hold a pointer to the memory, which is 
used whenever access to the data is needed. 
But, we run into a couple of different problems. 
 
First, we can’t use the return value of placement new here, when allocators are used, because currently 
the allocator interface provides no way to deal with the return value of placement new.  
 
According to the allocator requirements (17.5.3.5 Allocator requirements [allocator.requirements]): 
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a.construct(c,args)has a return type void, so that no return value of placement new can be used. 
 
Thus, currently (for C++ code up to version C++14) any container such as std::vector using elements 
with constant/reference members almost immediately runs into undefined behavior. 
For example: 

struct X { 
  const int i; 
  X(int _i) : i(_i) {} 
  friend std::ostream& operator<< (std::ostream& os, const X& x) { 
    return os << x.i; 
  } 
}; 

 
std::vector<X> v; 
v.push_back(X(42)); 
v.clear(); 
v.push_back(X(77)); 
std::cout << v[0];  // undefined behavior 

 
The reason is that vector::push_back() (as any other inserting function) calls placement new via 
allocator’s construct(), which ignores the return value of placement new. And when we place new 
values into memory of objects with constant subobjects, according to ‘3.8 Object lifetime [basic.life] §8’ 
we don’t have the guarantee that the internally used objects holding the value refers to the new value. 
 
In detail, the vector code might look as follows (with some simplifications, such as not using move 
semantics): 
 

template <typename T, typename A = std::allocator<T>> 
class vector 
{ 
  public: 
    typedef typename std::allocator_traits<A> ATR; 
    typedef typename ATR::pointer pointer; 
  private: 
    A _alloc;        // current allocator 
    pointer _elems;  // array of elements 
    size_t _size;    // number of elements 
    size_t _capa;    // capacity 

  public: 
    void push_back(const T& t) { 
      if (_capa == _size) { 
        reserve((_capa+1)*2); 
      } 
      ATR::construct(_alloc, _elems+_size, t);  // calls placement new 
      ++_size; 
    } 

    T& operator[] (size_t i){ 

      return _elems[i];  // UB for replaced elements with constant members 

    } 

    … 

}; 
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Again, note that ATR::construct() does not return the return value of the called placement new. 
Thus, we can’t use this return value instead of _elems. 
 
Again std::launder() was proposed to solve this problem, but as I will describe below, we can’t solve 
this problem with std::launder() at all. 
 
However, note that before C++11, using elements with constant members either was not possible (vector) 
or formally not supported, because elements had to be CopyConstructible and Assignable (although node 
based containers such as lists worked perfectly fine with elements with const members). But with C++11, 
introducing move semantics, elements with constant members as class X above are supported and cause 
this undefined behavior.  

How	launder()	tries	to	solve	the	problem	
CWG decided to solve the problem by introducing std::launder() as follows (see core issue 1776 and the 
other links on top of this paper): 

Whenever programs affect data where this problem might occur, you have to access the data via 
std::launder(): 
 

struct X { 
  const int n; 
}; 
X* p = new X{7}; 
new (p) X{42};               // request to place a new value into p 
int b = p->n;                // undefined behavior 
int c = std::launder(p)->n;  // OK, c is 42 (launder(p) forces to double-check) 
int d = p->n;                // still undefined behavior 

 
Note that std::launder() does not “white wash” the pointer for any further usage. As the last line 
demonstrates, you have to use std::launder() at any time you access data where placement new was 
called for. 
 
That means the currently (technically) broken code should be fixed now but modifying this code using 
std::launder(), whenever replacement memory with constant/reference elements is used. 
 
There might be slightly different solutions, though. For example as Richard Smith pointed out: 

Another option would be to do the laundering only when elements are inserted or removed 
(_M_begin = std::launder(_M_begin)) -- under the assumption that your compiler is smart enough 
to remove these stores when generating code. 

 
But in any case something must be fixed in the existing code of all these wrapper/container classes. 

Why	launder()	doesn’t	work	for	allocator‐based	containers	
However, for all allocator-based containers, such as std::vector, there is still a problem: 
std::launder() does not help to avoid undefined behavior. 
 
Consider for example, what it would mean to use std::launder() in the simplified vector example above to 
access the data of possible replaced objects with constant elements: 
 

template <typename T, typename A = std::allocator<T>> 
class vector 
{ 
  public: 
    typedef typename std::allocator_traits<A> ATR; 
    typedef typename ATR::pointer pointer; 
  private: 
    A _alloc;        // current allocator 
    pointer _elems;  // array of elements 
    size_t _size;    // number of elements 
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    size_t _capa;    // capacity 

    … 

}; 

 
To fix the fact that operator[] results into undefined behavior, we’d have to apply std::launder() to the 
pointer referring to the replaced memory: 
  

 The obvious solution might be the following code: 
  T& operator[] (size_t i){ 
      return std::launder(_elems)[i];   // might still be UB 
  } 
 
Unfortunately this might again result into undefined behavior, because the type of _elems might 
not be a raw pointer type. std::allocator_traits<A>::pointer might be a class type as 
Jonathan Wakely pointed out: 

std::launder takes a raw pointer as its argument. If the allocator's "pointer" type is not a raw 
pointer you can't pass it to launder. 

  

 Well, we have another raw pointer, this. 
But: 
  T& operator[] (size_t i){ 
      return std::launder(this)->_elems[i];   // launder() has no effect 
  } 
has no effect because the type of std::launder(this) is equivalent to just this  as 
Richard Smith pointed out: 

Remember that launder(p) is a no-op unless p points to an object whose lifetime has ended 
and where a new object has been created in the same storage.  

  

So, as in general we don’t have any raw pointer we can use for std::launder() here to get the desired 
effect.  

Thus, std::launder() doesn’t solve the problem to avoid undefined behavior in allocator-based 
containers when having elements with constant/reference members. 

Why	not	fixing	the	Basic	Lifetime	Guarantees	Instead?	
The obvious question is, why don’t we simply fix the current memory model so that using data where 
placement new was called for implicitly always does launder? 

 
First note again: This problem is not new. The relevant wording was not part of C++98, but part of C++03 
(that time 3.8 §7). So you can argue that for a long time, this problem at least formally exists. 

 
Another question is about existing practice. 

That is, it all depends on whether compilers use this kind of optimization: 

Regarding the constant/reference optimizations, usually current compilers do not: 

 AFAIK, gcc currently does not optimize the constant/reference case, but does optimizations for 
the vptr part. 

 AFAIK, clang currently is working on some const-related optimizations so that these problems 
might now come into effect. 

 Regarding the XL compilers, Hubert Tong wrote: 
 
The XL compilers also do optimize for the constant/reference case; 
however, it is meant to be limited to cases of static storage duration, e.g., 
  struct A { 
    const int x; 
    int y; 
  }; 
 
  A a = { 42, 0 }; 
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  void foo(); // cannot see definition 
 
  int main(void) { 
    foo(); 
    return a.x; 
  } 
 
The read of a.x is replaced with 42. This has been the case since before 2004. 

 

So, now we will be able to see the outcome of this core rules (in fact, I expect a lot of code to break then, 
so that in real life, things will probably be rolled back sooner or later; but we should avoid this 
unnecessary effort and chaos). 

Is	there	more	than	the	constant/reference	member	issue?	
Another question is if we have similar problem beside the constant/reference issue. 

In fact, Richard Smith stated in a private email: 
 

However, it's worth noting that the "dynamic type" provision is known to be *extremely* valuable. 
In particular, given: 
 
 X *p;            // p is known to point to an object whose dynamic type is Y 
 p->virtual_f();  // can devirtualize 
 p->virtual_g();  // can devirtualize this, too 
 
... we get *big* performance improvements from being able to devirtualize the second call, and 
that is only possible because we're permitted to assume that the first function did not change the 
dynamic type of the object via placement new. 

 
Richard Smith also provided another example: 
 

struct B { virtual void f(); }; 
struct D1 : B { virtual void f(); }; 
struct D2 : B { virtual void f(); }; 
variant<D1, D2> v; 
 
Here, variant needs to use something like launder internally if it wants to allow the active element 
to change between D1 and D2 and the virtual call to reliably call the right function (this is 
essentially the same as the p->virtual_f() / p->virtual_g() case above, once you inline away the 
variant implementation). 
 

AFAIK, these cases can’t (or can rarely) happen when using containers or wrapper types. So, it is 
probably valuable still to provide std::launder() for these cases, while fixing the const/reference case 
where std::launder() can’t help. 

Hiding	the	problem	could	make	things	worse	
Note also that this problem might be caused indirectly by calling corresponding member functions. 

Consider: 

Obj x;  
x.use();                  // ok  
mutate(x);                // does this call placement new? 
x.use();                  // may have undefined behavior  
std::launder(&x)->use();  // may be necessary  
x.use();                  // may still have undefined behavior 
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As far you don’t know that mutate() does not call placement new, you have to use std::launder() to be 
sure each time you use object x. But again, we don’t have a raw pointer to apply std::launder() to ( here 
also std::launder(&x) is the same as &x because x is still alive. 

 

Nathan Myers recommend here: 

In that vein, maybe laundry is the wrong operation at the wrong 
time.  What we really want is to declare that a particular use of 
a name (e.g. an argument) taints it.  This would be attached  
to certain arguments of the functions, including member functions,  
that actually do the nasty work. E.g.  
 
   template <T> void default_construct(T taint* p) { new(p) T(); }  
 
(Probably the compiler should warn, then, if an argument not so  
declared is passed down to one that is.)  For the case of vector  
push_back, only one vector member would be tainted. That member  
would best be identified as subject to tainting by member functions  
so declared.  I.e., calling a tainting member function doesn't  
taint all of *this, but only taintable member vec<T>::ptr.  
 
In any case, the rvalue itself then would be laundered invisibly  
by the compiler at each place where it is needed. Compilers are  
better at this sort of thing than programmers are (and much  
better than people are). I believe "taint" would have some of  
the flavor of "restrict", albeit with important differences.)  
The case of vector<>::data() and vector<>::push_back() seems  
to need a similar relationship between the former's result and  
a subsequent call to the latter.  
 
Short of adding such a feature, limiting the latitude extended  
to implementations by the AFNOR change in 98->03 seems necessary  
-- possibly in an interim corrigendum to C++14 (and even C++11).  
Another intermediate measure might be to make launderation sticky  
(a.k.a. "whitewashing"), so that the third "o.use()" in the  
example above would be OK:  
 
   Obj o;  
   o.mod(); // o tainted  
   launder(&o);  
   o.use(); // ok  
 
But it would be harder to put this in a corrigendum, which seems  
to be needed regardless of what we do for C++17. 

Summary	and	Recommendation	
The problem described here uses a couple of programming techniques available for more than 20 years: 

a) Placement new without always using the return value 
 because it’s convenient 
 because it avoids introducing additional objects (as for variant or optional) 
 because there is no other option in all classes using allocators 

b) Classes with constant members 
c) Allocator-based containers 

Although the not every combination was possible all the time (e.g. vectors could not use elements with 
constant members until C++11), I’d assume that there is a lot of code out there using placement new in 
combination with objects with constant members (before C++11 it e.g. could easily happen with node-
based containers; since C++11 this is possible with any standard container). 

If compilers turn a corresponding optimization on now, I’d assume that a lot of existing code will (silently) 
break. So, current implementation might cancel such a modification in practice. But I strongly suggest 
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clarify the wording now to make this existing code valid. Standards should always standardize existing 
practice. 

I don’t know, though, how much code is broken, if one of these optimization is no longer available. 
Regarding the constant/reference member part I don’t think that it is a lot of code because such an 
optimization seems not be widely available yet. 

In practice, we can’t expect that all existing generic wrapper and container classes will be adopted 
accordingly (the problem not only applies to standard library classes). 

In addition, as pointed out, the current solution with std::launder() does not solve the UB problem with 
allocator-based containers having elements with const/reference members at all. 

So, the only valid option I see and recommend is to come back to the C++98 version of [basic.life] and 
allow only optimizations that we already allow for classes without const/reference members. 
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